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Efflux pumps of the ATP-binding cassette transporters superfamily (ABC transporters) are frequently
involved in the multidrug-resistance (MDR) phenomenon in cancer cells. Herein, we describe a new
atomistic model for the MDR-related ABCG2 efflux pump, also named breast cancer resistance protein

. (BCRP), based on the recently published crystallographic structure of the ABCG5/G8 heterodimer sterol

. transporter, a member of the ABCG family involved in cholesterol homeostasis. By means of molecular

. dynamics simulations and molecular docking, a far-reaching characterization of the ABCG2 homodimer

. was obtained. The role of important residues and motifs in the structural stability of the transporter

© was comprehensively studied and was found to be in good agreement with the available experimental

. data published in literature. Moreover, structural motifs potentially involved in signal transmission

. were identified, along with two symmetrical drug-binding sites that are herein described for the first

. time, in a rational attempt to better understand how drug binding and recognition occurs in ABCG2
homodimeric transporters.

Multidrug resistance (MDR) to anticancer agents is a major health concern worldwide due to the long-lasting
physical and psychological outcomes'. Herein, MDR is a multi-factorial phenomenon often connected to
over-expression of ATP Binding Cassette (ABC) transporters at the cell surface, acting by decreasing the intra-
cellular accumulation of cytotoxic drugs and impairing the success of chemotherapeutic regimens?. Of the 48

: members of the human ABC family, P-glycoprotein (P-gp, ABCBI)? Multidrug-Resistance Protein 1 (MRP1,

© ABCCI)*and Breast Cancer Resistance Protein (BCRP, ABCG2)>~ are the most important transporters in cancer

: MDR, although a new member of the ABCB family (ABCB5)®’ is also gaining relevance in melanoma resistance

© to anticancer agents.

: ABCG2 in MDR was identified almost simultaneously by several groups in MCF-7/AdrVp cell lines (BCRP or
MXR)>” and in placenta (ABCP)°®. In both MCF-7/AdrVp3000 (over-expressing ABCG2) and full length ABCG2
cDNA-transfected MCF-7 breast cancer cells, the over-expression of this transporter conferred resistance to sev-

: eral xenobiotics including mitoxantrone, doxorubicin and daunorubicin, also reducing the intracellular accumu-

. lation of Rhodamine-123 (R123) by an ATP-dependent mechanism®’. Although studied due to its important role

. in MDR, ABCG2 also participates in normal detoxification mechanisms that can be found in previoulsy published

- literature!®-12,

ABCG2 is characterized as a “half-transporter”, hypothetically comprising a transmembrane domain (TMD)

© with 6 a-helices that spawns the membrane bilayer and a nucleotide-binding domain (NBD) where ATP binds

. and hydrolyzes. However, unlike P-gp that shows a TMD-NBD arrangement in both halves, ABCG2 shows a

. distinct domain organization where the NBD precedes the TM domain (in a NBD-TMD arrangement, Fig. 1)°.

: Moreover, ABCG2 includes a second canonical ABC signature (positions 352-356, LSGGE) also coupled with

* ATP binding and/or hydrolysis but not related with substrate specificity’*. Although higher orders of oligomeri-

. zation were also described, namely tetrameric and dodecameric forms, to become a fully functional transporter
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Figure 1. Membrane topology model for ABCG2. Cysteine residues involved in disulfide bridges are depicted
as circles and N-glycosilated residue as a triangle. The de novo intracellular C2 helices are depicted in green.
TMD, transmembrane domain; NBD, nucleotide-binding domain (adapted from Taylor et al.)'s.

ABCG2 forms a homodimer!>!¢. Furthermore, with only a minority dimer population being registered, it was
recently determined that tetrameric complexes are the most predominant ones in plasma membranes!’. The pos-
sibility that such higher oligomeric forms may serve as a regulator for functional dimeric ABCG2 transporters'
has become increasingly accepted.

The role of specific cysteines in ABCG2 oligomerization has also been thoroughly studied since the discovery
of ABCG2 homodimers. While an early study by Kage et al. claimed that ABCG2 homodimerization was due to
the formation of an intermolecular disulfide bond at position 603", it was later concluded that such disulfide
bond is not essential for protein expression and function'*!¢1%-21, Although present in the absence of reducing
agents's, and as the dimeric ABCG2 was found only in isolated membranes, the presence of a -S-S- bridge can also
derive from oxidation processes during cell lysis and membrane preparation®®. Furthermore, it was also shown
that only 35% of ABCG2 was cross-linked as dimers!® and that non-covalent protein-protein interactions between
transmembrane helices 5 and 6 (TM5-loop-TM6) could also be involved in ABCG2 oligomerization®.

Similarly, the role of an intramolecular disulfide bond between residues 592 and 608 was initially also thought
to be crucial for the activity of the transporter®. However, while in one study ABCG2 variants without cysteines
in the extracellular loop (C592, C603 and C608) showed similar cellular location and drug-stimulated activity
comparable to the wild-type (WT) protein®, other two studies concluded that i) protein trafficking to the plasma
membrane may be impaired in the presence of C592A/C603A or C603A/C608A mutations but not C592A/
C608A% and (ii) the intramolecular disulfide bond is an important “checkpoint” that determines the fate of de
novo synthesized ABCG2 proteins?’. Therefore, it seems that further studies are needed to fully understand the
role of inter- and intramolecular disulfide bonds in ABCG2 expression and function.

Regarding ABCG2 function, it was shown that mutation of an arginine by a threonine or glycine residue
at position 482 increased efflux function towards R123 and anthracyclines as daunorubicin’®, not interfering
directly with substrate binding but affecting other important factors as ATP-related energy coupling, which is
intimately linked to the conformational changes, and/or signal transduction mechanisms*>?. As for P-gp, the
mutation of the aspartate residue in Walker B motif (Mg?*-chelating motif, D210N) led to a non-functional
protein that was still able to be expressed at the cell surface. Moreover, as it was also found that ABCG2 prefers
detergent-resistant cell membranes characterized by high cholesterol content, cholesterol depletion induces a
marked decrease on ABCG2 transport activity without affecting the localization of the transporter within the cell
membrane?. Interestingly, 30 molar-% cholesterol content was found to provide the best conditions for optimal
ABCG2 ATPase activity. As such, cholesterol is now considered an essential activator of ABCG2 function, prob-
ably acting as a slowly transported substrate, an allosteric co-activator or a co-transporter?. Indeed, at least five
cholesterol recognition/interaction amino acid consensus (CRAC)* were identified in the ABCG2 transporter,
but while mutation in Y413 and Y570 induced higher levels of ATPase activity that were not dependent of choles-
terol presence, only one (Y413) was able to modulate ATPase activity in the presence of cholesterol*.

To date, P-gp is the most studied ABC transporter involved in MDR. Since its publication in 2009°!, numerous
structure-based studies allowed a deeper understanding of the molecular mechanisms involved not only in drug
binding and recognition®*~* but also about conformational changes intimately related with the efflux mechanism
itself*-%°. Quite recently, the publication of the first structural models of the bovine Multidrug Resistance Protein
1 (MRP1, ABCCI; PDB ID: 5UJA)*’ and human Breast Cancer Resistance Protein (BCRP, ABCG2; PDB ID:
5NJ3)!® provided new templates for novel structure-based studies, aiming for the development of novel MDR
inhibitors but also for studies concerning a greater comprehension about the efflux mechanism in these ABC
transporters.

Preceding the publication of the human ABCG2 structure, the structure of a heterodimeric sterol transporter
ABCG5/G8*! revealed a new transmembrane organization that was thought to be characteristic of the ABCG
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Homology modeling
Errat | MolProbity SwissModel PROCHECK
Models Score | Score | Percentil QMEAN6* | Z-Score*? DFIRE*® Morris?” G-factors*®
Crystal G5G8 78.891 | 3.44 10" 0.547 —2.187 —1823.68 1-2-3 —0.22
ABCG2* 76.539 | 191 8ot 0.498 —2.97 —1359.71 1-1-2 0.03
Homology ABCG2® 67.820 | 3.5 gth 0.526 —2.468 —1645.97 1-1-3 —0.28
GSpiner 78.075 | 3.52 g 0.564 —1.996 —1812.30 | 1-2-3 —0.18
G2yoDEL 85714 |1.73 8gth 0.444 —3.53 181141 | 1-2-3 —0.18
G2ruiL 86.356 | 1.73 8gth 0.441 —3.297 —-1797.77 | 1-2-3 —0.54
Molecular Dynamics
Final Model ABCG2® 88.602 | 2.36 55t 0.439 —3.264 —1788.05 1-2-2 —1.03
MODEL1 93.729 | 1.78 86" 0.414 —3.855 —1854.90 1-2-2 —0.65
MODEL2 95.000 | 1.64 91 0.413 —3.872 —1878.03 1-2-2 —0.63
MODEL3 94992 | 1.71 goth 0.417 —3.831 —1878.03 1-2-2 —0.65

Table 1. Structural validation of the full-length ABCG2 models. *recently published human ABCG2 cryo-EM
structure at 3.8 A resolution; ®previously published ABCG2 homology model, obtained from http://abcg.
hegelab.org (ABCG2_V2.pdb and ABCG2_V2_prteq.pdb).

family. Indeed, while sharing low amino acid identity (28%), ABCG5 and ABCGS revealed a high degree of
structural conservation with a relatively low root mean square deviation (RMSD = 2.0 A) between both halves*.
Likewise, ABCG5 and ABCGS share similar identities (27% and 26% respectively) and similarities (48% and
44% respectively) with the newly published ABCG2 structure, thus being a suitable template for studying not
only the dynamics of ABCG5/G8 heterodimer but also, by homology modeling, the ABCG2 homodimer. This
hypothesis is supported by the fact that i) despite their low identities and similarities, the structural conservation
between ABCG5 and ABCG2 monomers remains high (RMSD =2.4 A) while between ABCG8 and ABCG?2 is
lower (RMSD = 3.8 A), ii) in the original ABCG5/G8 publication a homology model of the Drosophila white/
brown heterodimer was obtained following a CLANS network analysis showing that the TMDs of both trans-
porters shared a high pairwise similarity relationship based on their FASTA sequences and iii) the same pairwise
relationship can be observed between ABCG5/G8 and ABCG2*'. To that matter, computational approaches as
molecular dynamics (MD) and docking are valuable tools that can be used, in a similar approach as for P-gp*,
to further refine a homology model of the ABCG2 homodimer and to evaluate the structural dynamics of the
ABCG2 transporter, also unveiling new information on hypothetical drug-binding locations that can be used to
better understand the ABCG2 role on MDR.

Results

ABCG2 model validation. The publication of the ABCG5/G8 crystallographic structure showed that despite
the low sequence identity between ABCG5 and ABCG8 (28% amino acid identity), a high degree of structural
conservation could still be found*'. Thus, as ABCG5 and ABCG?2 share 27% amino acid identity, a high pairwise
similarity between both FASTA sequences and a high degree of structural conservation (as seen by their RMSD),
the homodimeric ABCG5 transporter is a more suitable template for ABCG2. After obtaining the full-length
ABCG2 homology model, structure validation servers were used to assess the quality of the model (Table 1).
Furthermore, an evaluation of the recently published human ABCG2 cryo-EM structure'® was also performed to
compare and validate the herein developed ABCG2 model.

By the superposition of the structural data of the human ABCG2 transporter with our homology model,
obtained by duplication of the ABCGS5 half transporter (Fig. 2A), all major structural features are found to overlap
(monomer RMSD, 2.81 A; homodimer RMSD, 4.30 A), with the larger deviations being found at the extracellular
coils, the de novo modeled intracellular C2 helices and at the top of the TM5a, before the 5b/5c¢ helical bundle
found to be characteristic of the ABCG family. Moreover, and while a slight backbone shift of TM1b and TM3
were observed, an inward-facing cavity was found to be present in our homology model, similar to the one iden-
tified in the ABCG2 crystal structure due to the backbone shift of TM helices 2 and 5a, but absent in a previously
published homology model*? obtained from the whole ABCG5/G8 heterodimeric transporter?!.

In opposition to a previous model published recently*, a significant improvement was observed when com-
pared with the ABCG5/G8 crystallographic structure. When compared with the human ABCG2 crystal struc-
ture, our refined model still behaves quite well and, despite the lower scores for the G2y;opg; and G2y in the
SwissModel structure assessment tools, the values are comparable with the ones obtained for the crystallographic
structure and are in agreement with the stereochemical quality expected for membrane proteins because QMEEAN
Z-Score uses solvent accessibility as one of its scoring components, which confers poorer scores for membrane
proteins and predicts these as lower quality models****, Furthermore, for membrane proteins Z-scores above —5
are indicative of a good quality model.

When considering the ABCG2 structures obtained after the 200 ns MD runs, all three models (models 1, 2
and 3) showed better scores when compared with the previously published one. Hereafter, as both models 2 and
3 were evaluated as the best ranked models, the discussion will be focused on the results obtained for model
3 unless stated otherwise. Herein, and when compared with the hABCG2 cryo-EM data, the equilibration of
the structure induced a distinct asymmetry between both halves, mainly due to the backbone shift of TM4 and
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Figure 2. Superimposition of the human ABCG?2 crystallographic structure (PDB ID: 5NJ3) with the homology
model (A) and the 200 ns MD structure (B). The yellow circle annotates the location of the asymmetry due to
the backbone shift of TM4 and TM5a.

TMb5a in one half towards TM1b” and TM2’ of the opposite monomer. However, it is also evident that the overall
architecture for the ABCG2 transporter is maintained (RMSD of 3.18 and 3.48 A between each of the monomers
with the monomeric hABCG2) and that the modeling of the missing A-loop (Y44-L64), the connecting heli-
ces C2a-C2b (CnH, G311-S354) and the highly charged linker between the connecting helices CnH and TM1a
(G355-Y369) did not have any impact on the structural stability of either the nucleotide-binding domains or the
first transmembrane helix (TM1a and TM1b).

By comparing the Ramachandran plots between the hABCG2 crystal structure, the initial homology model
and after the 200 ns MD simulation, and despite the overlapping plot for the initial homodimers, the overall
structure of the ABCG2 is maintained (Fig. 3) with 87.1% of all residues in the most favorable regions, 10.7% on
allowed regions and only 2.2% in disfavored regions, in accordance with previous results obtained for the MD
simulation of another ABC transporter (P-glycoprotein)®. Still, from the 27 outliers, 12 residues can easily shift
into the allowed region of the plot (they overlap the contour line that defines the boundaries for such regions)
and the remaining 15 are mainly located in coils, except for Phe402 and Ser413 that are located at the second
transmembrane helix in chain B.

The root-mean-square deviation (RMSD) is another important parameter for assessing structural deviations
from a given reference structure, in this case the initial homology model (Fig. 4). The RMSD value for the whole
transporter increased in the first 50 ns, reaching a plateau at ~4 A that was maintained until the end of the simu-
lation time. When this parameter is plotted for each ABCG2 domain separately (Fig. 4B), it is clear that in both
chains the de novo modeled C2a/C2b/Linker domains are the major contributors for the total RMSD. Moreover,
in the recently published G5G8 structure, the ABCG8 subunit have a similar structural organization to ABCG2
(two a-helices followed by a long linker)*'. However, even in the most recent ABCG2 structure such domains
were unable to be fully determined by crystallography, which is in agreement with the increased flexibility of these
particular regions found in the MD simulations. Figure 4B also clearly shows that the other structural domains
(TMD and NBD) remains stable in both subunits, within a maximum RMSD of about ~3 A.

To further evaluate the overall fold quality of the homology model, we also fitted our 200 ns ABCG2 struc-
ture to i) a previously published low-resolution 3D structure, obtained by electron cryo-microscopy from
two-dimensional crystals and in the absence of nucleotides and substrates* and ii) to the recently published
three-dimensional cryo-EM density map from which hABCG2 was obtained'® (data not shown). In the first
case, by overlapping our model into the cryo-EM electron density map while changing the contour level to a
value closer to the mean density (o = 0) we were able to obtain a good fitting with the electron density, in better
agreement than the previous homology models built using P-gp as a template®*>!. Moreover, and by using the
most recent cryo-EM electron densities from hABCG2, while the transmembrane domains were found to fit
within the electron densities corresponding to the membrane-embedded alpha-helical domains deeply buried
into the lipidic nanodiscs, the de novo modeled segments were found to correspond to the electron density next
to both nucleotide-binding domains attributed to helical segments C2a and C2b. Interestingly, and unlike C2a/
C2b/Linker motifs, it was observed that the position of the helix 1a remained stable at the membrane interface
throughout the whole MD simulation while simultaneously showing the ability to “slide” through the interface,
accompanying the positional shifts of helix 1b, which may mean that this particular segment may have an impor-
tant function in the efflux conformational dynamics of ABCG2.
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Figure 3. Ramachandran plots of the ABCG2 crystal structure, homology model and after 200 ns production
run. Allowed regions are delimited by an orange curve and favored positions by a green curve.
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Figure 4. (A) Final structure with liquorice representation of the cholesterol residues within the lipid
membrane and lipid heads in CPK (red, phosphate; blue, nitrogen); (B) RMSD of residue a-carbons grouped by
domains in both chains A and B (NBD, nucleotide-binding domain; TMD, transmembrane domain; C2a/C2b/
Linker, de novo modeled segments.

Disulfide bridges, cholesterol binding and ATP hydrolysis. In this homology model, no disulfide
bonds were modeled because i) intermolecular disulfide bond between cysteine residues in position 603 are not
required for its transport function'®?}, ii) intramolecular disulfide bonds may exist but, while not essential for
ABCG2 localization and transport activity?>*, are a key factor in determining the fate of de novo synthesized pro-
teins?* and iii) cysteine-less transporters can still be expressed and targeted to membranes, with internal cysteines
being more important than the ones located at each ECL>.

We measured the Ca-Ca distance between cysteines 592 and 608 (intramolecular) or between cysteines 603
in both chains (intermolecular) to assess if the distances are compatible with the existence of disulfide bonds. In
addition, due to the absence of physical bonds between both ABCG2 monomers, we also assessed their relative
free energy of binding between subunits with g mmpbsa added with the implicit membrane correction. While
considering intramolecular bridges (C592-C608), Ca-Ca distances ranged from 0.60 £ 0.07 nm (model 1) up
to 1.26 +0.07 nm (model 3), and are therefore compatible with the physiological existence of disulfide bonds
between both residues. For the intermolecular bridge, Co-Cax distances were found to be 0.95 £ 0.10 nm (model
1), 1.36 £ 0.15nm (model 2) and 1.05 £ 0.23 nm (model 3), again compatible with intermolecular disulfide bond
formation when in an oxidative environment and also in agreement with previous cited experimental data.

Similarly, for cysteine residues at position 284, also thought to be involved in intermolecular bridges respon-
sible for a dimeric protein with slow mobility*?, mean Ca-Ca distances ranged from 1.53 £ 0.17 nm (model 3) up
to 1.76+0.07 and 1.83 £ 0.08 nm in models 1 and 2 respectively, in good agreement with the above experimental
results. Moreover, the location of the remaining cysteines do not allow the formation of either intra or intermo-
lecular disulfide bonds, but nonetheless any mutations in these residues are expected to affect NBD:TMD com-
munication (C438, located close to the coupling helices in TM helix 2) or signal propagation (C374, at the end of
the ‘linker’) without compromising substrate specificity®~. Finally, free energies of binding between both ABCG2
monomers for the last 50 ns of the final MD simulation were calculated to be —1124 + 63 kcal.mol ™!, lower than
the value calculated for the G5G8 heterodimer (—902 4 59 kcal.mol !, unpublished data).
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Figure 5. Cholesterol binding to ABCG2. (A) Cholesterol close to LxxL (cyan) and CRAC domains Y413
(green) and Y570 (purple); (B) cholesterol bound at the dimer interface; (C) cholesterol bound to CRAC Y570
in the second ABCG2 subunit. Protein surface is represented by a dark green mesh.

rnono o m

Figure 6. (A) Location of the arginine 482 and coupling loop (green) in the ABCG2 structure; (B) Location of
the C2-sequence (LSGGE) and residue interactions with NBD residues.

Several motifs in ABCG2 were also described to be important for its cholesterol sensitivity*’, ATP binding
and hydrolysis'**? or substrate binding>. Regarding cholesterol, Gél et al.** showed that while mutations in the
LxxL motif (aa 555-558) resulted in an apparent cholesterol insensitivity, only one of the five identified CRAC
domains (Y413) was sensitive to the presence of cholesterol. Interestingly, in ABCG2 both domains (LVNL and
VIGAIYFGLK) are located close to each other (Fig. 5A) and next to an additional cholesterol insensitive CRAC
domain (Y570, LSWLQYFSIPR)*’. More relevant, a cholesterol molecule was found to be located in this particu-
lar region, close to all three motifs and making a hydrogen bond with Q569. Herein, the relative free energy of
binding for cholesterol was calculated to be —57 & 5 kcal.mol !, against only —40 & 6 kcal.mol ! when located
closer to the dimer interface (Fig. 5B). In addition, another cholesterol molecule placed in the symmetrical loca-
tion (near the Y570 CRAC motif in the other ABCG2 monomer, Fig. 5C) also showed a similar relative free
energy of binding of —56 & 6 kcal. mol*. Therefore, our results clearly show that such regions are involved in
cholesterol binding and are also in agreement with the electron density data published by Lee et al.*! for the G5G8
transporter in which some features in the electron density map suggest that cholesterol is bound at this location.

When considering ATP binding and hydrolysis, mutations at position R482%>? or in a second signature
motif (C2-sequence, LSGGE) were also proved to disturb ATP hydrolysis. However, while R482 is located in
transmembrane helix 3, and thus connected to Walker A through the NBD coupling loop (TMH2-loop-TMH3,
Fig. 6A), the C2-sequence is located in the beginning of the linker, anchoring the preceding helix to the NBD and
also in contact with the internal helical domain containing the Walker A motif (Fig. 6B). Thus, structural modifi-
cations in these two regions will have a direct impact on the signal propagation between nucleotide-binding and
transmembrane domains, with little impact on drug binding.

Finally, considering drug binding and transport, mutations in proline and methionine residues at positions
485 (P485A) and 549 (M549A) respectively were found to be related with differences in the ability of ABCG2 to
transport several substrates®. While P485 is located in the same helix as R482, M549 is located in the vicinity
of the LxxL and CRAC motifs, described above as part of a binding site for cholesterol. Therefore, such loca-
tion can also be a possible drug-binding site for ABCG2 substrates (more details, in the Docking section below).
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Figure 7. Normal motion patterns displayed by apo ABCG2. (A) Mode 1 in ABCG2 principal component
analysis; (B) Mode 2 in ABCG2 principal component analysis. blue- and green-colored regions correspond to
high and low mobility domains, respectively.

Moreover, the A540F mutation in the ABCGS5, which is closely related with the M549A in the ABCG2 structure,
also impaired cholesterol transport without affecting G5G8 heterodimer expression®!.

Protein global motions. Being ABCG2 a homodimeric transporter, we were particularly interested on how
conformational changes could propagate through the structure. In a previous study of another ABC transporter
(P-gp), it was found that the ‘linker’ domains acts as a ‘damper’ in order to reduce NBD fluctuations and that, in
the presence of substrates, a clear change to efflux-like motions could be observed>. In ABCG2, however, and
due to the absence of a linker connecting both halves, signal transmission between monomers occurs through
the external helical domains (residues 305-351), acting as a ‘spring’ in transmitting the motions from one NBD
to the other (Fig. 7).

In the most predominant mode 1 (Fig. 7A) it is possible to verify that motions in one NBD are propagated to
the opposite NBD by a direct interaction with its external helices (although with a minimal impact on its core),
while mode 2 shows that motions originated at the NBD:NBD interface are also propagated through these helical
segments, reaching the membrane-anchored portion of the linker (Fig. 7B).

Thus, if specifically involved in signal propagation, it is expected that these domains (hereby named
signal-propagating domains, or SP domains) should be extremely mobile, quickly shifting between conforma-
tions in order to better propagate the signal between monomers. Interestingly, similar domains are also incom-
plete in the crystallographic ABCG8 structure, which corroborates these assumptions. It was previously proposed
that the A-loop, also missing in both ABCG5 and ABCGS structures, could act as a ‘filter’ at the entry of the
substrate cavity or by contributing as the first step of allosteric communication between drug binding and ATP
binding*?. However our results show that, in both monomers, the A-loop is anchored at the membrane interface
through residues 48-55 (LKSGFLPC) and, therefore, they seem unable to participate in allosteric interactions
with substrates.

However, in the presence of ATP (Fig. 8), mode 1 of the principal component analysis distinctly shows an
upward motion of one NBD in which the A-loop moves closer to the opposite NBD, i.e. closing the access to the
ATP-binding site and promoting interactions between the Walker A and Signature motifs, together with a coor-
dinate movement of the SP domains that propagate the signal forward to the transmembrane domains (Fig. 8A).
Moreover, active modes 2 and 3 additionally shows distinct efflux-like motions, characterized by NBD,:NBDy
distance fluctuations (active mode 2) and rotation of the TM helical bundle (active mode 3, Fig. 8B), similar to
that observed for P-gp*® or G5G8 heterodimer (unpublished data). Therefore, A-loop and SP domains seem to
be crucial in the ATP-dependent efflux cycle: while the A-loop act as a “cover” for the ATP-binding site, favoring
ATP binding and enhancing the contact between Walker A and Signature motifs upon NBD dimerization, SP
domains are involved in signal transmission, either between the nucleotide-binding domains (in its apo form) or
after ATP binding to the NBD (holo form).

Molecular docking. Kinetic and equilibrium data by Clark et al.>*, suggest the presence of at least two
symmetric drug-binding sites on ABCG2, one in each monomer, although displaying allosteric communica-
tion between them. Due to the large substrate overlapping with P-gp, it is also expected that ABCG2 extrudes
its substrates from the lipid bilayer after membrane partitioning from the cytoplasm®. Therefore, in our study
the whole TM domains (embedded within the membrane) were used to define the docking box and a known
substrate, mitoxantrone (MX), was used to sample possible drug-binding sites within the ABCG2 transporter
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TMD
rotation

Figure 8. Normal motion patterns displayed by holo ABCG2 in the presence of ATP. (A) Mode 1 in ABCG2
principal component analysis; (B) Active mode 3 in ABCG2 principal component analysis. blue- and green-
colored regions correspond to high and low mobility domains, respectively.

(Fig. 9). Three drug-binding sites could be identified from the best docking poses for mitoxantrone: although the
last one (Fig. 9B, black arrow, —5.7 kcal.mol ™) is in agreement with the electron density reported for cholesterol
in the recently published human ABCG2 cryo-EM structure'?, the other two sites are herein described for the first
time (Fig. 8A,B, purple arrows, —6.3 and —5.8 kcal.mol ! respectively). The latter two, located in each monomer,
comprise a surface ‘groove’ immediately below a short helical segment bearing a cholesterol-insensitive CRAC
domain (residues 565-575) that is part of the long extracellular loop connecting helices 5 and 6 (named “plug” in
the hABCG2 structure).

Quite interestingly, these particular sites are also deeply buried within the membrane®, show a distinct sym-
metry between monomers®* and share common residues with the above described cholesterol-binding site’®,
suggesting that the drug-binding sites in ABCG2 may encompass the large majority of the membrane-facing sur-
face of the transmembrane helical segments to allow binding of larger molecules than cholesterol. Indeed, a close
inspection of the top-ranked binding poses for other ABCG2 substrates as pheophorbide A (—7.7kcal.mol™!),
flavopiridol (—7.7 kcal.mol™!) or 9-aminocamptothecin (—7.8 kcal. mol ') show that these sites are located in a
larger ‘surface cleft’ with approximately 1900 A (as estimated by EPOSP?) spawning from the CRAC-insensitive
helical segment above described to the center of the dimer interface (reported for cholesterol by Taylor et al.'®)
and also in close agreement with the sterol-binding sites proposed for ABCG5/G8*'. Each drug-binding site is
flanked by TM helices 1-2 of the opposite monomer, by TM helices 4-6 and, on top, by a small helical domain
that is part of the large extracellular loop between TM helices 5 and 6 (Fig. 9C). Interestingly, it was also verified
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Figure 9. Graphical representation of the Molecular Surface (MS, green, hydrophobic and pink, polar) for the
identified drug-binding sites in the first (A) and second (B) ABCG2 monomers. (C) Transmembrane helices
organization around the identified drug-binding sites.

16%
14% ® Monomer 1
1291 OMonomer 2
10% [
8%
6%
4%
2%

0% VAL ALA ILE SER LEU MET PHE GLN THR GLY TYR ASN CYS TRP GLU LYS PRO ARG ASP HIS

Figure 10. Residues distribution percentage for each binding cleft.

that, in our model, the second transmembrane helix of one of the monomers is involved in both drug-binding
sites, suggesting some degree of allosteric communication between both sites as suggested by Clark ef al.>* The
identification of these large ‘surface clefts’ within the ABCG2 structure as the hypothetical drug-binding sites led
us to thoroughly characterize its lining residues, mean relative polarities and volumes through EPOS®? software.
Unlike P-gp, where M-site and R/H sites are characterized by a greater number of aromatic and polar residues
respectively®?, ABCG2 binding clefts have instead a larger number of hydrophobic residues as valine, alanine, iso-
leucine and leucine (Fig. 10). In each monomer, hydrophobic residues account for 60 £ 3% of all residues against
29+ 2% of polar and only 11 + 1% of aromatic residues, but while hydrophobic residues are scattered through
the whole cleft, polar residues are more abundant in helices close to the dimer interface (most particularly in TM
helices 1 and 2) whereas aromatic residues are found at the top of the pocket, in the short a-helix that precedes
the ECL between TM helices 5 and 6.

Moreover, both binding clefts have similar mean polarities (+0.32 and +0.29) when compared with those
found for P-gp (+0.32 and 4+-0.33 for R and H sites respectively). Yet, some differences could still be found within
the drug-binding sites due to the asymmetrical residue distribution (Fig. 11). First, while the center of the cleft
is more polar (+0.35 or +-0.32 in each monomer), the uppermost region of the site is more lipophilic (ranging
from +0.25 t0 4-0.28). Second, the spatial position of the first transmembrane helix affects the polarity of the
drug-binding site near the dimer interface. As in monomer A TM helix 1 of the opposite monomer is closer to
TM helix 5, the dimer interface is less hydrophilic, with a mean polarity value similar to the one observed at the
top of the drug-binding site (4-0.26, Fig. 11A).

However, a different conformation in monomer B induced by the lateral shift of TM helix 1b exposes the
more hydrophilic core of TM helix 5 and creates an additional site with a mean polarity similar to the DBS
center (40.32) and providing an additional binding site where cholesterol could be found®. Thus, as in P-gp*?,
these distinct polarities within the binding cleft may be one possible explanation for the results obtained by
Clark et al>* in which, although using the R482G variant, several substrates appear to bind to distinct locations
(Fig. 12A). By combining this information with the results for cholesterol (obtained from both the MD simula-
tions and molecular docking) and with Rhodamine-123 (R123) docking poses in monomer B (at Site 2, —6.7 kcal.
mol~! against —7.4 kcal.mol~! for the top-ranked binding pose), a new schematic representation of the ABCG2
drug-binding sites, based on the one previously proposed by Clark et al., could be generated (Fig. 12B). Hence,
while mitoxantrone (MX, —6.3 kcal.mol ') and Hoechst33342 (H33342, —8.9 kcal.mol ') bind near the top of
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the drug-binding site, daunorubicin (DAU, —7.9 kcal.mol '), doxorubicin (DOX, —7.8 kcal.mol ') and prazosin
(PRAZ, —7.4kcal.mol™) are found to bind closer to the center of the ‘groove.

Concerning R123, although a specific site is proposed to exist close to the dimer interface (as for mitox-
antrone) in the wild-type protein, our data together with the recently reported cholesterol localization in the
human ABCG2 crystal structure suggests that this location would alternatively be part of the translocation path-
way (Fig. 12B, red dashed line). Therefore, one possible explanation for the increased R123 efflux described for the
R482G variant'®*? may be that the Arg— Gly mutation at position 482 induces a permanent shift on the position
of TMH 3 towards TMH 4 while moving away from TMH 1, which would allow the formation of the above iden-
tified cavity between TMH1 and TMHS5 (as seen in one of the monomers, Fig. 11B) where R123 was found in our
docking procedure. Finally, a distinct site for cholesterol could also be identified in the vicinity of the active Y413
CRAC motif (Figs. 5A-B, docking, —7.9kcal.mol™!), in agreement with experimental studies in which cholesterol
influence the binding process of ABCG2 substrates? as an allosteric co-activator or through co-transport with
substrates?® and in agreement with the results found for the heterodimeric sterol transporter ABCG5/G8*.

Membrane data. As cholesterol is a crucial component of lipid bilayers and is important for the activity of
the ABCG2 transporter, we measured important parameters as the protein’s angle of insertion (tilt), area per lipid
(Ap), thickness (Dyy) and cholesterol distribution around the ABCG2 transporter to assess the influence of the
transporter on the surrounding lipid environment. Regarding the membrane insertion angle (tilt), in our systems
ABCG?2 is found to have a 3 £ 1° tilt, which is in agreement with the low tilt angle predicted by OPM database
(6°). As P-gp, another member of the ABC transporter family that is known to reshape the surrounding lipid
environment®”*%, ABCG2 was found to have a strong influence on the membrane. When comparing the area per
lipid (A} ), and taking into account the values for pure DMPC (0.602 nm?) and with 20 molar-% cholesterol (0.531
nm? partial areas of 0.563 and 0.396 nm? for DMPC and cholesterol respectively), it was found that the presence
of ABCG2 increases the A up to values similar to pure DMPC membranes (0.591 nm?), corresponding to a 10%
increase on the membrane’s mean areas per lipid (partial areas of 0.661 and 0.316 nm? for DMPC and cholesterol,
respectively). Similarly, although membrane thickness also decreases (3.62 nm) when compared with 20 molar-%
CHOL:DMPC membranes (3.98 nm), it does not reach the values for pure DMPC (3.27 nm). We revisited our
previous studies on P-glycoprotein-membrane systems® and observed that while A; values shifts from 0.636 nm?
(pure POPC) to 0.593 nm? (20% CHOL:POPC, —7%), in P-gp/bilayer systems comprising cholesterol (system
built from the refined model but not included in ref'®) the A; is 0.612 nm? (3% increase). Regarding thickness,
in the presence of P-gp the calculated thickness of a 20% CHOL:POPC membrane was 4.01 nm, against 3.79 nm
for 20% CHOL:POPC membrane (+5%) and 3.72 (+7%) for pure POPC. Therefore, these data show a stronger
effect by ABCG2 in the surrounding lipid environment when compared to P-gp.

As it is known that cholesterol reduces membrane fluidity by increasing the orientational order of the hydro-
phobic chains, reducing its area per lipid and by increasing its thickness®®, this led us to hypothesize that the
modulation of cholesterol content within the membrane?”*! affects the ABCG2 dimer cohesion due to a decrease
on the membrane’s lateral tension. This hypothesis also provides a suitable explanation for the irreversible disso-
ciation of ABCG2 dimers by detergents, as previously shown by Telbisz et al.?%. This also suggests that ABCG2 has
a higher dependency on the biophysical properties of the membrane.
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Figure 12. (A) Top-ranked docking poses for substrates: mitoxantrone (MX, pink), Hoechst 33342 (H3342,
green), daunorubicin (DAU, cyan), doxorubicin (DOX, orange) and prazosin (PRAZ, yellow) at the drug-
binding site in monomer A, (B) Proposed schematic representation of ABCG2 drug-binding sites, based on a
previous model by Clark et al. and (C) Top-ranked docking poses for modulators: cyclosporine (CYC, brown),
fumitremorgin C (FTC, purple) and KO143 (dark green). The mesh represents the drug-binding pocket surface
and is colored by the electrostatic potential (blue, electron donor; gray, neutral and red, electron acceptor).

Periplasm
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Figure 13. Volumetric thickness maps for the ABCG2/membrane systems. (A) average thickness map (B)
deformation map for the upper leaflet and (C) deformation map for the lower leaflet. ABCG2 is depicted in
cartoon representation®. Negative and positive deformations are depicted in a blue-red scale for membrane
contraction and expansion, respectively.

In addition to the above results, we also generated volumetric maps interpolating the z coordinates of selected
atoms (phosphate atoms) into a regular orthogonal grid in the xy plane and superimposing them with the ABCG2
transporter®® (Fig. 13). Quite interestingly, from the average thickness map (calculated from the whole membrane;
Fig. 13A), it is possible to identify regions of thicker membrane patches next to the cholesterol recognition/inter-
action amino acid consensus, corresponding to an increase in the number of cholesterol molecules and closer to
the previously identified drug-binding sites, along with thinner patches on the vicinity of TM helix 6. However,
by observing the deformation maps for the periplasmic (Fig. 13B) and cytoplasmic (Fig. 13C) leaflets it could be
identified two symmetrical membrane ‘patches’ with increased thickness, both having a funnel-like shape, from
which molecules can access, for each monomer, to the surface clefts where the drug-binding sites are located.
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Conclusion

Since the identification of the ABC transporters role in multidrug resistance (MDR) that efflux pumps as
P-glycoprotein, MRP1, BCRP (also known as ABCG2) and, more recently ABCBS5, are being thoroughly studied
in order to better understand their mechanism of action, aiming the development of potent and selective MDR
modulators to avoid chemotherapy failures.

Unlike P-glycoprotein®, the lack of suitable crystallographic structures for ABCCI and ABCG2 has severely
compromised the knowledge on these two types of ABC transporters. The recent publication of a crystallographic
structure of the ABCG family, the ABCG5/G8 heterodimeric transporter, revealed for the first time a new trans-
membrane arrangement that is characteristic of the ABCG transporters. Although incomplete and despite the
low structural identity with ABCG2, it could still be a proper template for modeling ABCG2, thus allowing new
insights on the structural dynamics for this class of transporters. Herein, we report on a new ABCG2 homology
model from a ABCG5 homodimer (obtained by duplication of the C chain of the G5G8 crystallographic struc-
ture)*!. This was performed to avoid possible asymmetries due to the utilization of a heterodimeric transporter
as a homology template. Indeed, we also provided evidences that the herein newly obtained model is comparable
to the recently published human ABCG2 cryo-EM structure and that it performed better than a previously pub-
lished one*’, when evaluated using available structure assessment and validation computational tools. It is also
important to refer that i) our model and all the above results were obtained prior to the release of the cryo-EM
hABCG?2 structure and ii) due to the release of the cryo-EM structure, we felt the need to rewrite some parts of
this paper in order to validate our in silico approach for the development of a ABCG2 homology model. Both our
approach and our model are now supported through a thorough comparison with the structural information that
could be retrieved from the novel cryo-EM structure and, more important, our paper provides new and valuable
information that can be further used to better understand i) the structural dynamics of the ABCG transporters
family, ii) possible drug-binding sites within the ABCG2 structure and iii) the intimate relationships between the
surrounding lipid bilayer and the transporter.

In our homology model no disulfide bonds were modeled, because neither intra- or intermolecular disulfide
bonds are required for the ABCG2 transport activity'?-*4. Even so, Ca-Ca distances between cysteine residues
involved in intra- (592 and 608) or intermolecular (603) bridges were found to be stable, and at distances com-
patible with the physiological formation of disulfide bonds in ABCG2 homodimeric complexes. Thus, our results
combined with previous published experimental data suggests that inter- and intramolecular disulfide bridges
involving C592, C603 and C608 are more important for specific mechanisms as membrane targeting® or mon-
oclonal antibody binding®, rather than directly affecting the expression, function or activity of the transporter.

Signal propagation through the homodimeric structure was also assessed through a principal component
analysis, in order to better understand how conformational changes can lead to substrate efflux. Our simulations
demonstrated for the first time that signal transmission occurs through the herein de novo modeled external
helices (absent in the crystallographic structure) that connect the nucleotide-binding domain with the first trans-
membrane helix. Accordingly, we suggest that drug binding and/or ATP binding is able to induce spring-like
movements that propagate conformational changes through these specific domains i) into the opposite NBD or ii)
into the TM domain of the same monomer. Thus, the development of small molecules targeting these specific
motifs may become a promising alternative to develop novel and specific ABCG2 efflux modulators able to tackle
MDR in cancer by impairing drug-induced signal transmission, similar to what was recently suggested for P-gp®.

Molecular docking revealed two symmetric drug-binding clefts, one in each monomer, in agreement with
a previous study by Clark et al.>*. These two membrane-exposed clefts are flanked by TMH1-2 of the opposite
monomer and by TM helices 4-6 and occupy almost all the buried TM surface, with a mean volume of ~1900A3
and regions of distinct polarities, which may explain why substrates seem to bind to distinct locations within this
region. Thus, a new schematic representation of the ABCG2 drug-binding sites is herein proposed, based on a
previous scheme by Clark and co-workers®, where a distinct region for cholesterol binding (based on MD and
docking results) and a translocation pathway can be proposed. Interestingly, as our results suggest the existence
of distinct drug-binding sites for substrates, modulators and cholesterol, it theoretically would be possible to
develop specific ABCG2 efflux modulators that i) could specifically compete with cholesterol (thus reducing the
activity of the pump), ii) binds in a different location with high affinity while simultaneously being able to block
the substrate-binding site and iii) could specifically bind to the whole “surface cleft” in order to impair confor-
mational changes by increasing the structural cohesion of the transmembrane helical domains (as observed for
tariquidar in P-gp)3»67:68,

Finally, like other ABC transporters that also reshape the surrounding lipid environment?, the biophysical
properties of the membrane patch surrounding ABCG2 were also assessed. Important changes in area per lipid,
thickness and membrane deformation profiles were observed that may explain the strong dependency of ABCG2
for cholesterol-enriched membranes. Interestingly, a thicker “funnel-like” shape region within the membrane was
identified from which molecules can access, for each monomer, to the surface clefts where the drug-binding sites
are located. As the presence of detergents are often associated to function impairment in ABC transporters**¢%7%,
our results also corroborate that reducing its cholesterol content and increasing membrane fluidity may have a
deleterious effect not only in protein function but also regarding drug access to ABCG2 from the lipid bilayer.

Material and Methods

Initial Structures and Software. The ABCG5/G8 heterodimeric crystal structure (PDB ID: 5DO7)* was
obtained from the Protein Data Bank (www.rcsb.org)”! and parameterized according to the GROMOS967>7 force
field with the 54A7747° parameter set. A lipid membrane comprising dimiristoylphosphatidylcholine (DMPC)
with 20% cholesterol (CHOL) was obtained from the Computational Molecular Biophysics Group at the Georg-
August-Universitit Gottingen (http://cmb.bio.uni-goettingen.de/cholmembranes.html)’*””. For DMPC, the
parameterization developed by Poger et al.””° was used due to its ability to accurately reproduce properties
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of the lipid bilayers as area and volume per lipid ratios’®308!, fluid-phase’®7*828 and solvation’87%? properties.
Cholesterol and ATP parameterization was prepared online through the Automated Topology Builder (ATB) and
Repository**> or PRODRG?® servers, manually curated and added with Merz-Kollman partial charges, assigned
through ab initio calculations at the Hartree-Fock level of theory using the 6-31 G(d) basis set in Gaussian03%’
program. Protein manipulation, protonation and homology modeling was performed in MOE 2015.1001%. The
GROMACS simulation package 5.0.7%-%? was used for the MD simulations and protein insertion into the lipid
membranes through the g membed® module. Areas per lipid (4;) and thickness (Dyy) of all systems were cal-
culated with the MembPlugin® extension in VMD?®%. Principal Component analysis (PCA) for the evaluation of
the protein’s motion patterns was performed using the ProDy*>* software through the NMWiz plugin in VMD?.
Free energies of binding were calculated using g mmpbsa®’, with polar solvation energies corrected by generating
ion-accessibility and dielectric maps incorporating the membrane environment (dielectric slab constant is set to
2.0 using the draw_membrane2 program) through in-house python scripts®®. Both VMD and MOE were used for
molecular inspection and visualization.

Systems Construction. Due to a higher identity and similarity between ABCG5 and ABCG2 (27% and
48% respectively and better than ABCG8), and to avoid homology errors that may arise from crystallographic
asymmetries in the ABCG5/G8 heterodimer, one of the initial steps was the assembly of an ABCG5 homodimer by
superimposing a copy of the ABCG5 (chain C) structure on the ABCG8 transporter (chain D), being chain C cho-
sen over chain A due to its higher quality (as described in the Full wwPDB X-ray Structure Validation Report®,
available at http://ftp.wwpdb.org/pub/pdb/validation_reports/do/5do7/ 5do7_full_validation.pdf).

Missing sequences. In order to obtain a full-length ABCGS5, three sequences that were missing in the ini-
tial crystallographic structure were built: the A-loop (residues 47-66), the linker (residues 349-354) and the
long extracellular loop (ECL, residues 590-598), based on the Chou-Fassman Secondary Structure Prediction
server'®’. While the linker and ECL sequences were assessed as disordered, the A-loop was predicted to be a
beta hairpin!®!, similar to that found in P-gp. Therefore, this segment was constructed using the Protein Builder
module in MOE, followed by protonation and energy minimization, keeping the distance between the amine and
carboxyl groups to the experimental one found in the crystallographic structure (4.5 A). The resulting structure
was then solvated, neutralized by adding an adequate number of counter ions and further studied in GROMACS
through a series of eight MD simulations, each one with 50 ns duration and initial random velocities assigned
from the temperature-related Maxwell-Boltzmann distribution. All obtained structures were evaluated regarding
the final partial energies of the system, Ramachandran!® plots, and visual inspection. The most suitable confor-
mation was added to the ABCG5 crystallographic structure to be used as a template for the ABCG2 homology
model generation. The remaining sequences (linker and ECL) were modeled as coils.

Homology modeling. To minimize possible clashes between atoms of the crystallographic structure and
the added missing peptide sequences, prior to homology modeling a short energy minimization step took place
while keeping the crystallographic structures’ heavy atoms spatially restrained. After loading the ABCG?2 fasta
sequence (retrieved from UniProt, accession number QQUNQO), a homology model was built in MOE (Homology
Model module), creating 100 mainchain models with 10 sidechain samplings at 300K, in a total of 1000 models
(Amber:EHT force-field). All other options were set as default. However, visual evaluation of the final model
detected several problems, mainly related to mismodeled helical domains. Therefore, the secondary structure of
these domains was predicted in CFSSP and built de novo in the homology model: while TM helices 4 and 5 were
partially rebuilt as fully helical only from the distorted portions up to the nearest loop, the connecting helical
domains following the NPXDF motif (two a-helices that precede the coil linking the NDB to the TMD, named
CnH in ABCG5/G8 and C2a/C2b in hABCG2) were completely rebuilt as fully helical, keeping its relative location
similar to the original spatial coordinates in the ABCG5 experimental structure.

Linker equilibration. Since the linker connecting the NBD-TMD (residues 354-375) is longer than in
ABCGS5, we performed an additional computational study of this structure in GROMACS in the presence of
a DMPC membrane. To that matter, after building the coil in MOE, a system comprising residues 332-389
(helix-linker-helix) was ported into GROMACS, inserted in an adequate membrane patch, solvated and neutral-
ized with an adequate number of counter ions. Then, the system was energy minimized and equilibrated through
a NVT run (10 ps, 303 K), followed by a short 4ns NpT run (for membrane equilibration, 1bar) and a 50ns NpT
run while keeping the flanking helices 332-353 (cytosolic) and 374-389 (anchored at the membrane interface)
spatially restrained to allow the equilibration of the connecting coil. At the end, the system was evaluated and
the most favorable conformation was inserted into the ABCG2 homology model. The quality of the model was
assessed through online validation servers as ERRAT'%, MolProbity!*1%, PROCHECK!%1%7 and SwissModel
Structure assessment'*®-11? tools.

Construction of membrane systems and refinement protocol. The relative position of the lipid
bilayer was taken from the OPM'"! database. Accordingly, a DMPC membrane with 20 molar-% cholesterol was
chosen because i) cholesterol is required for optimal ABCG2 activity?” probably acting as an allosteric regulator''?,
ii) in the original publication the protein was also reconstituted in DMPC bicelles in the presence of cholesterol
prior to the crystallization step and ii) it provides an optimal hydrophobic environment to accommodate the
hydrophobic thickness for the ABCG2 transmembrane domains (PPM server prediction:''> 28.6 £ 0.9 A). After
membrane insertion, the system was water soaked (59.982 molecules) and neutralized with 22 chlorine ions,
originating a system with 221.728 atoms. The system was then energy minimized and a 10 ps NVT run at 303K
followed, above the DMPC gel-fluid phase transition'*!'>. Then, the DMPC:CHOL membrane was allowed to
correctly adjust to the protein structure through a 20 ns NpT run where all the protein’s heavy atoms were kept
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restrained. Finally, in order to better equilibrate all the de novo modeled domains, a refinement protocol was
applied by progressively removing the heavy atoms’ spatial restrictions through a series of three sequential 10ns
NpT runs for the modeled helices (residues 310-354), linker (residues 355-375) and both helix-linker (resi-
dues 310-375) respectively. The resulting system was the starting point for a 200 ns unrestrained NpT run. Two
additional systems were obtained by removing one DMPC molecule, found to be located between both ABCG2
monomers, at the beginning (200 ns MD run) or after 100 ns of the 200 ns NpT run (for another 100 ns), for a total
of 500 ns simulation time. At the end, the quality of all three models was again assessed by the previously used
validation servers.

ATP systems. Using the final conformation of the 200 ns NpT run and to assess the effect of ATP binding on
the ABCG2 homodimer, two ATP-Mg?* complexes were placed in the nucleotide-binding domains (one for each
monomer), with the magnesium ion in the vicinity of D210 (Mg*"-chelating residue), the ribose moiety close to
the Walker A motif and the adenine next to the A-loop, followed by a short energy minimization step in MOE
to allow the residues sidechains to adjust to the presence of ATP. Then, in GROMACS, the protein was further
allowed to equilibrate to the presence of the nucleotide through a 10ns NpT run where ATP-Mg*" coordinates
were kept spatially restrained. Afterwards, a 100 ns unrestrained NpT run was performed.

Simulation parameters. For all simulations, periodic boundary conditions (PBC) were applied. Simple
energy minimizations were performed using the steepest descent method. All NVT runs were performed at
303K using a Velocity-rescale (V-rescale)!!® thermostat. NpT runs used the Nosé-Hoover!!”!!8 thermostat and
the Parrinello-Rahman!'”!° barostat for temperature (303 K) and pressure (1 bar) coupling, respectively. Due
to the presence of membranes, pressure equilibration was achieved through a semi-isotropic pressure coupling,
with the systems’ compressibility defined as 4.5 x 10~ >bar ™! and the initial box was defined with dimensions
xyz of 17.37 x 11.58 X 13.50 nm?>. The Particle Mesh Ewald (PME) with cubic interpolation!?*!2! was employed,
with cut-off radius of 12 A for both electrostatic and van der Waals interactions and an FFT grid spacing of
0.16 nm for long-range electrostatics. Group-based or Verlet'? cut-off schemes were applied for the calculation of
non-bonded interactions done on CPU or GPU respectively. The SETTLE!? (for water molecules) or LINCS!?+125
algorithms were used to constrain all bond lengths.

Molecular Docking. Substrates (N =69) and modulators (N = 19) were selected according to the publication
by Mo et al.'® Molecular docking was made with all three ABCG2 homology models obtained at the end of the
MD simulations. MarvinSketch v17.2.20'%¢ was used for drawing and minimizing structures. PDBQT files were
generated with AutoDockTools'?’ for further utilization in AutoDock VINA v1.1.2!?%!% docking software. The
binding location was defined by a docking box including the whole transmembrane domains, with dimensions
xyz of 16.87 x 14.06 x 16.87 A® (xy corresponds to the membrane plane). Due to the large search space volume
(over 27.000 A%), ‘exhaustiveness’ parameter was manually set to 50. Visual inspection of the docking poses was
made in MOE to allow the identification of individual docking zones. For each site, the docked molecules were
overlapped with the cavity search results by EPOSBP13%131 thus allowing the identification of lining atoms (within
a distance of 5 A from the pocket probes), mean pocket volumes and polarities (ratio of the sum of N, O, and S
atoms to the sum of N, O, S, and C atoms). Graphical images of the docking poses and molecular maps of the
pocket surfaces were generated in MOE.

Data availability. The final configuration of the MD refined ABCG2 homology structure and the ATP sys-
tems are available for download at our website (http://chemistrybits.com/).
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