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Abstract

Mesenchymal stem/stromal cells (MSCs) are promising for the treatment of degener-

ative diseases and traumatic injuries. However, MSC engraftment is not always suc-

cessful and requires a strong comprehension of the cytokines and their receptors that

mediate the biological behaviors of MSCs. The effects of nerve growth factor (NGF)

and its two receptors, TrkA and p75NTR, on neural cells are well studied. Increasing

evidence shows that NGF, TrkA, and p75NTR are also involved in various aspects of

MSC function, including their survival, growth, differentiation, and angiogenesis. The

regulatory effect of NGF on MSCs is thought to be achieved mainly through its bind-

ing to TrkA. p75NTR, another receptor of NGF, is regarded as a novel surface marker

of MSCs. This review provides an overview of advances in understanding the roles of

NGF and its receptors in MSCs as well as the effects of MSC-derived NGF on other

cell types, which will provide new insight for the optimization of MSC-based therapy.
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1 | INTRODUCTION

Mesenchymal stem/stromal cells (MSCs) exhibit fibroblastic morphol-

ogy as well as self-renewal and multiple differentiation potentials.1

The Mesenchymal and Tissue Stem Cell Committee of the Interna-
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minimal standard criteria for human MSCs: (a) must be plastic adher-

ent (PA) under standard culture conditions; (b) must express CD105,

CD73, and CD90 and lack surface expression of CD45, CD34, CD14

or CD11b, CD79a or CD19, and HLA-DR; and (c) must be able to dif-

ferentiate into chondrocytes, osteoblasts, and adipocytes in vitro.2

MSCs exist in various tissues, such as bone marrow (bone marrow-

derived MSCs [BMSCs]),3 and as other MSC-like populations, such as

adipose tissue-derived MSCs (ADSCs),4 skin-derived MSCs (SSCs),5

Wharton's jelly-derived MSCs (WJMSCs),6 umbilical cord blood-

derived MSCs (UCBSCs),7 placental-derived MSCs (PSCs),8 and dental

pulp stem/stromal cells (DPSCs).9 However, biological characteristics

of MSCs vary based on the in vivo environment as well as the isola-

tion and expansion methods. Gene expression analysis has indi-

cated that a considerable number of genes are differently

expressed in MSCs derived from different origins. Cellular proper-

ties, including proliferation, multiple differentiation, migration and

immunomodulatory activity, also vary among MSCs isolated from

different tissues. Besides, MSCs tend to gradually lose their biologi-

cal functions after in vitro expansion. Usually at passages 8 to

15, MSC begin to degenerate and show some cellular aging signs,

such as larger cell size, reduced confluency, slower proliferation

rate, attenuated multiple differentiation potential, and changes in

molecular profiles.10,11

In fact, plasticity is a fundamental property of MSCs related to a

whole sequence of cytological functions and even to the fate of

MSCs.12 A number of microenvironmental changes and molecular sig-

naling pathways have been studied to elucidate the roles of growth

factors, cytokines, and chemokines on the functions of MSCs. For

example, transforming growth factor-beta (TGF-β) has been proposed

to have a substantial effect on the properties of MSCs, including their

proliferation, multiple differentiation, and immunomodulatory capaci-

ties.13 Some cytokines that are widely used in the study of other cell

types also display a certain regulatory action on MSCs, which has

attracted increasing attention from researchers.

Nerve growth factor (NGF) is a member of the neurotrophic fac-

tor family that was first discovered by Levi-Montalcini in the 1950s.

He conducted a study in which mouse tumors were transplanted into

chicken embryos and produced NGF to stimulate the growth of sym-

pathetic and sensory nerve cells and fibers.14,15 An antiserum

targeting this factor was able to destroy most of the sympathetic

ganglia in various newborn mammals.16 Later, its crucial roles in regu-

lating the production of neuropeptides and neurotransmitters and the

survival, growth, and differentiation of neurons in the peripheral and

central nervous systems were revealed.17-19 Moreover, NGF has dis-

played a superior nerve injury repair capacity in animal models20,21

and in clinical trials.22 A recent case report demonstrated that intrana-

sal NGF administration improved the functional assessment and elec-

trophysiological and clinical conditions of a patient with traumatic

brain injury (TBI).23 In addition, it was suggested that NGF also played

significant roles in pain regulation via the stimulation of sensory and

sympathetic nerve formation during the fetal period and elicitation of

sensitization in both peripheral and spinal cord nerves during adult-

hood. NGF inhibitors could be used as new analgesics to prevent

refractory chronic pain.24-26 NGF has two membrane receptors: TrkA,

a 140-kDa transmembrane tyrosine kinase that exhibits a high affinity

for NGF and can be phosphorylated on tyrosine residues after binding

to NGF,27 and p75 neurotrophin receptor (p75NTR), also known as

CD271, a 75-kDa glycoprotein belonging to the TNF receptor super-

family that shows a low affinity for NGF and can also bind to other

neurotrophins.28,29 The functions of NGF are not restricted to the

nervous system, and numerous studies have shown that NGF has bio-

logical effects on MSCs.30-32 The effects of NGF on MSCs are thought

to be mediated mainly by the high-affinity receptor TrkA,33 while the

low-affinity receptor p75NTR is more likely to serve as a novel marker

of MSCs.34

In this review, we focus first on the modulatory effect of exoge-

nous NGF on MSC functions, the paracrine effect of MSC-derived

NGF on other cell types, and the activation of the NGF/TrkA signaling

pathway in MSCs. Then, we discuss the possibility of utilizing p75NTR

as a surface marker for identifying MSCs as well as the cytological

functions and superiority of the p75NTR+ MSCs. Finally, we summa-

rize the applications of the p75NTR+ MSCs for MSC-based therapy in

various diseases.

2 | EFFECT OF NGF ON MSCs

Previous studies have demonstrated that NGF exerts diverse cytologi-

cal effects on neuronal cells, and such effects are now being observed

in studies on MSCs (Table 1). Kolli et al investigated the effect of NGF

on limbal stem cells (LSCs) and found that NGF and its receptors were

expressed in LSCs, while NGF and p75NTR were downregulated

throughout the differentiation period. In contrast, the expression of

TrkA was variable but did not obviously decrease during the culture

process. Blocking the action of NGF with an anti-NGF antibody led to

reductions in DNA replication, colony-forming capacity and expres-

sion of the LSC markers ABCG2 and C/EBPδ but to higher expression

of the corneal epithelial cell marker CK3. Given these findings, the

authors suggested that NGF played a key role in maintaining the

stemness of LSCs.35 In another study, Lu et al reported that the prolif-

eration of BMSCs was promoted after treatment with NGF, as shown

by a higher DNA content and increased hematoxylin and eosin

(HE) staining.36 However, Gronthos et al demonstrated that NGF did

not support colony growth of MSCs under serum-deprived conditions,

indicating that NGF was not able to initiate fibroblast colony-forming

Significance statement

Mesenchymal stem/stromal cells (MSCs) have shown great

promise in regenerative medicine, and their functions are

regulated by various cytokines. This review provides an

overview of the roles of nerve growth factor and its recep-

tors in MSCs to potentially identify strategies to optimize

the therapeutic effects of MSCs.
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unit (CFU-F) colony formation in MSCs.37 Thus, NGF may promote

MSCs proliferation through increasing its sensitivity to surrounding

stimulating factors, rather than directly inducing the proliferation

of MSCs.

After chondrogenic induction, NGF-treated BMSCs produced

more GAG and type II collagen and expressed higher levels of

cartilage-specific genes, such as Aggrecan, SOX9, and COL II, than

untreated BMSCs in both monolayer cultures and 3D cultures. When

used to repair damaged cartilage in rabbits, NGF-treated BMSCs

showed a greater therapeutic effect than untreated BMSCs.36 Fur-

thermore, Jiang et al found that the expression of NGF was increased

in osteoarthritic cartilage and in vitro-cultured chondrocytes exposed

to interleukin (IL)-1β. NGF could serve as a chemokine to promote the

migration of cartilage stem/progenitor cells (CSPCs). In addition, treat-

ment with an anti-NGF antibody significantly affected the matrix rem-

odeling activity of CSPSs.38 This result was similar to the findings of

Miao and colleagues, who suggested that NGF was better than TGF-

β1 at enhancing the proliferation and chondrogenic differentiation

abilities of MSCs.39 Moreover, Cui et al reported that the ALP levels

and calcium nodule formation ability were significantly enhanced in

NGF-treated BMSCs compared to untreated BMSCs, suggesting that

NGF promotes the osteoblastic differentiation and mineralization

capacities of BSMCs isolated from mice with diabetes.40 In addition,

NGF can reportedly induce the neurogenic differentiation of a variety

of MSCs, including BMSCs,41 ADSCs,42 UCBMSCs,43 and DPSCs,44

in vitro. Moattari et al proposed using NGF-treated MSCs to repair

peripheral nerve injuries in rats. They demonstrated that better thera-

peutic effects were achieved with NGF in combination with MSCs

than with MSCs alone, as shown by behavioral, electrophysiological,

and histological assessments.45 In fact, MSC differentiation is a com-

plex process involving interactions between cells and extracellular

environment. NGF may not serve as an inducer of MSC differentiation

because it can promote the differentiation of MSCs into different cell

types, including chondrocytes, osteoblasts, and neural cells. A more

reasonable explanation is that NGF improves the responsiveness to

differentiation inducers of MSCs, thus increase its differentiation

tendency.

To elucidate whether NGF has an impact on BMSC angiogenesis

and the possible mechanisms, Wang et al cultured BMSCs in Matrigel

and treated them with different concentrations of NGF. They found

that tube formation was significantly promoted in MSCs treated with

50 μg/L NGF and that this effect was associated with the enhance-

ment of MSC proliferation but not with vascular endothelial growth

factor (VEGF) expression.46 In addition, it has been proposed that

NGF acts as a pro-survival factor in various types of cells.47-49 Wang

et al found that NGF treatment increased the viability of BMSCs and

suppressed hexanedione-induced apoptosis of BMSCs in vitro. They

suggested that NGF could be used to prevent the apoptosis of BMSCs

TABLE 1 Effects of NGF on different types of MSCs

Cell

type

Cell

source

Passage

number Treatment Results Year Ref

LSCs Human Not

mentioned

Treated with an anti-NGF antibody Exhibit reductions in DNA replication, colony-

forming capacity and expression of the LSC

markers but higher expression of the corneal

epithelial cell marker

2019 35

BMSCs Rabbit Not

mentioned

Treated with different concentration of NGF (0,

1.5, 3, 6 μg/mL for in vitro study and 0,

10 ng/mL for in vivo study)

Cells treated with 3 μg/mL NGF show highest

proliferation and chondrogenesis abilities in

vitro; cells treated with 10 ng/mL NGF show a

better therapeutic effect on rabbits with

cartilage damage in vivo

2017 36

BDSCs Rabbit P3 Treated with 3 μg/mL NGF Display enhanced proliferation and chondrogenic

differentiation abilities

2019 39

BMSCs Mice P3 Treated with NGF Show greater osteoblastic differentiation and

mineralization capacities

2018 40

BMSCs Rat P3-4 NGF gene modification Enhance its neurogenic differentiation 2016 41

BMSCs Rat P3-5 Treated with different concentration of NGF (0,

50, 100, 200 μg/L)
Cells treated with 200 μg/L exhibit the most

obvious reduction in apoptosis

2019 50

CSPCs Human Not

mentioned

Treated with an anti-NGF antibody Exhibit reduced matrix remodeling activity 2015 38

ADSCs Human P3-4 Treated with NGF encapsuled in chitosan

nanoparticles

Enhance its neurogenic differentiation capacity 2019 42

UCBSCs Human Not

mentioned

Treated with different concentration of NGF (0,

12.5, 25, 50 100 ng/mL)

Cells treated with 100 ng/mL NGF show the

most enhanced neurogenic differentiation ability

2017 43

DPSCs Human P3 Treated with 100 ng/mL NGF Enhance its neurogenic differentiation 2017 44

Abbreviations: ADSCs, adipose tissue-derived mesenchymal/stromal stem cells; BMSCs, bone marrow-derived mesenchymal/stromal stem cells; CSPCs,

cartilage stem/progenitor cells; DPSCs, dental pulp-derived mesenchymal/stromal stem cells; LSC, limbal stem cells; MSCs, mesenchymal stem/stromal

cells; NGF, nerve growth factor; UCBSCs, umbilical cord blood-derived mesenchymal/stromal stem cells.
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to improve their transplantation into damaged tissues for regenerative

therapy.50

3 | MSCs AND NGF: PRODUCTION AND
FUNCTION

Cytokine secretion, which varies based on tissue origin, is regarded as

one of the most important functions of MSCs.51 Both BMSCs and

ADSCs reportedly produce NGF, while BMSCs produce significantly

more NGF than ADSCs.52 Crigler et al found significant differences in

NGF release in different MSC clones, suggesting that the expression

of NGF was restricted to specific MSC subpopulations.53 In addition,

Peng et al induced WJMSCs into Schwann-like cells in vitro and found

that differentiated WJMSCs were capable of producing neurotrophic

factors, including NGF, and stimulating neurite outgrowth of PC12

cells.54

Bai et al reported that NGF could perfectly mimic the anti-

apoptotic effect of conditioned BMSC medium and that this effect

was abolished by intervention with an anti-NGF antibody, indicating

that NGF was involved in the anti-apoptotic effect induced by

BMSCs.55 Interestingly, the concentration of NGF was higher in

BMSC and neural stem cell (NSC) cocultures than in BMSC or NSC

monocultures.56 Thus, MSC transplantation may be an excellent tool

for the local delivery of NGF into damaged tissues to promote the sur-

vival and repopulation of host neurons. Wang et al. injected BMSCs

into 2,5-hexanedione-treated rats via their tail vein. After 4 weeks,

they found that 2,5-hexanedione-induced neuronal apoptosis in the

spinal cord was significantly attenuated due to an increased concen-

tration of NGF.57 Wu et al transfected the NGF gene into UCMSCs to

improve the efficiency of NGF synthesis. Then, they intrathecally

injected these transfected cells into the spinal cord to treat

cystopathy in rats with diabetes and found that their voiding function

improved as the NGF concentration increased.58 In another study, Jo

et al utilized BMSC transplantation to alleviate olfactory dysfunction.

The study revealed that the expression of NGF and brain-derived neu-

rotrophic factor (BDNF) was significantly increased at week 2 and

slightly reduced at week 4. The thickness and composition of the

olfactory epithelium were close to normal, and olfactory function was

improved greatly. The authors suggested that BMSCs possessed ther-

apeutic potential for olfactory dysfunction due to their paracrine

actions, especially the secretion of NGF and BDNF.34

4 | SIGNALING TRANSDUCTION BY NGF
AND TrkA IN MSCs

In neurons, TrkA is expressed on the plasma membrane with a extracellu-

lar ligand that could bind to NGF. Then NGF/TrkA signaling begins across

into the intracellular cytoplasm and recruits those pro-differentiation and

pro-survival signaling molecules, which are mainly signaling cascades

including phosphatidylinositol 3-hydroxy kinase (PI3K)-protein kinase B

(Akt), Ras-mitogen-activated protein kinase (MAPK), and phospholipase C

gamma (PLCγ)-protein kinase C (PKC). As a result, the survival and differ-

entiation of neural cells are enhanced.33 (Figure 1A).

Although the NGF receptors TrkA and p75NTR are both

expressed by MSCs, NGF binds more specifically to TrkA and then

activates intracellular signaling pathways such as PI3K/Akt and

MAPK/Erk (Figure 1B). Previous studies have demonstrated that Akt

is involved in the growth and differentiation of MSCs.59 Spontane-

ously, NGF promotes the proliferation of BMSCs by activating the

PI3K/Akt signaling pathway. Treatment with NGF significantly

enhances the Akt phosphorylation and proliferation of BMSCs, both

of which are blocked by intervention with the specific PI3K inhibitor

LY294002.46 Bad is a downstream target of Akt that can be phos-

phorylated and inactivated by Akt,60 while dephosphorylated Bad

induces the apoptotic caspase-3 cascade.61 NGF treatment signifi-

cantly reduces the apoptosis of BMSCs and caspase-3 activity, and

this effect is counteracted by the Akt inhibitor MK-2206. Thus, the

protective effect of NGF against BMSC apoptosis may be achieved

through the Akt/Bad pathway.50

Sirt1 is a member of the Sir2 family that plays roles in

neuroprotection, cell senescence, apoptosis, and the inflammatory

response by interacting with proteins in a variety of signaling path-

ways.62 Recent research has indicated that Sirt1 activation induces

the neuronal differentiation of BMSCs.63 Zhang et al reported that

NGF could induce the neural differentiation of DPSCs by increasing

the expression of Sirt1. In addition, after treatment with NGF, phos-

phorylation of Akt and Erk is promoted in DPSCs, and this effect can

be reversed by a Sirt1 inhibitor, indicating that the Akt and Erk signal-

ing pathways may also be involved in the neuronal differentiation of

DPSCs induced by NGF.44 However, it is not clear whether the NGF-

induced upregulation of Sirt1 expression occurs universally in MSCs

or is restricted to DPSCs. Moreover, NGF can more robustly activate

the PI3K/Akt signaling pathway than TGF-β1 during the process of

MSC chondrogenesis.39 Since the PI3K/Akt signaling pathway is com-

monly recognized to be involved in the chondrogenic differentiation

of MSCs,64 activation of the PI3K/Akt signaling pathway is important

for the promotion of MSC chondrogenesis by NGF. In addition, the

addition of K252a, an inhibitor of TrkA, can counter or even nega-

tively affect NGF-induced BMSC osteogenic differentiation, indicating

that TrkA is involved in osteogenetic stimulation by NGF.40 Further-

more, Zheng et al constructed TrkA-overexpressing BMSCs and TrkA-

shRNA-expressing BMSCs and used them to repair sciatic nerve

defects in rats. The authors found that after 8 weeks, the TrkA-

overexpressing BMSC group showed better nerve regeneration and

functional restoration than the TrkA-shRNA-expressing BMSC

group, suggesting that TrkA was involved in regulating the nerve

regenerative potential of BMSCs.65

5 | P75NTR ACTS AS A NOVEL MARKER
OF MSCs

In 1986, p75NTR was discovered by Johnson and his coworkers as

the first NGF receptor66 and was recognized as the sole NGF receptor

ZHA ET AL. 1011



until the identification of TrkA.67 Under specific physiological condi-

tions, p75NTR is able to induce cell death by interacting with cyto-

kines, thus inducing the activation of nuclear factor kappa B (NF-κB)

pathways68 and the recruitment of cytosolic interactors to the death

domain.69 As a low-affinity NGF receptor, p75NTR has been reported

to be involved in the regulation of the apoptotic effect of NGF. For

example, since the expression of both p75NTR and NGF is increased

in Alzheimer's disease, NGF/p75NTR is thought to be related to neu-

ronal cell death.70,71 These data demonstrate that p75NTR might play

a negative role in neuronal cell survival, which is contrary to the effect

of TrkA. However, it is also proposed that co-expression of p75NTR

and TrkA results in enhanced neuronal cell survival.72 In the presence

of p75NTR, the affinity of TrkA to NGF is significantly increased

(100-fold). On the other hand, the role of p75NTR in MSCs is rela-

tively transparent. In 1993, p75NTR was first identified in human

bone marrow stromal cells both in vivo and in vitro by Cottoretti and

colleagues.73 Later, Stro-1+p75NTR+ bone marrow stromal cells were

shown to contain all of the assayable CFU-Fs after in vitro culture.37

Since then, an increasing number of researchers have focused on the

effects of p75NTR on MSCs. Traditionally, MSCs are harvested from

F IGURE 1 Overview of NGF/TrkA signaling pathways in neurons and MSCs. A, NGF binds to the extracellular ligand of TrkA and then
actives PI3K-Akt, Ras-MAPK and PLCγ-PKC signaling pathways to promote the survival and differentiation of neurons. B, After binding to TrkA,
NGF can activate the PI3K/Akt and MAPK/Erk signaling pathways in MSCs. Sirt is also involved in the activation of Akt and Erk, both of which
can stimulate the neural differentiation of MSCs. In addition, the activation of Akt can promote the proliferation, chondrogenic differentiation and
osteogenic differentiation of MSCs and prevent their apoptosis. MSCs, mesenchymal stem/stromal cells; NGF, nerve growth factor
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primary tissues due to their natural plastic adherence and are mixed

with other adherent cells, such as macrophages and endothelial cells.

Purified MSCs with better functional properties can be obtained

through immunoselection based on specific MSC markers. In addition

to the typical surface markers CD105, CD90, and CD73, other

markers, including p75NTR, have also been identified to further char-

acterize MSCs.74,75 According to the literature, p75NTR is expressed

by MSCs from different tissue sources, and the p75NTR+ MSCs pos-

sess some unique properties (Table S1).

5.1 | Bone marrow-derived MSCs

In 1999, Pettenger et al found that cells with the ability to proliferate

extensively and differentiate into multiple mesenchymal lineages could be

isolated from human bone marrow, which was the first description of the

isolation and characteristics of BMSCs.3 Later, BMSCs were reported to

express CD29, CD44, CD90, CD105, and lack expression of HLA-DR and

c-kit.76 Among the different MSCs derived from diverse tissue sources,

BMSCs are one of the most common types used for MSC-based therapy

and tissue engineering, and their characteristics have been extensively

studied. It has been demonstrated that p75NTR is a specific marker for

identifying BMSCs.34 In 1993, Cattoretti and colleagues reported that an

antibody against p75NTR labeled the majority of bone marrow stromal

cells, which were positive for reticulin, collagen III and vimentin but nega-

tive for leukocyte, neural and endothelial markers.73 In 2002, Quirici et al

first isolated p75NTR+ MSCs from the bone marrow and found that these

cells showed greater colony-forming and expansion abilities and a greater

potential to differentiate into adipocytes or osteocytes than PA MSCs.77

In another independent study, Jones et al purified BMSCs by positive

selection with D7-FIB-conjugated microbeads and negative selection with

an anti-CD45 antibody and found that the D7-FIB+CD45low BMSCs were

also positive for several unique markers, including p75NTR.78 Bühring et al

demonstrated that only the p75NTR+ cells but not p75NTR− cells in bone

marrow was positive for the MSC markers, including CD10, CD13, CD73,

and CD105.79 Due to its high expression on BMSCs, p75NTR can be used

to isolate a homogeneous population of BMSCs with little hematopoietic

contamination rather than a subpopulation of BMSCs only.80-82 Specifi-

cally, Mabuchi et al proposed the use of p75NTR and CD90 to isolate

extremely pure BMSCs, which exhibited �200 000-fold higher CFU-F

activity than unsorted bone marrow cells.83

Scheding and his coworkers indicated that MSCs in human bone

marrow were highly enriched in p75NTR+CD140alow/− cells, which

expressed high levels of mesenchymal and multipotency genes and

were able to generate nonadherent spheres with proliferation and full

differentiation potential both in vitro and in vivo.84-86 Jones et al rev-

ealed that in patients with osteoarthritis (OA), p75NTR+ BMSCs were

more likely to accumulate in femoral heads with bone marrow lesions,

which were associated with enhanced cartilage damage and bone

sclerosis.87 Furthermore, p75NTR+ BMSCs were found to reside adja-

cent to immature osteocytes and osteoblasts, indicating that they

were osteogenically committed MSCs and potential therapeutic

targets for OA or other bone-related diseases.88,89

Latifi-Pupovci et al demonstrated that p75NTR+ BMSCs pos-

sessed much higher proliferation and migration capacities than PA

BMSCs, indicating that the wound healing potential of p75NTR+

BMSCs was stronger than that of PA BMSCs.90 In a comparative

study, Kuci et al reported that CFU-F activity was observed in only

p75NTR+ BMSCs, with no colonies being found in the p75NTR− cell

fraction. Moreover, p75NTR+ BMSCs secreted significantly higher

levels of cytokines such as IL-10, MCP-1, IL-8, IL-1β, interferon-

gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), granulocyte

colony-stimulating factor (G-CSF), and granulocyte-macrophage

colony-stimulating factor (GM-CSF) than PA BMSCs. And p75NTR+

BMSCs possessed a markedly stronger immunosuppressive capac-

ity than PA BMSCs, as evidenced by an obviously greater inhibitory

effect on the proliferation of T cells in a mixed lymphocyte reac-

tion. Furthermore, researchers intravenously injected hematopoi-

etic stem cells (HSCs) with p75NTR+ BMSCs or PA BMSCs into

immunodeficient mice and found that unlike PA BMSCs, p75NTR+ BMSCs

significantly improved the multilineage engraftment of HSCs and induced

the differentiation of HSCs into myeloid and lymphoid cells.91 In addition,

Matsuoka et al found that the expression of HSC-supportive genes,

including IGF-2, Wnt3a, Jagged1, TGFβ-3, nestin, CXCL12, and Foxc1, was

significantly higher in lineage-CD45−p75NTR+SSEA-4+ BMSCs than in

other MSCs, suggesting that lineage-CD45−p75NTR+SSEA-4+ BMSCs

might play a key role in supporting HSCs in the bone marrow

niche.92 Although no differences between the trilineage differentia-

tion abilities of unsorted BMSCs and p75NTR+ populations have

been reported,90,91 evaluation of gene expression profiles has rev-

ealed that freshly isolated p75NTR+ BMSCs express osteogenic,

adipogenic and chondrogenic genes at higher levels than PA BMSCs,

even after the third passage.80

5.2 | Adipose tissue-derived MSCs

In 2001, Zuk et al verified that human adipose tissue contained

multipotent cells that were mesodermal or mesenchymal origin and

could be maintained in vitro for extended passages and differentiate

into adipogenic, osteogenic, chondrogenic and myogenic cells.4

ADSCs coexist with endothelial cells and pericytes in the capillary and

adventitia of larger vessels, which can be isolated from the stromal

vascular fraction of fat tissue. A growing body of research indicates

that ADSCs are pericytes due to their expression of pericyte markers

CD146, PDGFR, NG2, and SMA.93,94 Lin et al demonstrated that

ADSCs were more likely to exist as CD34+CD31−CD104b−SMA− cells

in vivo.95 However, ADSCs cannot be easily defined due to a lack of

definitive cell surface markers,96 even though many cellular markers

have been investigated as possible ADSC markers.

It has been reported that the proportion of p75NTR+ cells in adi-

pose tissue is higher than that in bone marrow.97 In 2007, Yamamoto

et al attempted to purify ADSCs from mouse adipose tissue with an

anti-p75NTR antibody and found that p75NTR+ ADSCs were more

prone to differentiate into adipocytes, osteoblasts, or neuronal cells than

p75NTR− ADSCs, suggesting that p75NTR was a useful marker for

ZHA ET AL. 1013



isolating ADSCs.98 Similarly, Quirici isolated a p75NTR+CD34− human

ADSCs (hADSC) and demonstrated that the p75NTR+CD34− hADSCs

possessed higher CFU-F activity and higher proliferative and trilineage

differentiative capacities99 than PA hADSCs, and this finding was

supported by a study by Calabrese et al.100 In addition, Cuevas-Diaz

Duran et al reported that over 90% of cultured p75NTR+ hADSCs were

positive for the MSC markers CD90 and CD105 but negative for the

hematopoietic marker CD45. Moreover, the expression of p75NTR and

some transcription factors related to cell self-renewal, such as Sox2,

Oct4, and Nanog, in ADSCs decreased as the age of the donor

increases.101 Such observations were in agreement with the findings of

Yamada et al in mouse ADSCs.97 Based on these results, we suggest that

p75NTR may be involved in in maintaining the stemness of ADSCs.

Kohli et al investigated the paracrine angiogenic activities of

p75NTR+ ADSCs and PA ADSCs and found that conditioned medium

from p75NTR+ ADSCs had a less robust effect on endothelial cell

migration and tube formation than conditioned medium from PA

ADSCs.102 This study indicated that p75NTR+ ADSCs may be favored

seed cells for regeneration of avascular tissues such as cartilage. In

fact, MSCs have both positive and negative actions to angiogenesis

of endothelial cells. MSCs could secrete angiogenic factors, such as

VEGF, fibroblast growth factor (FGF), and TGF-β, and antiangiogenic

factors, such as activin A.103 An examination of the secretion and

gene expression levels of these factors in p75NTR+ ADSCs and PA

ADSCs may help to provide a clear explanation. Interestingly,

Beckenkamp et al. reported that freshly isolated CD34+p75NTR+

ADSCs, but not CD34+p75NTR− ADSCs, expressed high levels of

CD140B, a molecule related to activated pericytes. Furthermore, in

situ immunostaining of human adipose tissue revealed that p75NTR+

cells existed in the inner region of the perivascular wall, such as the

vessel lumen and endothelial lining, indicating that p75NTR+ ADSCs

were pericyte-like cells.104

5.3 | Dental pulp stem/stromal cells

In 2000, Gronthos et al isolated a clonogenic and rapidly proliferative

cell type from human dental pulp, and these DPSCs were capable of

forming dental/pulp complexes after transplantation into immuno-

compromised mice.9 Later, other researchers confirmed that DPSCs

could also differentiate into osteoblasts, chondrocytes, neurons, and

adipocytes under specific conditions.105 DPSCs are reported to

express MSC-associated markers such as CD44, CD73, CD90,

CD105, and CD146 in vitro.106

p75NTR is also identified as a biomarker of DPSCs.107-109 Alvarez

et al reported that p75NTR+ cells accounted for 10.6% of human

DPSCs and showed higher potential to differentiate into odontogenic

lineages than cells expressing other markers, such as CD51/CD140a or

STRO-1/CD146.110 However, the potency of p75NTR as a stemness

marker of DPSCs was challenged by Mikami and his coworkers. They

isolated p75NTR+ DPSCs and reported that p75NTR+ cells exhibited

greater clonogenic potential than p75NTR− cells but were less capable

of differentiating into adipocytes and osteoblasts than p75NTR−

cells.111 Similarly, Yasui et al also revealed that p75NTR(Low+)CD90(High

+) DPSCs exhibited higher proliferation and multilineage differentiation

potencies in vitro as compared with p75NTR(High+)CD90(High+) DPSCs,

indicating that p75NTR(Low+)CD90(High+) DPSCs might represent precur-

sors with high regenerative potential in dental pulp.112 Above all,

whether the multiple differentiation potential of p75NTR+ DPSCs is

greater than that of p75NTR− or PA DPSCs needs further research.

Besides, the effects of p75NTR on other cellular functions of DPSCs

also merit broader investigations.

5.4 | Skin-derived MSCs

The skin is the largest tissue in humans and consists of three layers

known as the epidermis, dermis and subcutaneous tissue. In 2001, Toma

et al found that MSCs were present in the skin and could proliferate and

generate both mesodermal and neural progeny, including smooth muscle

cells, adipocytes, neurons, and glia.5 Tumbar et al demonstrated that

SSCs were characterized by their localization in stem cell niches; expres-

sion of stem cell markers, contribution to wound repair and tissue regen-

eration in vivo; self-renewal, proliferation, and differentiation potential

in vitro.113 SSCs express surface markers similar to those expressed by

BMSCs, including p75NTR.114 The percentage of p75NTR+ SSCs in the

mouse dermis is 39.4%, and p75NTR+ SSCs show higher proliferation

and trilineage differentiation capacities than cells positive for other

markers, such as CD44, CD90, and CD105.115 In addition, Vaculik et al

found that p75NTR+ SSCs, but not CD73+, CD90+ or SSEA-4+ SSCs,

exhibited enhanced adipogenesis, osteogenesis, and chondrogenesis

potential.116 These findings indicate that p75NTR is important for deter-

mining the proliferative and differentiative capacities of SSCs.

It has been demonstrated that the number of p75NTR+ SSCs

decrease with donor age117 and is significantly lower in patients with

chronic skin ulcers than in healthy donors.118 Furthermore, Zhang et al

reported that overexpression of p75NTR in SSCs enhanced the prolif-

eration, differentiation, migration, and antiapoptotic potentials in vitro.

The researchers investigated the kinetic movement of p75NTR+ SSCs

in wound healing and found that the protein level of p75NTR in the

epidermis was decreased at an early stage but increased promptly in

the mid to late stages of the burn wound healing process, suggesting

that p75NTR was involved in the re-epithelialization and remodeling of

the epidermis in the mid-to-late stages.119 Moreover, Iwata et al con-

firmed that p75NTR+ SSCs proliferated and migrated to the sites of

damage from 3 days after wounding and that the expression of TGFβ2,

VEGFα, FGF2, EGF, PDGFB, and TGFβ1 in P75NTR+ SSCs was higher

than that in p75NTR− SSCs, indicating that the effect of p75NTR+ SSCs

on wound healing was achieved through not only differentiation but

also paracrine action.120

5.5 | Other MSCs

Jones et al reported that the trabecular bone cavity contained abun-

dant CD45lowp75NTR+ cells with identical MSC phenotypes and
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clonogenic potential, while the telomeres of CD45lowp75NTR+ cells

isolated from osteoarthritic or aged normal bone were shorter than

those of the same phenotype of cells isolated from younger normal

bone.121 In addition, González-Garza et al reported that p75NTR+

cells in the peripheral blood (PB) possessed self-renewal ability and

expressed the surface markers CD73, CD90, and CD105 as well as

the stemness genes Nanog, Oct4, and Sox2.122 Iso et al extracted

CD45(low/−)CD34+p75NTR+ MSCs from human PB and found more

of these cells in patients with acute myocardial infarction (MI) than

in patients with stable coronary artery disease. The number of

CD45(low/−)CD34+p75NTR+ MSCs peaked on day 3, at which point it

was positively correlated with the concentration of creatine kinase

and then decreases until day 7, indicating that p75NTR+ PB-MSCs

were involved in the tissue repair process after acute MI.123 However,

Barilani et al demonstrated that the percentage of p75NTR+ MSCs in

fetal tissues such as umbilical cord blood, Wharton's jelly and amniotic

fluid were lower than that in adult tissues such as bone marrow and

adipose tissue,124 indicating that p75NTR was an insufficient marker

for isolating UCBMSCs,125,126 WJMSCs,127 and PSCs.128

6 | P75NTR AND MSC-BASED THERAPY

Hundreds of clinical trials using MSCs alone or in combination with

other drugs to treat various diseases have been conducted.129 The

available data demonstrate that MSCs are safe for use in clinical prac-

tice since no direct associations among the application of MSCs and

acute infusional toxicity, organ system complications, infection, death

or malignancy have been detected.130 However, some clinical trials

failed to meet expectations for a number of reasons.131 MSCs are a

heterogeneous population that consists of different subpopulations

with distinct phenotypes and functional properties.132 The cellular

heterogeneity of MSCs is hypothesized to have an impact on their

functional characteristics and therapeutic potential.133 As described

above, p75NTR+ MSCs are considered to possess better biological

functions, such as higher proliferative, multilineage differentiation,

immunoregulatory and cytokine secretion capacities, than p75NTR−

or PA MSCs. Thus, it is quite promising to improve the therapeutic

effect of MSCs on tissue damage by applying the p75NTR+ MSCs

(Table S2).

In 2011, Hermida-Gómez attempted to implant p75NTR+ BMSCs

or p75NTR− BMSCs into human articular cartilage sites for in vitro

repair. They found that compared to p75NTR− BMSCs, p75NTR+

BMSCs provided better filling of the chondral defect, better integra-

tion between the regenerated tissue and normal cartilage and a higher

overall histological score, suggesting that p75NTR+ BMSCs might

have greater potency for cartilage regeneration.134 In 2013, Mifune et

al transplanted p75NTR+ or PA BMSCs into cartilage defect sites in

rats and revealed that p75NTR+ BMSCs induced better cartilage

regeneration than PA BMSCs, as evidenced by macroscopic, histologi-

cal, and apoptosis analyses at week 8.135 In addition, Yasui et al uti-

lized DPSCs to repair murine calvarial defects and found that the

p75NTR(Low+)CD90(High+) subpopulation survived in the long term and

promoted defect repair and bone regeneration.112 Zhang et al

reported that injection of p75NTR+ SSCs into the dermal layer accel-

erated the convergence of skin wound healing.136 In another field,

Sadraddin et al proposed the use of p75NTR+ MSCs to treat MI-

induced ventricular arrhythmia in mice. They demonstrated that

intramyocardial implantation of p75NTR+ BMSCs immediately after

the first MI had antiarrhythmic effects by significantly reducing the

number of ventricular premature beats after the second MI.137

7 | PERSPECTIVE

MSCs have emerged as one of the most attractive seed cells for the

treatment of degenerative diseases and traumatic injuries due to their

potential to differentiate into various cell types.3 Understanding the

roles of NGF and its receptors in relation to the biological and func-

tional properties of MSCs could be beneficial for developing prospec-

tive and effective MSC-based therapeutic strategies for regenerative

medicine. NGF was reported to impact MSC properties, including

their survival, proliferation, and multiple differentiation. More atten-

tion should be paid to the effects of NGF on other MSC functions,

such as their immunomodulatory potential and paracrine activity. In

addition, most related studies have focused on BMSCs, while other

MSC-like populations, such as ADSCs, SSCs, DPSCs, and UCBSCs,

have been investigated to lesser extent. Broader research on the

effects of NGF on different types of MSCs could lead to comprehen-

sively understanding the role of NGF in MSCs. In addition, the effects

of NGF on MSCs in vitro have been confirmed, but its effects in vivo

have been studied less often. For example, since NGF treatment could

increase TrkA expression in vivo,36 whether NGF has a potential role

in regulating the MSC niche in vivo needs to be further investigated.

The effects of NGF and its receptors on MSCs may be related to

the developmental origin of different MSC-like populations. The neural

crest is a transitional structure in the embryonic development of Verte-

brates. In the fourth week of embryo development, neural crest cells

undergo extensive migration and evolve into different cells types and

form various tissue components, including ectomesenchyme.138-140

Thus, neural crest derived MSCs may express higher levels of NGF

receptors. When stimulated by NGF, they may also display different

functions. Besides, MSCs reside in different tissues that provide specific

microenvironment for MSCs and facilitate them to maintain tissue

homeostasis. MSCs from different tissue exhibit tissue-committed

properties and the role of p75NTR in different types of MSCs may not

be universal. Although most p75NTR+ MSCs display greater prolifera-

tion ability, p75NTR may improve MSCs proliferation in varied degree.

In addition, P75NTR is able to promote differentiation in BMSCs,

ADSCs, and SSCs, but its role in DPSCs remain controversial. Although

expression of p75NTR leads to reduced pro-angiogenic effect in

ADSCs, whether it has the same effect on other types of MSCs need

further investigation. Thus, a systematic comparative research on the

effect of p75NTR on different types of MSCs is needed.

Although p75NTR+ MSCs have shown great prospects in regener-

ative medicine, there are still some problems that need to be
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addressed before their clinical application. Firstly, the effects of

p75NTR on MSCs need to be further verified using more animal

models and knock-out or knock-in models. Secondly, the relationships

between p75NTR and other surface markers, such as nestin, leptin

receptor, CD146 and Stro-1, warrant further study. Thirdly, the

expression of p75NTR in MSCs is downregulated after in vitro

culture,92 and the optimization of their culture conditions or the

development of novel biomaterials that could maintain MSC pheno-

types would be conducive to improving the therapeutic effect of

these cells. In addition, whether the expression of p75NTR could be

maintained after MSC differentiation needs to be verified. Fourthly,

the expression of p75NTR exhibits changes among different patholog-

ical conditions, which may provide clues to the repair mechanism of

p75NTR+ MSCs. For example, the expression of p75NTR in synovial

membranes from OA patients are higher than that in normal synovial

membranes, indicating that p75NTR+ MSCs from bone marrow may

be activated and then migrate through the vascular system into the

joints during the cartilage degenerative process.134 Fifthly, the signal-

ing pathways mediated by p75NTR in MSCs remain unclear. Church-

man et al revealed that p75NTR+ BMSCs had greater transcriptional

activity, particularly with regard to Wnt-related genes, than PA

BMSCs.141 Finally, p75NTR is a type I membrane molecule with an

extracellular domain rich in cysteine residues that can shed into the

intracellular space and bind with ligands in the surrounding area.142

Since the MSC microenvironment differs substantially in different tis-

sues, soluble p75NTR may be involved in regulating MSC functions by

binding to various molecules, which contributes to its differential

effects on different MSCs. Further studies on the potential molecular

mechanisms are urgently needed.

8 | CONCLUSION

A growing body of research indicates that NGF plays an role in the

survival, proliferation, and differentiation of MSCs. On the other hand,

MSCs are also capable of secreting NGF to mediate the biological

behaviors of other cell types. The regulatory effects of NGF on MSCs

are achieved mainly through the interaction between NGF and its

high-affinity receptor TrkA, leading to the activation of downstream

genes, including Sirt1, PI3K/Akt, and MAPK/Erk, which are associated

with the growth and differentiation of MSCs. More importantly,

p75NTR is regarded as a novel surface marker for identifying MSCs

with high proliferative, differentiation, immunomodulatory, and cyto-

kine secretion potentials in different tissues. p75NTR+ MSCs have

been proven to result in better treatment effects than p75NTR−

MSCs or PA MSCs and could thus be used to optimize the therapeutic

capacity of MSCs.
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