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ABSTRACT

Defining chromatin interaction frequencies and topo-
logical domains is a great challenge for the anno-
tations of genome structures. Although the chro-
mosome conformation capture (3C) and its deriva-
tive methods have been developed for exploring the
global interactome, they are limited by high exper-
imental complexity and costs. Here we describe a
novel computational method, called CITD, for de novo
prediction of the chromatin interaction map by inte-
grating histone modification data. We used the public
epigenomic data from human fibroblast IMR90 cell
and embryonic stem cell (H1) to develop and test
CITD, which can not only successfully reconstruct
the chromatin interaction frequencies discovered by
the Hi-C technology, but also provide additional novel
details of chromosomal organizations. We predicted
the chromatin interaction frequencies, topological
domains and their states (e.g. active or repressive)
for 98 additional cell types from Roadmap Epige-
nomics and ENCODE projects. A total of 131 protein-
coding genes located near 78 preserved boundaries
among 100 cell types are found to be significantly
enriched in functional categories of the nucleosome
organization and chromatin assembly. CITD and its
predicted results can be used for complementing the
topological domains derived from limited Hi-C data
and facilitating the understanding of spatial princi-
ples underlying the chromosomal organization.

INTRODUCTION

The genome is hierarchically organized in three-
dimensional (3D) space inside the cell nucleus and
exhibits multiple layers of functional complexity, includ-

ing chromosomal territories, megabase-long topological
domains and DNA loops among cis-regulatory elements
(e.g. enhancers and promoters). To comprehensively
understand the relationship of genome structures and
functions is an important but extremely difficult technical
challenge (1–3). Newly developed biochemical approaches
(such as 3C, 4C, 5C, Hi-C and ChIA-PET) have been
applied to explore physical interaction frequency that was
defined as the probability of a pair of chromosomal loci
interacting with each other among a large cell population
(4–7). However, these methods largely rely on chemical
cross-linking, DNA–DNA proximity ligation and enzyme
digestion (or sonication), which lead to link uncertainty
(noise), less of quantitative control and high experimental
complexity (4,7–9). Additionally, current technologies are
limited to measure high-order chromosome organizations
while simultaneously achieving higher resolutions. A
detailed and comprehensible description of the 3D genome
organization and function will require the development of
computational technologies that can reveal such complex
hierarchical organization at different physical scales.

Epigenetic modifications, such as DNA methylation and
the chemical modifications on nucleosomal histones H2A,
H2B, H3 and H4, play key roles in epigenetic regulation
of chromatin structure and gene expression (5,10). Histone
modifications (e.g. acetylation, methylation, phosphoryla-
tion and ubiquitylation) can result in different functional
outcomes depending on the different modified sites, the
modification degrees and in what combinations (11–14).
Large-scale mapping of histone modifications has emerged
as a powerful means for characterizing the chromatin
structures/states, since chromatin regulators and histone
modifications work in conjunction with other co-factors to
silence or to activate broad genomic regions (15,16). For ex-
ample, large-scale repressions of megabase domains are cor-
related with H3K9me2 and H3K9me3 (17–19). Different
combinations and patterns of various histone modifications
have been widely observed to be associated with specific ge-
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nomic regions (13,20). Integrative analysis of these epige-
netic modifications had been successfully used to annotate
chromatin states (21–23), genomic A/B compartments (24)
and topological domain boundaries (25). Recent research
of Hi-C experiments from multi species reported that two
neighboring loci within a topologically associating domain
(TAD), as opposed to a pair of arbitrary loci, usually have
similar chromatin modifications patterns and strong inter-
action frequencies (26), indicating potential relationship be-
tween chromatin interaction and epigenetic modifications.
Computationally, for each chromosomal locus, we can cal-
culate an average enrichment for each of the modifications
and create a vector representing the enrichment of all mod-
ifications. High similarity of epigenetic modification pat-
terns at two loci can be quantitatively translated to a high
correlation value between their vectors. However, the corre-
lation of chromatin modification patterns does not always
imply interaction frequency. Two distant chromosomal loci
(e.g. two promoter regions) may display similar epigenetic
modifications and hence a high correlation, but may not
necessarily imply the presence of their interaction. Consid-
ering that chromatin interaction frequencies decline as the
distance increases (following a power law) (7), we can ac-
cordingly transform the correlations of histone modifica-
tions among chromosomal loci so that they will closely fol-
low the same power law. Thus the transformed correlation
of histone modifications can be considered as surrogates for
chromatin interaction frequencies, and consequently can be
used for segmenting topological domains.

Motivated by the aforementioned observations, we devel-
oped a computational method to estimate chromatin inter-
action frequency from one-dimensional (1D) histone mod-
ifications. For the purposes of benchmarking, we compared
our predictions with interactions and TADs obtained from
Hi-C experiments of IMR90 and H1 cell lines. The cross-
chromosome and cross-cell-type testing as well as case stud-
ies show that CITD can be used to estimate the landscape
of interactions as Hi-C data. We further applied CITD to
98 additional cell types of Roadmap Epigenomics (27) and
ENCODE project (28) to generate systematic predictions
of chromatin interaction frequencies, topological domains
and their states (active or repressive). These comprehensive
results may enable us to uncover preserved domain bound-
aries and to delineate underlying mechanisms of chromoso-
mal reorganization during human embryonic stem cell dif-
ferentiation.

MATERIALS AND METHODS

Datasets

Hi-C dataset. The Hi-C interaction matrices of IMR90
and H1 cell lines were downloaded from GEO under acces-
sion number GSE35156. The TAD were downloaded from
Hi-C project database (http://yuelab.org/hi-c/). For both
cells, the chromosomal positions of Hi-C results were based
on reference human version of GRCh36/hg18.

Histone modifications. The dataset of histone modifi-
cations were downloaded from Roadmap Epigenomics
project (27) and ENCODE project (28). A total of

84 cell types were downloaded from Roadmap Epige-
nomics project at NCBI database (www.ncbi.nlm.nih.gov/
geo.roadmap/epigenomics) and 16 cell types were down-
loaded from ENCODE project under accession number
GSE29611 (see Supplementary Table S1 in Supplemen-
tary Data File 1 for a complete list of cell types). For
each cell type, the wig files of histone modifications were
used to calculate the signal depth of modifications. The
IMR90 cell has the most abundant modification set of
28 markers. The H1 cell has 27 different modifications
and other cells have at least 10 histone modifications.
All the modifications of IMR90 and H1 were mapped
to reference human genome version GRCh36/hg18 and
GRCh37/hg19. The other cell types were only mapped to
reference human genome GRCh37/hg19. The results based
on GRCh36/hg18 are only used for training and compari-
son with previous Hi-C data since they were only available
for this version.

Transcriptional factors binding signals. The binding
signals (wig format) of 10 transcriptional factors
(IMR90) were downloaded from ENCODE project
under accession numbers GSE31477 and GSE32465,
including CTCF (GSM935404), POL2 (GSM935513),
CHD1 (GSM1003623), MAFK (GSM935403), MXI1
(GSM1003614), RFX5 (GSM1003615), CEDPB
(GSM935519), RAD21 (GSM935624), COREST
(GSM1003612) and MAZ (GSM1003613). The signals
of chromatin accessibility were downloaded from GEO
with accession numbers GSM530665 and GSM530666.
The signals of DNA methylation were downloaded from
GEO with accession numbers GSM432687-432692. All
histone modifications and binding signals were processed
by subtracting the corresponding input control.

Transcriptome data. The transcriptome of IMR90 was
downloaded from GEO database under accession number
GSM438363. Reads were mapped to GRCh36/hg18 (NCBI
GTF annotation) by using Bowtie software 1.0.1 release
(29) and the gene FPKMs were called by using Cufflinks
software 2.2.1 release (30) with default parameters.

CITD method

To provide scalable and effective predictions of chromatin
interaction frequencies, CITD employed the following five
steps to transform the multiple histone modifications into
chromosome-based interaction matrices (Figure 1A).

(i) Data processing: for a given bin size, chromosomes are
divided into bins. For each bin, the average ChIP-seq
intensity value of all histone modifications are calcu-
lated and ordered as a numerical vector.

(ii) Calculation of Pearson correlation: for two vectors cor-
responding to any bin pair i and j, calculate the abso-
lute value of the Pearson correlation. All pairs resulted
in a correlation matrix.

(iii) Wavelet decomposition: for a chromosome region, the
Hi-C matrix and correlation matrix are both decom-
posed into coefficient matrices that are corresponding
to different frequency bands (31). The symmetric and

http://yuelab.org/hi-c/
http://www.ncbi.nlm.nih.gov/geo.roadmap/epigenomics


PAGE 3 OF 12 Nucleic Acids Research, 2016, Vol. 44, No. 11 e106

Figure 1. The CITD overview. (A) Constructing chromatin interaction frequency by wavelet transformation of histone modifications. ‘A’ means the ap-
proximation coefficients matrix. ‘H’, ‘V’ and ‘D’ mean horizontal, vertical and diagonal details coefficients matrices, respectively. First, the training data
(Hi-C interaction matrices) and correlation matrix were decomposed by level one wavelet decomposition. The four coefficient matrices obtained from cor-
relation matrix were optimized to be as similar as those from Hi-C matrix by following non-linear transformation (power law). The optimized coefficient
matrices were then used to construct the interaction matrix by wavelet reconstruction. A hidden Markov model (HMM) method was followed to predict
the topological domains. A classification method was used to predict the state of domain as active or repressive. (B) CITD was applied on total 100 cell
types with scalable resolutions. The vertical and horizontal comparisons were performed among these cell types at different resolutions.

biorthogonal wavelet filters (bio3.7) was used in the de-
composition as it is widely used for 2D signal process-
ing (32). The decompositions were performed on dif-
ferent levels from 1 to log2 L, which is the theoretical
upper bound of wavelet decomposition for a matrix of
size L. At each decomposition level n (n is an integer
and 1 ≤ n ≤ log2L), there will be 3n + 1 coefficient ma-
trices (31).

(iv) Non-linear transformation: for each coefficient ma-
trix pair, namely Hi-C matrix Hs

n and correlation
matrix Cs

n at level n and s = 1, 2, ..., 3n + 1, non-
linear transformation was used to transform Cs

n
into αs

n · Cs
n(i, j ) · |i − j |βs

n . Here the scale parame-
ter αs

n and the power parameter βs
n are optimized

by minimizing the difference (least-square fit) as
1

L2

∑

1≤i, j≤L
(Hs

n (i, j ) − αs
n · Cs

n(i, j ) · |i − j |βs
n )

2
.

(v) Wavelet reconstruction: at each level n, the predicted
matrix of chromatin interaction matrix Cn was ob-
tained by using wavelet reconstruction based on opti-
mized coefficient matrix αs

n · Cs
n(i, j ) · |i − j |βs

n .

Training and optimizing parameters

To optimize the parameters, we used Hi-C matrices of
IMR90 and H1 for training and testing by using a
repeated random subsampling approach (Monte Carlo
Cross-testing) (33). This approach randomly and equally

split the 22 chromosomes into training and testing chro-
mosomes. For each split, a chromosomal region with the
size of 20 Mb was randomly selected from training chromo-
somes to optimize parameters, and a chromosomal region
with the same size was randomly selected from the testing
chromosomes for testing the performance. To minimize bi-
ases and over-fitting, the random splits were repeated 1000
times. We first applied this training-testing approach, re-
ferred as cross-chromosome testing, to both IMR90 and
H1 cell types individually. We then trained parameters from
IMR90 cell and tested them on seven cell types, and call this
cross-cell-type testing.

Cross-chromosome testing. First, a chromosomal region of
20 Mb was randomly selected and 20 Mb is almost equal
to the size of the smallest human chromosome. The Hi-C
matrix and a correlation matrix of this region were used to
optimize the best decomposition level and parameters for
non-linear transformation.

(i) Determining the best decomposition level. For a se-
lected region of training chromosomes (IMR90 or
H1), the difference between transformed matrix Cn
and Hi-C matrix H was calculated as D(Cn, H) =
1

L2

∑

1≤i, j≤L
(Cn(i, j ) − H(i, j ))2 for all possible decom-

position levels n = 1, ..., log2L. The standardized dif-
ference was then calculated as D(Cn ,H)

∑

1≤i, j≤L
(H(i, j ))2 , which is
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used to measure the relative difference of Cn and H.
We calculated the standardized differences at each de-
composition level n. We repeated this process for 1000
times on both IMR90 and H1 individually. The op-
timized decomposition level was selected as the level
n that obtains the minimal D(Cn, H). Results show,
for both IMR90 and H1 cells, level one decomposition
(n = 1) obtained the smallest standardized differences
(Supplementary Figure S1A in Supplementary Data
File 2).

(ii) Parameter training for non-linear transformation.
With the level one decomposition being the best, we
then optimize the parameters for non-linear trans-
formation. For a selected chromosome region of
IMR90 or H1, its Hi-C matrix and correlation ma-
trix were processed with wavelet decomposition of
level one and each matrix resulted into four co-
efficient matrices that are corresponding to differ-
ent signal frequencies. For each coefficient matrix
pair of Hs

1 and Cs
1 (s = 1, 2, 3, 4), parameters αs

1
and βs

1 are optimized by minimizing the difference
1

L2

∑

1≤i, j≤L
(Hs

1 (i, j ) − αs
1 · Cs

1(i, j ) · |i − j |βs
1 )

2
. The fi-

nal eight parameters were calculated as the average of
the parameters of total 1000 training processes.

(iii) Testing. These eight parameters were then tested on a
randomly selected region of 20 Mb from testing chro-
mosomes. For the selected testing region, the interac-
tion matrix C1 was calculated with trained eight pa-
rameters and the standardized difference was calcu-
lated by comparing it with the Hi-C matrix of this chro-
mosomal region.

Cross-cell-type testing. To test if the trained parameters
from one cell type can be applied to different cells, we did the
cross-cell-type testing on seven cell types (H1, GM12878,
NHEK, K562, HUVEC, HeLa and KBM7). For one of the
seven cell types, we randomly selected 1000 regions from
22 chromosomes. For a selected region, the interaction ma-
trix C1 was calculated using these trained 8 parameters
from IMR90. The standardized difference was calculated
by comparing it with the Hi-C matrix of this region.

Testing different modification combinations. Currently, dif-
ferent cells had different number of histone modification
types available. To test if our method can be used on dif-
ferent number of histone modification types, we randomly
selected subsets from 28 modification types of IMR90 and
repeated our predictions. For each random subset, the stan-
dardized difference was calculated and compared with the
standardized difference obtained by using all 28 modifi-

cations. Since it is impossible to calculate all (
28
n ) combi-

nations, we sampled and calculated the combinations for
n = 27, 26, ..., 5. For each combination of n histone mod-
ifications we randomly repeated 1000 times with randomly
selected regions of size 20 Mb. In real applications, we per-
formed CITD on 100 cell types that have at least 10 modi-
fication types using the optimized parameter from IMR90
cell.

Predicting topological domains

Based on the predicted chromatin interaction matrix, we
calculated the topological domains using Dixon’s Method
(based on HMM model) with the same parameters used for
the Hi-C data of IMR90 and H1 (4). The topological do-
mains with different resolutions of 40, 30, 20 and 10 kb are
performed on each of the 100 cell types. For IMR90 and H1
cells, the predictions were calculated by using both reference
human genome version GRCh36/hg18 and GRCh37/hg19.
The predicted results based on GRCh37/hg18 were only
used for comparison with previous results that were directly
calculated from Hi-C data. All other cells were predicted by
using the GRCh37/hg19 version. To compare the interac-
tion strengths of domains, we calculated the average inter-
action of a domain as the average interaction frequency of
its corresponding interaction matrix M (Hi-C interaction
matrix or CITD predicted interaction matrix) that was de-
fined as 1

|M|2
∑

1≤i, j≤|M|
M(i, j ), where |M| is the matrix size.

Predicting domain states

We built a classification-based method to better understand
the active or repressive states of topological domains by an-
alyzing the histone modifications. The utility of this step is
2-fold: first, by investigating the state of domains using hi-
stone modifications, we can provide additional benefits of
our CITD method that started from same histone modifi-
cation datasets. The second powerful aspect of the classifi-
cation step is that it allows us to assess the state switches
at TAD domain-level. The method was built as follows. (1)
For a given domain, a score of each modification was con-
structed by averaging the raw values of the 40 kb bins in-
cluded within this domain. For multiple modifications, a
score vector then can be constructed. (2) Using those do-
main score vectors, K-means clustering algorithm imple-
mented in Matlab was used to classify all domains into
two classes. (3) The active and repressive states were in-
dicated by the values of active modifications (H3K4me3,
H3K36me3, H3K27ac, H3K79me1) and repressive modi-
fications (H3K27me3, H3K9me3), respectively. For a do-
main, if the averaged value of active modifications is bigger
than averaged value of repressive modifications, it is iden-
tified as an active domain. Otherwise, it is identified as a
repressive domain. The active or repressive states were pre-
dicted for all the CITD predicted TAD domains of 100
cell types. We then defined two criteria as repressive ratio
and alternating ratio to characterize the spatial distribu-
tion of domain states along chromosomes. The repressive
ratio is defined as the fraction of repressed domains among
total domains. The alternating ratio is defined as the frac-
tion of neighboring domain pair with different domain state
among total neighboring domain pairs. Using these two cri-
teria, we can not only qualitatively measure the switches of
domain states, but also quantitatively analyze their alterna-
tion patterns along spatial locations, and then facilitate the
comparative analysis among cell types.
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Comparative, statistical and functional analysis

Statistical analysis. The predicted topological domains of
IMR90 and H1 were compared with the results obtained
from their respective Hi-C data. K-S test was used to test
the similarity of the number and length distributions be-
tween our predicted domains and Hi-C predicted ones on
22 chromosomes. CITD predictions were compared to the
TAD domains for further performance analysis. In detail,
we aligned CITD predicted domains to the TADs to iden-
tify the best match and calculated the overlap ratio, which
is defined as the proportion of overlapped region over the
TAD domain size. If one CITD prediction covers several
TAD domains, only the longest TAD was kept and the over-
lap ratios of others were discarded. A TAD boundary is
considered a match if a predicted boundary is located within
20% of the domain size. For each bin, we counted the fre-
quency that this bin was predicted as a boundary among
100 cells, and achieved the boundary distribution of all bins
along 22 chromosomes. The super preserved boundaries
were defined as those that were predicted as boundaries in
more than 90 cell types (as critical as 1% percentile of the
boundary distribution). For a domain, the values of all its
bins were calculated for each of 28 modifications to obtain
the modification distributions of this domain. The K-S test
was then used to test how similar are the distributions of
each 28 modifications on neighboring domains.

Comparing with the results of PreSTIGE (34). We down-
loaded 20190 enhancer–promoter interactions of H1 cell
type predicted by PreSTIGE (version 1.0.0; http://mendel.
gene.cwru.edu:8080). We analyzed the interaction scores of
these enhancer–promoter interactions in our predictions.
For a pair of enhancer and promoter, we first extracted
a CITD predicted interaction score by using the two bins
where they are located. For these 20190 enhancer–promoter
interactions, we consider if they are enriched in top-ranked
proportion of all CITD prediction scores. For a threshold of
proportion � (ranged from 1 to 100), we define recall as the
fraction of the enhancer–promoter interactions with higher
scores (ranked in �% of CITD prediction scores) among all
20190 interactions.

Cell interaction entropy analysis. For an interaction matrix
M of a chromosome, the values of its elements were discrete
into 256 score levels from 0 to 255. Its entropy is defined
as EN(M) = −∑256

1 pi log2(pi ), where pi = xi∑256
1 xi

and xi

is the number of matrix elements with values falling in be-
tween i-1 to i score levels. Here the higher EN(M) means
lower consistence. The interaction entropy of a cell type is
defined as the sum of the matrix entropy of all 22 chromo-
somes.

Functional analysis. The functional enrichment analysis
and annotation of gene set were performed by DAVID
database (35) and BINGO with release version 2.44 (36).
The information were then manually verified and mod-
ified by using GeneCards database (37). For the 78 su-
per boundaries, the protein–coding genes that located in
±40 kb regions were extracted by using the position file
Refseq GTF (NCBI database, May 2014). The long non-

coding RNA (lncRNA) were downloaded from LNCi-
pedia database (version LNCipedia 3.0, released 28 Au-
gust 2014), including 80216 high confident records (38).
The non-coding RNA genes were downloaded from NON-
CODEv4 database (version 4.0, released 18 August 2014),
including 145331 records (39). Non-coding genes (lncRNA,
miRNA and others) that located in ±40 kb regions of 78 su-
per boundaries were then extracted.

Delineating housekeeping gene. Housekeeping genes were
identified by using the expression data of 84 tissues (or
cells) from database BioGPS (September 2014) (40). The
definition and calculation were the same as early studies
(4). Given a gene x with expression xi in a given tissue
i, the entropy gene expression is calculated as EN(x) =
−∑N

1 pi log2(pi ), where pi = xi∑N
1 xi

is the probability of xi

in tissue i and N is the total number of tissues. High en-
tropy scores have relatively uniform expression patterns and
considered to be housekeeping genes. Here a threshold was
taken as 6.5 that indicates the gene x has uniform expres-
sions in at least 70 tissues as used in early study (4).

RESULTS

The CITD method

To predict chromatin interaction frequencies and topolog-
ical domains, we explored two biological observations. (i)
The histone modifications at a pair of interacting loci are
correlated; (ii) the chromatin interaction frequencies de-
cline with chromosomal distance following a power law. We
implemented the observations to develop a computational
method, CITD, to infer cell-type specific chromatin interac-
tion matrices (Figure 1A). CITD first divided the chromo-
somes into bins (e.g. of 40 kb size) according to the resolu-
tion of a given Hi-C data (4). For any bin pairs, the Pearson
correlation of their modification values was calculated and a
correlation matrix was then constructed for a chromosome.
To better model the underlying biological inhomogeneity of
hierarchical structures, the correlation matrices and Hi-C
matrices were decomposed into different coefficient matri-
ces at different scales (corresponding to different frequen-
cies) by using the wavelet transformation framework that
can provide multiresolution analysis for different signal fre-
quencies (41). We trained the parameters for power law
functions by minimizing the difference between the coeffi-
cient matrices calculated from correlation matrices and Hi-
C matrices. Predicted interaction matrices can then be cal-
culated by wavelet reconstruction from the transformed co-
efficient matrices. Based on predicted interaction matrices,
we further performed the Dixon’s method with default pa-
rameters that were used in early studies (4) to predict TAD
domains. For the predicted domains, we further designed
a classification-based method to predict the domain states
as active or repressive. CITD has the advantage of easily
obtaining multiple resolutions compared with Hi-C exper-
iments. With smaller bin size used, we can achieve higher
resolutions for both interactions and topological domains.
We applied CITD on a total of 100 cell types that have mul-
tiple histone modification data available. Then, the compar-

http://mendel.gene.cwru.edu:8080
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isons of chromatin interaction frequencies and topological
domains at different scales were performed (Figure 1B).

We optimized nine parameters in the model, including
one for the best decomposition level of wavelet transforma-
tion and eight parameters for the non-linear transforma-
tions. For a predicted matrix and the corresponding Hi-C
matrix in a chromosomal region, we calculated the stan-
dardized difference that is defined as the proportion of the
difference of these two matrices to measure how similar
they are. It is firstly confirmed the level one decomposi-
tion can obtain the minimal standardized difference be-
tween our constructed matrix and Hi-C matrix for both
IMR90 and H1 cell types (Supplementary Figure S1A and
B in Supplementary Data File 2). We then optimized the
other eight parameters for the non-linear transformations
of the four paired coefficient matrices. A scale parame-
ter and a power parameter of the non-linear transforma-
tion (power law function) were trained to minimize the dif-
ference between the corresponding coefficient matrix pair
(Figure 1A). For each of the correlation matrix and corre-
sponding Hi-C matrix, four coefficient matrices were ob-
tained by using the level one wavelet decomposition. The
above random selection and calculation was repeated 1000
times and the final optimized parameters were chosen as the
averages of 1000 repeats for both IMR90 and H1 cell types
(Supplementary Figure S1C and D in Supplementary Data
File 2).

Testing and comparisons

For benchmarking the performance of CITD with these fit-
ted parameters, we performed both cross-chromosome and
cross-cell-type testing. Firstly, we compared our predictions
against the Hi-C interaction of randomly selected chromo-
somal regions (20 Mb) for both IMR90 and H1 cell indi-
vidually as the cross-chromosome testing, where 20 Mb is
almost the smallest size of human chromosomes. For each
selected chromosomal region, we constructed a matrix by
using previously trained parameters and measured its stan-
dardized differences by comparing it with the correspond-
ing Hi-C interaction matrix. Results of 1000 repeats show
that mean of standardized differences is as small as 0.0033
with variance of 2.29e-6 on IMR90 cell. On H1 cell, the
mean is 0.0045 with variance of 3.32e-6. Secondly, the cross-
cell-type testing was performed on seven cell types (H1,
GM12878, NHEK, K562, HUVEC, HeLa and KBM7).
It is very important to evaluate the performance of CITD
when it is applied to other type of cells lacking Hi-C data.
We used the optimized parameters from the IMR90 cell
to predict interactions of the seven cells individually. The
average standardized differences are 0.0046 for GM12878,
0.0045 for NHEK, 0.0038 for K562, 0.0042 for HUVEC,
0.0035 for HeLa and 0.0037 for KBM7. The small differ-
ences from both cross-chromosome and cross-cell-type test-
ing showed that CITD can achieve robust results not only
among chromosomes of a cell type but also among different
cell types.

Currently, since the available histone modification data
are different for different cell types, it is of great impor-
tance to understand how the CITD prediction may vary
when using different set of histone modification data. We

compared the difference of the correlation matrices that cal-
culated from entire 28 modifications and subsets of them
(ranged from 5 to 27 types of modifications). The medians
of standardized differences of predicted interaction matri-
ces from these subset modifications are only ranged in 1 ±
1% of the results that were calculated from all 28 modifica-
tions (bottom figure, Supplementary Figure S2 in Supple-
mentary Data File 2). Furthermore, we randomly permuted
the correlation matrices of selected subsets before running
CITD for background benchmarking. The medians of stan-
dardized differences were at least 4-fold bigger than the cor-
responding non-permuted cases for combinatorial levels of
5–27 (upper figure, Supplementary Figure S2 in Supplemen-
tary Data File 2), suggesting CITD can effectively utilize the
information of modification correlations to predict chro-
matin interaction frequencies. We also noticed that the dis-
tributions of five modification combinations are overlapped
with the results of its corresponding permuted cases, indi-
cating that the five combinations are the minimum set for
CITD predictions. In practice, we applied CITD on 100 cell
types that have at least 10 modifications available to achieve
fair results.

Although CITD is the first method to genome-widely
predict chromatin interactions, there are several compu-
tational methods available for predicting the enhancer–
promoter interaction that is the most important and well
studied chromatin interaction (34,42,43). Here we com-
pared our predictions with 20190 enhancer–promoter in-
teraction of H1 cell that were predicted by PreSTIGE (34).
First, we noticed the mean CITD scores of PreSTIGE was
0.2891, which is 4.18-fold of the mean score 0.0691 of all
interactions. We then calculated the recall as the fraction
of the enhancer–promoter interactions with higher scores
(within top-ranked proportion of CITD prediction scores)
among all 20190 interactions. Results show that >50% of
enhancer-promoter interactions are within the top 10% of
CITD prediction scores, achieving a 5-fold enrichment.
When top 50% of CITD prediction scores are considered,
the recall is increased to > 95% (Supplementary Figure S3
in Supplementary Data File 2), suggesting that enhancer-
promoter interactions are enriched in top-ranked propor-
tion of CITD prediction scores.

De novo predicting chromatin interaction frequencies and
topological domains for IMR90 and H1 cells

For further benchmarking the performance of CITD, we
predicted the topological domains and compared them with
the TAD domains of IMR90 and H1 that were previously
predicted directly from the Hi-C matrices (noted as IMR90-
TAD and H1-TAD) (4). To this end, we constructed ma-
trices for chromatin interaction frequencies for the IMR90
and H1 cells. We predicted the topological domains through
these constructed matrices by using the Dixon Method with
default parameters (4) and achieved 2317 topological do-
mains for IMR90 cell. We first confirmed that different do-
main calling methods, including Arrowhead (44), Armatus
(45) and GBR (46), can obtain consistent results of domains
from CITD predicted interaction matrices (Supplementary
Table S2 in Supplementary Data File 1). We observed that
the number and length distributions of CITD predicted do-
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mains were tested to be not significantly different with that
of IMR90-TAD domains (P-values of K-S tests are 0.9913
and 0.9822, respectively. See Supplementary Figure S4A
and B in Supplementary Data File 2). We then aligned the
CITD predicted domains with the TAD domains to find
the best matched one, and for each TAD domain we calcu-
lated the overlap ratio defined as the proportion of the size
of the overlapped region over the length of the TAD do-
main. The average overlap ratio of 2263 IMR90-TAD do-
mains is 78.69%. We further examined the consistence of the
prediction of domain boundaries. Considering that TAD
boundaries are usually not sharply defined and may shift
within a certain distance (47,48), we treat a TAD boundary
as matched with a CITD prediction if the two are located
within 20% of the TAD domain size. We achieved the overall
boundary matching ratio as 79.97%, which is significantly
higher than 16% as would be expected if random bound-
aries are located uniformly on chromosomes (see Supple-
mentary Table S3 in Supplementary Data File 1 for more
details).

We repeated these aforementioned predictions and sta-
tistical tests on the H1 cell. Specifically, 2104 topological
domains were predicted by CITD. The number and length
of these topological domains were also observed to be sim-
ilarly distributed on 22 chromosomes as the H1-TAD do-
mains (P-value 0.9218 and 0.9033, K-S test. Supplemen-
tary Figure S5A and B in Supplementary Data File 2). The
averaged overlap ratio of 2993 H1-TAD domains is 0.7622
(standard deviation = 0.24).

Although the topological domains predicted from our
method and those from the Hi-C data are similar, there are
some notable differences. We analyzed, in details, a 5 Mb re-
gion (35000000–40000000) located in IMR90 chr1 for a case
study. In general, CITD predicted interactions showed sim-
ilar patterns as the interactions derived from Hi-C method.
This similarity can be clearly observed not only for the big
blocks, but also for the small and compact blocks (zoom-
in region, Figure 2A and B). Secondly, the domains pre-
dicted by our method have clearer boundaries that are con-
sistent with multiple biological signals. In this region, there
are a total of 6 topological domains predicted by CITD,
and 5 IMR90-TAD domains. One boundary (36720000) is
the same and two boundaries are only one bin shifted (40
kb, 39800000 versus 39760000; 36320000 versus 36360000).
A big difference is the domain (37720000–38320000) pre-
dicted by CITD but not obtained in IMR90-TAD domains.
We checked all 28 histone modifications in this region and
found that all of them are clearly different from its flanking
regions (bottom, Figure 2B). This difference can be further
observed from the binding signals of 10 transcriptional fac-
tors, signals of DNA methylation and chromatin accessibil-
ity (Supplementary Figure S6 in Supplementary Data File
2). Within the domain region (37720000–38320000), no sig-
nificantly different signal patterns can be observed at the
left and right side of 38040000 where it was predicted as the
boundary in IMR90-TAD domains. The genes located on
both sides also have similar expression levels (Figure 2C). In
summary, these results not only provided a benchmark for
the performance of CITD at the domain level, but also pre-
sented different domain/boundaries that could be used to

correct or improve the previously delineated TAD domains
(4).

Histone modifications are differently distributed between
neighboring topological domains

One empirical observation from visualizing annotated
topological domains is that the histone modifications tend
to exhibit similar spatial patterns within a domain but show
much different patterns between two adjacent domains. To
test and quantify this phenomenon, we statistically tested
the distributions of 28 modifications for the neighboring
domains obtained from both IMR90-TAD domains and
CITD predicted domains. Among 2263 IMR90-TAD do-
mains, on average 1333 neighboring domain pairs (>58%)
are significantly different (P-value < 0.01, K-S test. Fig-
ure 3A). Among 2317 CITD predicted domains, on av-
erage 1489 neighboring domain pairs (>64%) are signifi-
cantly different for 28 modifications (P-value < 0.01, K-S
test. Figure 3B). Among these modifications, the H3K4me3
tends to be more similar between neighboring pairs, while
H2AK5ac, H3K14ac, H3K23ac and H3K9me1 show dra-
matic changes (zoom-in Figures of Figure 3A and B). We
further tested the distributions by using randomly selected
neighboring domain pairs with the numbers and lengths
as same as CITD predicted 2317 domains and 2263 HD-
IMR90 domains respectively. In this case, all the subsets of
28 modifications exhibited uniform distributions (bottom
figures of Figure 3A and B), suggesting our above statisti-
cal tests are reliable and significant. These statistical results
were similarly achieved for the H1 cell (Supplementary Fig-
ure S7 in Supplementary Data File 2). Thus, our statistical
analysis, at domain level, confirmed that the different modi-
fication patterns clearly defined different domains and chro-
mosomal function regions.

Obtaining higher resolutions

The first spatial proximity maps of the human genome from
Hi-C experiments were published in 2009 with a resolution
of 1 Mb (7). Although the resolutions were improved to
40 kb (4) and 10 kb (49), the improvements were limited
by the dramatically increased experimental complexity and
costs. Our computational method has an advantage to eas-
ily obtain different resolutions. By using 10 kb as the bin
size, we used CITD to recalculate the chromatin interac-
tion frequencies and topological domains. In IMR90 cell,
8361 domains were obtained, achieving 3.69-fold of 2263
IMR90-TAD domains. The higher resolution presents more
detailed descriptions of topological domains. We analyzed,
in details, a chr1 region (35080000–36320000) that was pre-
dicted as one IMR90-TAD domain. In 10kb resolution, this
domain was further divided into five sub-domains and their
boundaries were highly consistent with the changes of inter-
actions achieved from Hi-C interaction matrices (Supple-
mentary Figure S8 in Supplementary Data File 2).

Detecting super preserved boundaries among 100 cell types

Previous studies have revealed that the TAD domains are
generally preserved between the IMR90 and H1 cell lines
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Figure 2. Comparative analyses of predicted chromatin interaction frequencies and topological domains on chr1 35M–40M. (A) The heatmap of CITD
predicted chromatin interaction frequencies. The numbers noted the boundaries of 6 CITD predicted domains. (B) The heatmap of Hi-C chromatin
interaction frequencies. The numbers noted the boundaries of five topological domains that predicted directly from Hi-C interaction matrices. Both of
zoom-in subfigures in (A and B) show the same chromosomal region from 37720000 to 38320000. The 28 histone modifications are shown below with bin
size as 40 kb. (C) The binding signals of 10 TFs, signals of DNA methylation (DNA Me) and chromatin accessibility (CA) from 37720000 to 38320000.
All the signals were normalized and ranged from 0 to 1. The expressions (FPKM) of 17 genes located in this region are listed below.

(4). However it is hard to generally analyze the conserva-
tion and dynamics of domains for large number of differ-
ent cell types due to lack of Hi-C data. By using epigenetic
datasets from the Roadmap epigenomics and ENCODE
project, we predicted the chromatin interaction frequencies
and TAD domains for a total of 100 cell types that have
at least 10 histone modification types available, including
21 stem cells, 7 cancer cells as well as 72 tissues and other
type of cells with 40 kb resolution (Supplementary Table
S1 in Supplementary Data File 1). We achieved 78 super

preserved boundaries that were observed in at least 90 cells
(Supplementary Table S4 in Supplementary Data File 1).
To check the factors that may have contributed to the for-
mation of these preserved boundaries, we analyzed protein-
coding and non-coding genes located near these bound-
aries (upstream and downstream 40 kb). Firstly, 456 non-
coding RNA genes were found near the 78 boundary re-
gions, including 266 long non-coding RNA genes, 11 mi-
croRNAs and 179 other non-coding RNA genes. The ob-
served RNA genes (2.92 per bin) is 1.56-fold of the aver-
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Figure 3. Histone modification distributions are highly different among
neighboring topological domains. (A) The P-value distribution of 28 his-
tone modifications between neighboring IMR90-TAD domains (K-S test).
The zoom-in figures shows the distribution of P-values ranged from 0 to 0.1
or 0.01 respectively. The dot line indicates the average number of neighbor-
ing domain pairs with P-values < 0.01 for 28 modifications. The bottom
shows the P-value distribution of 28 histone modifications for randomly
selected domain pairs with the same length distribution of 2263 IMR90-
TAD domains. (B) The P-value distribution of 28 histone modifications
between neighboring domains predicted by CITD (K-S test). The bottom
shows the P-value distribution of 28 histone modifications for randomly
selected domain pairs with the same length distribution of 2317 CITD pre-
dicted domains.

age (1.88 per bin) that calculated based on uniform dis-
tribution of RNA genes along the genome. The 266 long
non-coding RNAs achieved 1.71 lncRNA per bin that is a
1.65-fold increase from the average (1.03 per bin) of uni-
form distributed lncRNA genes along the genome. These
evidences suggest that non-coding genes are enriched near
these boundaries. Secondly, a total of 131 protein-coding
genes were found to be located near these 78 regions (Sup-
plementary Table S5 in Supplementary Data File 1). Sur-
prisingly, six histone proteins (HIST1H1A, HIST1H2AB,
HIST1H3A, HIST1H3B, HIST1H4A and HIST1H4B), the
main protein components of nucleosome, were included.
Functional enrichment analyses further show that these 131
genes are significantly related to functional categories of
nucleosome organization, chromatin assembly or disassem-
bly, nucleosome assembly and DNA packaging (P-value <
0.01, Hypergeometric test. See Supplementary Table S6 in
Supplementary Data File 1 for complete GO terms enrich-
ment). The average expressions of these 131 genes are 12.04
(FPKM) that is a 2.01-fold increase compared with the av-
erage value of 6.01 (FPKM) of genome-wide gene expres-
sions. The average of 6 histone proteins is 79.82 (FPKM),
achieving 13.28-fold of the average of genome-wide expres-
sions. We then checked their expressions of 84 tissues to see
if these proteins are housekeeping genes by using previous
computational method (4). Interestingly, 63.36% of these

genes (83/131) were predicted as housekeeping genes, sug-
gesting they have stable expressions among different tissues.
The highly and uniformly transcriptional activities, as well
as the functional importance of these genes, not only sug-
gested that they may contribute to boundary formation, but
also highlighted that these supper preserved boundaries are
related to essential cellular processes for different cell types.

Delineating dynamics of chromatin interaction frequency

To describe the potential dynamics of chromatin interaction
during development or differentiation, we first used infor-
mation entropy of the interaction matrix (termed as interac-
tion entropy) to characterize consistency of the interaction
frequency. We found that interaction entropies of 100 cells
(mean = 16.69, standard deviation = 0.088) are negatively
related to the number of topological domains (Figure 4A).
The correlation coefficient of domain number and interac-
tion entropy was calculated as −0.74 (Spearman, P-value
1.97e-06) among 100 cell types. For the H1, H9 and their
derived cell lines, the numbers of topological domains are
increased while the entropies decreased (Figure 4A). In de-
tails, when the domain number of H1 and H1 derived mes-
enchymal stem cell (HDMSC) increases from 2397 to 2557,
the interaction entropy decreases from 16.88 to 16.76. The
interaction entropy of 2499 H9 domains is 16.86 and it is
increased to 16.63 for 3099 domains of H9 derived neuron
cultured cell (HDN).

Domain state switch and chromatin architecture reorganiza-
tion during cell differentiation

To further understand the dynamics of chromatin architec-
tures and domain states among cell types, we performed in-
tegrative analysis of histone modifications to describe do-
main states (active or repressive), as well as the transitions
in the states from one cell type to another. For this pur-
pose, we built a classification-based model to predict the
domain states and performed it on 100 cell types. We ob-
served that the repressive ratio, defined as the fraction of
repressed domains among total ones, is increasing with the
domain numbers (Figure 4B), where the correlation coeffi-
cient of the domain number and the repressive ratio were -
0.63 (Spearman, P-value 5.84e-06) among the 100 cell types.
In the H1 cell, the repressive ratio is as low as 0.18, indi-
cating that most of the chromosomes are in active states.
Strikingly, higher repressive ratios were observed for two
H1 derived cells, HDMSC and H1 BMP4 derived mesendo-
derm cultured cell (HBDM), that were 0.54 and 0.69, corre-
sponding to 3.0- and 3.83-fold changes of the H1 repressive
ratio respectively. We then checked how the repressive do-
mains distributed along chromosomes, e.g if they tend to
be neighbors with each other or alternately with active do-
mains. For this purpose, we calculated the alternating ra-
tio that is defined as the fraction of neighboring domain
pair with different domain state among total neighboring
domain pairs, and found it is positively correlated with the
domain number (Figure 4C). Specifically, the correlation ex-
hibits a logarithmic improvement and is bounded by 0.55.
Meanwhile, the alternating ratio is dramatically increased
from 0.16 (H1) to 0.33 (HBDM) and 0.51 (HDMSC).
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Figure 4. Statistical analysis of chromosomal dynamics among 100 cell types. (A) The negative correlation of cell interaction entropy and domain number.
The Spearman correlation coefficients are shown. HDMSC: H1 derived mesenchymal stem cell. HDN: H9 derived neuron cultured cell. (B) Repressive
ratio is positively correlated with domain number. Repressive ratio is defined as the fraction of repressive domains among total domains. The Spearman
correlation coefficients are shown. HBDM: H1 BMP4 derived mesendoderm cultured cell. (C) Alternating ratio is positively correlated with domain
number. Alternating ratio is defined as the fraction of neighboring domain pair with different domain state among total neighboring domain pairs. (D)
Illustrates the changes of domain states (chr2) in H1 and HDMSC. A special region (12000000–15000000) is zoomed-in to show the domain changes.
Genome browser shows two active modifications (H3K36me3 and H3K79me1) and two repressive modifications (H3K9me3 and H3K27me3) that depths
are all ranged from 0 to 25. (E) A proposed model to describe the chromosomal dynamics during cell differentiation. (i) A big domain divided into two
small ones. (ii) Two domains remodeled into three domains.

To understand the magnitude of the chromatin structure
reorganization that happens from H1 to HDMSC, we in-
vestigated the chr2, in details, for the dynamics of topo-
logical domains and their states, as well as the spatial dis-
tributions of histone modifications (Figure 4D). In chr2
of H1 cell, a large number of domains (191 domains) are
active but only 26 domains are repressed, achieving a re-
pressive ratio as small as 0.12. Comparatively, in HDMSC,
only 100 domains remain active while 122 domains as re-
pressed, achieving a repressive ratio as high as 0.55. A typ-
ical state switch is observed in a 5 Mb chromosomal region
12000000–18000000 (Figure 4D). Two active domains were
predicted in H1, but in HDMSC they were split into five
domains, four of which are repressed, leaving only a small
one (15320000–15800000) that still remains active. These
domain state switches are clearly observed from repressive
modifications such as H3K27me3 and H3K9me3, as well
as the active modifications H3K36me3 and H3K79me1.
In summary, our predicted results described a dynamical
model (Figure 4E) of chromosomal reorganizations during
cell differentiation that more domains were folded and re-
pressed, resulting into increased interaction frequency, re-
pressive ratio and alternating ratio.

DISCUSSION

Genetic material is not randomly organized within the nu-
cleus of a cell, but exhibits a hierarchical structure. The
3D organization of the genome is different among differ-
ent cells and plays important roles in regulating gene ex-
pression and cellular functions. By utilizing the correlation
of histone modifications among interacted chromosomal
loci and the power law distribution of interaction frequen-
cies, we developed CITD, the first computational method,
to predict 3D chromatin interaction frequencies and topo-
logical domains from 1D histone modification profile data.
The performance of CITD in predicting chromatin inter-
action frequencies and the known TAD domains was val-
idated by both cross-chromosome and cross-cell-type test-
ing. Our results confirmed, at sub-chromosomal scale, the
distributions of histone modifications are significantly dif-
ferent in more than 50% of neighboring topological do-
mains. Furthermore, the different distribution is also largely
observed for CTCF binding signals among neighboring do-
mains (Supplementary Figure S9A and B in Supplementary
Data File 2).

Although achievements of CITD had been shown in pre-
dicting chromatin interactions, there are two notable dif-
ferences between CITD predictions and Hi-C data. First,
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some off-diagonal blocks can be clearly observed in CITD
predicted matrices but only fuzzily observed in Hi-C data.
These off-diagonal blocks usually delineate, at a higher
level, the interactions among topological domains. Al-
though they are hard to be observed in the Hi-C data that
we compared, a recent Hi-C study of nine cell types (44) had
reported such off-diagonal structures that are much more
consistent with our predictions. Second, some peaks with
higher scores of interaction frequency than typical scores
in their neighborhoods are observed in Hi-C interaction
matrix (43,44,49) but seldom predicted by CITD method.
Some of these peaks are also noted as stable interactions
among cell population and usually indicate important po-
sitions of chromatin loops. Considering that most of these
peaks may be accompanied with enriched binding sites of
CTCF and the cohesin complex (50,51), we could integrate
them in our model to improve the predictions.

The results of 100 cell types reveal several novel insights
into the genome-wide spatial distribution of histone mod-
ifications, potential developmental variations of the TAD
domains and their states among different cell types, as well
as novel structural characteristics of cellular differentiation.
Based on our prediction and comparative analysis, we ob-
served the dramatic changes of repressive domains from H1
to HDMSC cell: 1380 of 2557 domains are repressed in
HDMSC cell while only 440 of 2357 domains are repressed
in H1 cell. This result delineates the epigenetic reorganiza-
tion during cell differentiation and is consistent with early
observations (11,52). Furthermore, the results of dynami-
cal and inherited domains as well as their states provide de-
tailed information for investigating how histone modifiers
and chromatin re-modellers maintain and regulate chro-
matin structures, and may result in comprehensive under-
standings of mammalian cell reprogramming and cell fate
determination.

Our method CITD has the advantages of scalable predic-
tions of chromatin interaction frequencies and topological
domains. We provided multiple resolutions of chromatin in-
teraction frequencies and topological domains for 100 cell
types that can be used in future researches. For example,
the predicted results of cancer cell lines can be used for com-
parative analyses to investigate the dynamical organizations
of cancer chromosomes and the epigenetic contribution of
cancer development (53,54). Integration of Hi-C data and
ChIP-seq data had been used to reveal distinct types of
chromatin linkages on K562 cells (55). Our predicted results
will highly facilitate such analyses for large number of cell
types and help revealing the preservation of chromatin link-
ages among them. With the rapid accumulation of vast epi-
genetic data, we expect that CITD will become a very useful
tool for studying chromatin structure and dynamics.

AVAILABILITY

The CITD software, the predicted chromatin interactions,
topological domains and their states on 100 cell types with
different resolutions can be freely downloaded from lab
website (https://cb.utdallas.edu/CITD/index.htm).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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