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Abstract: Central nervous system (CNS) diseases are currently one of the major health issues around
the world. Most CNS disorders are characterized by high oxidative stress levels and intense inflam-
matory responses in affected tissues. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein,
plays a significant role in anti-inflammatory, antibacterial, antiviral, reactive oxygen species (ROS)
modulator, antitumor immunity, and anti-apoptotic processes. Previous studies have shown that Lf
is abnormally expressed in a variety of neurological diseases, especially neurodegenerative diseases.
Recently, the promotion of neurodevelopment and neuroprotection by Lf has attracted widespread at-
tention, and Lf could be exploited both as an active therapeutic agent and drug nanocarrier. However,
our understanding of the roles of Lf proteins in the initiation or progression of CNS diseases is limited,
especially the roles of Lf in regulating neurogenesis. This review highlights recent advances in the un-
derstanding of the major pharmacological effects of Lf in CNS diseases, including neurodegenerative
diseases, cerebrovascular disease, developmental delays in children, and brain tumors.
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1. Introduction

Lactoferrin (Lf) was first identified in bovine milk by Sorensen in 1939, and Lf was
subsequently isolated from human milk in 1960 [1,2]. Lf is an iron-binding glycoprotein
with a molecular weight of approximately 80 kDa. The amino acid sequence of Lf has high
homology with that of transferrin (Tf), so it is classified as a member of the Tf family [3].
The secondary structure of Lf mainly consists of α-helices and β-sheets, and there are
fewer β-sheets than α-helices. The polypeptide chain of Lf is composed of two highly
homologous globular leaves formed by 703 amino acids, and these structures are called the
N-lobe and C-lobe [4]. Each lobe, composed of two domains (N1 and N2, C1 and C2), can
bind to a ferric ion, and Lf can assume both closed iron-bound (holo) and open iron-free
(apo) conformational states based on its iron content [5–8]. Lf has three subtypes: α, β, and
γ. The α subtype can bind to iron and has no ribonuclease activity; the other two have
RNase activity but do not exhibit iron-binding [9,10]. Lf is widely distributed in various
tissues and secretions of mammals, such as milk, tears, saliva, semen, nasal secretions,
bronchial secretions, bile, gastrointestinal fluids and other mucosal secretions [11,12]. In
addition, Lf is a monomeric glycoprotein with bactericidal activity found in neutrophil
granules [13].

Lf is a multifunctional protein. In addition to its well-known function of regulat-
ing iron homeostasis [14], Lf also exerts multiple important biological effects, such as
anti-inflammatory, antibacterial, reactive oxygen species (ROS) modulator, antiviral, and
antitumor immunity effects [1,2,4,5,12,15,16]. These activities are largely mediated by
the capacity of Lf to bind iron [7,17–19] and the binding constant [20–22]. However, the
potential molecular mechanisms by which Lf exerts its multiple effects are still under
investigation, and interaction of Lf with its cell receptors seems to be the most reason-
able mechanism. Specific Lf-receptors (LfRs) are present in different cells of different
species including the brush-border membranes of intestines and choroid plexus [20,21].
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Several Lf receptors (LfRs) were discovered in different tissues and cell types and include
asialoglycoprotein receptor, intelectin-1, low-density lipoprotein receptor-related protein
1 (LRP1), nucleolin, and omentin-1 [7,19]. Notably, the properties of Lf are not limited to
its receptor-mediated responses, and Lf may be targeted to the nucleus, bind to specific
DNA sequences, and act as a transcription factor [23,24]. Subsequent studies showed that
increased levels of Lf in the body can up-regulate the expression of a variety of genes, such
as genes related to the innate immune system (pathogen recognition and defense) [25],
lipid metabolism (fatty acid β oxidation, fatty acid elongation, fatty acid synthesis and
degradation) [26–28], and heterogeneous metabolism and lysosomal degradation [29,30].
As a cytokine, Lf can promote cell proliferation and differentiation in an LRP-dependent or
independent manner [7,31–33]. A study indicated that Lf contributes to immune function
by inducing the transforming growth factor β (TGF-β) and Wnt signaling pathways and
the expression of genes related to innate immunity [25]. In addition, Lf can also promote
cell apoptosis by regulating the levels of signaling molecules, such as caspase-3, poly(ADP-
ribose) polymerase (PARP), B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X (Bax) [34].
After exogenous supplementation with Lf, the expression levels of the autophagy markers
autophagy-related gene 7 (Atg7) and Atg12-Atg5 and the ratio of microtubule-associated
protein 1 light chain 3 (LC3)-II/LC3-I were increased [35], suggesting the promotion of
autophagy. Interestingly, ferroptosis, a novel non-apoptotic regulated form of iron- and
lipid peroxidation-dependent form of cell death, may also be involved in Lf in various
cancer cells [36,37]. More recently, as a broad-spectrum antiviral agent, Lf has strong
immunomodulatory and anti-inflammatory properties and therefore may be a potential
treatment for coronavirus disease 2019 (COVID-19) [38,39].

In fact, research continues to characterize novel pleiotropic biological roles for Lf; Lf
was observed in the human brain by immunohistochemistry and was associated with aging,
particularly with multiple central nervous system (CNS) diseases, including Alzheimer’s
disease (AD), Parkinson’s disease (PD), Down’s syndrome, Pick’s disease, sporadic amy-
otrophic lateral sclerosis, amyotrophic lateral sclerosis, cerebrovascular disease, develop-
mental delay in children and other neurological diseases [35,40–48]. Evidence suggests
that CNS diseases usually cause a strong inflammatory response, and their pathogenesis
is also closely related to neuroinflammation and oxidative stress [46,49–51]. Thus, it can
be hypothesized that Lf exerts various beneficial health effects in CNS diseases, at least
by improving immune system function and ROS modulator capacity [52]. However, our
understanding of the roles of Lf proteins in the initiation or progression of CNS diseases
is limited, especially the roles of Lf in regulating neurogenesis, such as neuronal cell
proliferation, differentiation, migration and synaptic connections [45].

In this review, we summarized the current knowledge, presented a better understand-
ing of the functional role of Lf in CNS diseases, and tried to provide a theoretical basis for
its potential future use in preventive and therapeutic applications.

2. Lf in Neurodegenerative Diseases

2.1. The Important Role of Lf in the Onset and Prevention of Neurodegenerative Diseases

Neurodegenerative diseases are diseases caused by the loss of cells and neurons in the
brain or spinal cord, and these diseases may lead to cognitive and behavioral impairment
and even death in severe cases [51]. AD and PD are relatively well-known neurodegenera-
tive diseases. The common mechanisms underlying the pathogenesis of neurodegenerative
diseases mainly include oxidative stress, neuroinflammation, iron and other transition
metal disorders, lipid metabolism imbalance, etc., [51,53,54]. As mentioned above, Lf was
found in the lesion areas of a variety of neurodegenerative diseases, indicating that it is
closely related to the pathogenesis of neurodegenerative diseases. Due to the presence
of LfR on brain capillary endothelial cells and neurons, exogenous Lf can easily cross
the blood-brain barrier (BBB) and reach neural tissues; thus, Lf was successfully used as
a potential brain-targeting delivery system [55–59]. Increasing numbers of studies indi-
rectly suggest that the Lf-mediated neuroprotection against neurodegenerative disorders is
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attributed to its biological characteristics. (1) In inflamed tissues, the content of Lf is signifi-
cantly increased [60], and Lf can reduce the expression of the pro-inflammatory cytokines
tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 to exert its anti-inflammatory
effects [61]; (2) Lf can significantly increase the content of superoxide dismutase (SOD)
and reduce the generation of ROS by inhibiting the Fenton reaction [16], thereby exerting
ROS modulator effects; (3) Lf can regulate the expression of proteins involved in lipid
degradation by controlling the activity of the cAMP/extracellular regulatory protein kinase
(ERK) signaling pathway via LRP1 [28], thereby regulating lipid metabolism; (4) increased
LfR expression in the brains of patients with neurodegenerative diseases suggests that
Lf may play a significant role in the pathogenesis and prevention of neurodegenerative
diseases [62]; (5) Lf acts as a normoxic mimetic of hypoxia that is capable of stabilizing
hypoxia-inducible factor 1α (HIF-1α) [63] (6); Lf elevates the mRNA and protein levels of
brain-derived neurotrophic factor (BDNF) and components of its signaling pathway [64].
In addition to the abovementioned mechanisms, other potential molecular mechanisms are
still under investigation.

2.2. Alzheimer’s Disease

AD, a neurodegenerative disease, is the most common form of dementia affecting el-
derly people. Accumulating evidence indicates that the pathology of AD is characterized by
abnormal levels of extracellular senile plaques (SPs) containing insoluble amyloid-β (Aβ)
peptides, abnormal levels of intracellular neurofibrillary tangles (NFTs) containing hyper-
phosphorylated tau [65–67], and abnormal iron deposition and oxidative damage [68–70]
in the brains of patients. The main mechanism underlying AD is that β-amyloid precur-
sor protein (APP) produces significant levels of neurotoxic Aβ42 through the amyloid
degradation pathway; then, neurotoxic Aβ42 can induce tau protein aggregation and
hyperphosphorylation, and hyperphosphorylated tau and normal tau compete for binding
to tubulin, disrupting the dynamic balance of microtubule assembly and decomposition,
and ultimately form NFTs [71], causing region-specific synaptic degeneration and neuronal
loss and leading to dementia [72]. In addition to the above pathways, AD can also be
triggered by neuroinflammatory pathways [73]. There are a large number of activated
astrocytes and microglia in the brains of AD patients, accompanied by increased expression
of TNF-α, IL-1β, IL-6 and other inflammatory factors [74,75].

The levels of Lf, which acts both as an iron-binding protein and inflammatory modula-
tor, are markedly increased in the brains of patients with AD [41,44,76,77]. Further studies
confirmed that a large amount of naturally Lf is deposited in the areas of AD patient brains
where SPs and NFTs are enriched [41,44,78]. Although the precise origin of Lf in AD re-
mains unknown, a previous study suggested that the Lf protein is mainly synthesized in the
brain by reactive microglia and/or infiltrating monocytes/macrophages [77], suggesting an
endogenous neuroprotective mechanism. Of course, the possibility that some Lf protein is
transported from peripheral circulation into the brain cannot be excluded [55,58,59,76,79].
The role of Lf in the brains of patients with AD remains to be further elucidated, but
inhibiting the inflammatory response is at least one of its important functions. Previous
studies raise several possible explanations for this effect. Lf may directly suppress the
secretion of inflammatory cytokines [11,19,80,81] and inhibit complement C3 activation
and deposition [82,83], thus suppressing the classical complement pathway in the brains of
patients with AD [84]. Another possibility is that Lf has antioxidant properties because
oxidative stress is tightly associated with the pathology of AD [85], and increased oxidative
damage is an early event in AD pathogenesis [86]. Interestingly, redox-active iron, a source
of redox-generated free radicals that are conducive to oxidative damage, is associated with
the SPs and NFTs in AD [70]; however, Lf tightly binds to iron and thus has ROS modulator
properties [2].

In fact, the ROS modulator and anti-inflammatory effects of Lf may serve as a possible
protective mechanism against AD by modulating the phosphorylated protein kinase B
(p-PKB/AKT)/phosphatase and tensin homolog (PTEN) pathway; this possibility was
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investigated and confirmed in the AD patients [87]. In addition, for the Aβ plaques
that are generated, supplementation with Lf can degrade the oxidative metabolism of
a variety of exogenous and endogenous substances by upregulating the expression of
cytochrome P450 enzymes and other related proteins [52]. Nevertheless, we hypothesize
that the function of Lf may be similar to that of an iron chelator, which can induce the
expression of HIF-1α, thereby exerting neuroprotective effects [88,89]. Based on this, we
conducted a series of studies and found that Lf can promote the non-amyloid metabolism
of APP by activating disintegrin and metalloproteinase 10 (ADAM10) [88]. Soluble APPα
(sAPPα), whose expression is induced by Lf, can significantly inhibit the formation of
Aβ plaques in the cerebral cortex and hippocampus and improve spatial cognition and
learning ability. Moreover, it was confirmed that Lf induced the upregulation of ADAM10
by regulating the ERK1/2-cAMP response element-binding protein (CREB) and HIF-1α
signaling pathways [88]. These studies suggest that exogenous Lf can improve cognitive
decline, making it tempting to speculate that the increased Lf levels in the lesion areas of
patients with AD may be a defensive response of the brain.

In recent years, several studies have explored the role of salivary Lf as a potential
biomarker of AD [90,91], and the expression of Lf in the brain continues to increase with
age [92], supporting the possible use of salivary Lf levels in the differential diagnosis of AD.

2.3. Parkinson’s Disease

Parkinson’s disease (PD), also known as “trembling paralysis”, is a common neurode-
generative disease whose incidence rate is only inferior to that of AD. Clinically, PD is
mainly characterized by resting tremor, stiffness, and retardation; however, PD patients
usually have non-motor symptoms, such as dysosmia, sleep disorder, affective disorder,
autonomic nervous dysfunction, anxiety, depression and cognitive impairment, before
the onset of dyskinesia. The neuropathological features of the disease are the death of
dopaminergic neurons in the substantia nigra (SN) and the formation of Lewy bodies (LBs)
by α-syn deposition. Although the details of the mechanism underlying the development
of PD have not yet been elucidated, iron accumulation, increased inflammation and oxida-
tive stress, and lipid peroxidation damage are also considered to be significant pathological
features of PD [93]. A large number of studies have suggested that there are observable
iron deposits in the SN area in PD patients and that iron deposits may occur earlier than the
onset of Parkinson’s symptoms [94–96]. Iron overload may cause damage to dopaminergic
neurons by activating microglia [97–99].

Early studies have found that the expression of naturally Lf is significantly increased
in the remaining midbrain neurons of PD patients [43]. Combined with the high expression
of the Lf receptor in these neurons and in vascular endothelial cells [62], it is hypothesized
that circulating Lf in the peripheral blood enters the brain through receptor-mediated
one-way transcytosis and reaches PD-prone brain regions [55]. The function of circulating
Lf in the brain may be to protect these susceptible neurons rather than to cause iron
accumulation and neuronal death [100]. Regarding the neuroprotective effect of naturally
Lf in PD, the exogenous Lf has been widely recognized [30,89,100–104]. Moreover, studies
have shown that Lf inhibits MPTP-induced excessive iron accumulation by upregulating
the main iron regulatory proteins, divalent metal transporter (DMT1) and transferrin
receptor (TFR), in cells [89,99]. However, in vitro, holo-Lf and apo-Lf exhibit similar
behavior, so the neuroprotective effect of Lf is not limited to its iron chelation [100]. In
addition to protecting dopaminergic neurons by affecting iron metabolism, Lf enhances the
expression of BDNF through the ERK-CREB pathway and HIF-1α-dependent mechanisms
to reverse the movement disorders caused by PD [64,89,103]. A recent study showed that
Lf may inhibit the Bcl-2/bax-mediated mitochondrial apoptosis pathway and the caspase
protease family-mediated Fas/FasL exogenous apoptotic pathway [30]. Furthermore,
Lf pretreatment partially reversed the decrease in mitochondrial potential, suggesting
that Lf can protect cells from MPP+-induced oxidative stress by restoring mitochondrial
function [30,104].
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However, there are still many questions to be answered regarding the increase in the
naturally Lf levels in the PD brain. First, the expression of Lf was detected in neurons,
microglia and oligodendrocytes in PD patients [43]; however, there was no significant
difference in the level of Lf in the plasma/serum or even in the cerebrospinal fluid (CSF)
between PD patients and controls [105]. A case-control study further suggested the exis-
tence of endogenous Lf. This study found that transferrin gene polymorphisms (including
Lf polymorphisms) exist in the brains of PD patients; that is, genetic variation in Lf can
affect individual susceptibility to PD and increase the risk of PD [106]. In fact, it was
reported that Lf can be synthesized in situ in the brain [107–109]. Although the levels of
lactoferrin mRNA detected in the brain tissues of adult mice are very low compared with
those detected in lactating mammary glands, MPTP can induce an increase in both the RNA
and protein levels of Lf [109]. Subsequent studies suggested that endogenous Lf is only
secreted by activated microglia [107], which is still widely accepted [100]. The function of
Lf synthesized in situ in the pathological progression of PD remains to be elucidated.

2.4. Prion Disease

Prion diseases are fatal neurodegenerative diseases caused by the transformation
of prion proteins in normal cells into subtypes of amyloidosis through conformational
changes. Early studies showed that Lf causes PrP(C) to remain on the cell surface by
reducing its internalization and interacts with PrP(C) and PrP(Sc) to mediate changes in
their conformation; thus, Lf has functional anti-prion activity [110]. The synthetic peptide
PrP (106–126) is commonly used to explore the molecular mechanism underlying prion
disorders [111]. Several studies have demonstrated that Lf treatment may prevent PrP
(106–126)-induced neuronal cell death by reducing ROS generation, decreasing mitochon-
drial dysfunction, and ensuring HIF-1α stability through the inhibition of the enzymatic
activity of prolyl hydroxylase 2 (PHD2) [112,113].

These findings suggest that Lf may have clinical benefits in patients with neurodegen-
erative disorders, including AD, PD, and prion disease.

3. Lactoferrin in Cerebrovascular Disease

Cerebrovascular disease refers to all kinds of cerebral vascular diseases, including
both large and small vessel diseases, such as cerebral atherosclerosis, thrombosis, stenosis,
occlusion, cerebral arteritis, cerebral artery injury, cerebral aneurysm, intracranial vascular
malformation, and cerebral arteriovenous fistula. The consequences of these diseases
are among the leading health issues worldwide, and their common features are cerebral
ischemia, hemorrhagic accidents and other forms of neurological dysfunction and degener-
ation [114]. Thus, the implementation of effective strategies for preventing cerebrovascular
diseases is of utmost importance to reduce the occurrence of these diseases in an aging
population. Epidemiological, pathological, clinical, and experimental evidence suggests
that dietary strategies remain crucial for improving cardiovascular disease and stroke [115].
Among dietary ingredients, the increased intake of dietary protein and milk (especially
whey protein) is associated with decreased risk of stroke [116,117]. Recently, Lf, a compo-
nent of whey protein, was shown to play a key role in facilitating weight loss and improving
the neurological deficits associated with stroke [118,119]. The underlying mechanisms
could include the inhibition of hypoperfusion, hypoxia, and neuroinflammation.

3.1. Lf Protects against Cerebral Ischemia and Hypoxia by Interfering with Cellular
Proinflammatory Factors

Stroke, also known as cerebral apoplexy or cerebrovascular accident, is always ac-
companied by symptoms of ischemia or hemorrhagic injury, which are the main clinical
manifestations in brain tissues, and is associated with high mortality and disability rates.
Stroke can be mainly divided into hemorrhagic stroke (cerebral hemorrhage or subarach-
noid hemorrhage) and ischemic stroke (cerebral infarction, cerebral thrombosis), and
cerebral infarction is the most common type of stroke. At present, there is still a lack of
effective treatment measures.



Cells 2021, 10, 1810 6 of 17

Accumulating evidence shows the protective effect of Lf in ischemia-reperfusion
injury of the heart [120,121], aorta [122], liver [123,124], gut [125,126], and lung [127],
and this effect is exerted via its anti-oxidative, anti-inflammatory, and anti-apoptotic
activities. Supplementation with exogenous Lf promotes angiogenesis in response to
ischemia via an Src-Akt-eNOS–dependent pathway [128]. In the brain, Lf was utilized
to transport nanoparticles across the BBB and achieve specific effects in protecting the
brain from ischemia-reperfusion injury [129]. Neuroprotective effects of Lf on immature
brains were demonstrated in rat models of cerebral ischemia hypoxia [35]. Lf significantly
reduced the activation of TNFα and IL-6 gene transcription and increased the levels of
p-AKT [35]. Another study demonstrated that Lf could inhibit the expression of Toll-
like receptor 4 (TLR-4) and downstream inflammatory proteins, including nuclear factor-
κB (NF-κB), TNF-α, and IL-1β, triggered by anoxia and reoxygenation and ischemic
reperfusion [130]. In addition to its anti-inflammatory effects, it is believed that Lf can
activate the Keap1/nuclear factor erythropoietin-2-related factor 2 (Nrf2) signaling pathway
in ischemic brains and stimulate Nrf2 translocation from the cytoplasm to the nucleus
by upregulating erythropoietin (EPO) synthesis [131]. Lf is transferred to the nucleus
and binds to antioxidant response elements (AREs) in DNA, acting as a transcription
factor to maintain the balance of cellular redox reactions [132,133]. As a regulator, Nrf2
also mediates the expression of many genes encoding cytoprotective, antioxidant, and
anti-inflammatory proteins, such as heme oxygenase 1 (HO-1), peroxidase, glutamate cysteine
ligase, and glutathione peroxidase, and can directly participate in the protection of brain cells
from the damage associated with ischemic stroke [134].

3.2. Effect of Lf on Ameliorating Cerebral Hemorrhage

Cerebral hemorrhage (ICH), a subtype of stroke, is a destructive neurological disease
that damages the brain through the mechanical force of blood extravasation and the toxicity
of blood components in the parenchyma, including hemoglobin/iron and neutrophils
(PMNs), which may cause secondary injury after ICH [135]. However, infiltrating PMNs
may release Lf to contribute to hematoma detoxification by neutralizing toxic iron and
heme [136]. Studies have shown that the expression of the immunoregulatory cytokine
IL-27 is upregulated by activated microglia after ICH, leading to increased production of
Lf by PMNs [137]. In other words, Lf, as an iron chelator and anti-inflammatory factor,
may help detoxify hematomas and relieve the destruction of brain tissue cells caused by
cerebral hemorrhage [136]. Moreover, administration of exogenous Lf may also improve
the neurological deficits caused by ICH [136,137]. In fact, an early clinical study found
that patients with infarction without signs of bleeding or with cerebrovascular lesions
undetectable by computed tomography also exhibited increased naturally Lf levels in
their CSF [138]. Thus, it can be hypothesized that the high expression of Lf in the brain
ameliorates cerebral hemorrhage.

4. Lf in Developmental Delay in Children

4.1. Lf and Neurodevelopment and Cognition

Almost all human neurons are formed at birth, and neurogenesis is greatly limited
after birth. However, most of the synaptic connections between neurons are formed and
gradually perfected after birth. Cognition refers to the ability to process information, which
mainly includes the ability to sense, perceive, learn, and remember. Because cognition
requires the support of advanced brain nerve structure, human cognitive abilities are
closely related to brain neurodevelopment [139]. The role of iron in neuronal metabolism
and neurotransmitter and myelin synthesis makes it very important for brain development
and cognitive performance both antenatally and postnatally [140]. However, antenatal
and early childhood iron supplementation programs have inconsistent effects in averting
cognitive impairment [141]. There is a need to develop and successfully conduct effective
nutritional and micronutrient intervention studies to address the effects of iron and trace
element deficiencies on early and long-term cognitive disorders during childhood [142].
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Interestingly, apo-Lf may induce the proliferation and differentiation of human intestinal
epithelial cells by increasing the expression of TGFβ1, whereas holo-Lf fails to regulate
TGFβ1 expression, suggesting that the iron status of Lf can modulate intestinal epithelium
growth and maturation [143]. Sialic acid (Sia), a conditionally essential nutrient, plays
a critical role in brain and cognitive development [144]. Lf, with its iron-binding ability,
is an abundant sialylated glycoprotein in human milk [145], so its potential function in
neurodevelopment and cognition has attracted increasing attention [45]. However, the
molecular mechanisms by which Lf can improve neurodevelopment and cognitive function
are not well understood. BDNF is a neurotrophic growth factor that is highly expressed in
the hippocampus and cortex of the brain. BDNF plays an important role in the transmission
and plasticity of neurons in the brain and participates in the development of nerves in the
brain and the formation of cognition [45]. Chen et al. reported that Lf supplementation
facilitates early neurodevelopment and cognition by activating the BDNF neurotrophic
signaling pathway and increasing polysialylation in postnatal piglets [64]. When the BDNF
signaling pathway is activated, it increases the phosphorylation of CREB, which can induce
gene transcription and play a major role in the formation of cognition [146]. Additionally,
BDNF can polymerize with polySia with a degree of polymerization of at least 12 Sia
residues to form a BDNF-polySia complex, which promotes the growth and/or survival
of neurons [147]. Thus, the increase in the BDNF-polySia complex levels in the brain
might be considered to be the main mechanism by which Lf affects neurodevelopment
and cognitive formation [45]. In fact, an extended study by Chen et al. provided new
evidence supporting the regulation of BDNF signaling by exogenous Lf intervention and
elucidated the molecular mechanisms underlying the concentration-dependent effect of Lf
supplementation on promoting neurodevelopment and cognition in neonatal piglets [148].

Premature infants exhibit immature brain development, and innate nutrition defi-
ciency is more likely to cause neurodysplasia or damage. Breastfeeding can provide the
highest levels of Lf [149], reduce the risk of infection [2,150,151], and provide a good
environment for the development of the brain and nerves in preterm infants [45]. Intrauter-
ine growth restriction (IUGR) is not only associated with an increased risk of perinatal
mortality but also compromises brain development and increases the risk of later mental
and psychomotor developmental complications [152]. It was demonstrated that Lf sup-
plementation may prevent some of the IUGR-induced sequelae in rat pups by increasing
the expression of genes involved in the survival, differentiation, and growth of neurons,
transport of iron, and signaling of glutamate and that Lf supplementation may promote
neuronal and glial cell density and corpus callosum development [153]. In addition, Lf
supplementation in food during lactation also alleviated acute and long-term LPS-induced
cerebral alterations, such as ventricular enlargement, brain tissue loss and myelination
defects [154].

Therefore, supplementation with exogenous Lf is proposed as a conditional nutrient
to promote brain neurodevelopment, neuroprotection, and cognitive function of infants
during the period of rapid brain growth [45].

4.2. Overexpression of Lf and Developmental Delay in Children

Gelatinous drop corneal dystrophy is an autosomal recessive genetic disease that
can occur at an early age [155–157], and the clinical symptoms are growth delays in
children [158]. Several studies have shown that compared with normal people, patients
with gelatinous drop corneal dystrophy exhibit high levels of Lf gene expression in their
corneal tissues, leading to the accumulation of intraepithelial Lf [159,160]. However, the
relationship between the overexpression of Lf and developmental delay in children has not
yet been reported.
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5. Lf in Other Neurological Diseases

5.1. The Inhibitory Effect of Lf on Psychiatric Illness

There is evidence to suggest that many psychiatric illnesses are characterized by
inflammation, with their treatments having potential anti-inflammatory actions [161]. Lf, a
known anti-inflammatory agent, distinctly attenuated acute stress-induced anxiety- and
depressive-like behavior as well as decreased expression of BDNF in young rats [162]. A
recent extended study further confirmed that early life diets containing Lf for 4 weeks
can indeed modify genes in neural circuits underlying emotion regulation and decrease
anxiety-related behavior [103]. Consistently, it was demonstrated that Lf supplementation
may clearly improve the depressive-like symptoms in a repeated forced-swim test stress
mouse model [163]. We also found that Lf can substantially reduce anxiety-related behavior
in the MPTP-induced mouse model of PD [89]. In a recently published study [164], Lf
was found to promote neurite outgrowth of PC12 cells and suppress decreased locomotor
activities by enhancing serotonin and dopamine release in the amygdala of ovariectomized
model rats. In fact, the elevated serum level of Lf was found in schizophrenic patients as
early as 1982 [165], but it seems that it has not been further concerned. Collectively, the
data suggest that Lf has the distinct advantage of improving various psychiatric symptoms
in the future.

5.2. Lf in Brain Tumors

Recently, the use of natural nutraceuticals to support anticancer standard therapy has
received increasing attention as a promising approach due to their relative abundance,
bioavailability, safety, low cost, effectiveness, and host immunocompatibility [166]. As early
as the 1990s, anticancer activity was ascribed to Lf [167]. Moreover, research on the role of
Lf in cancer therapy and its potential application as a drug nanocarrier in cancer therapy
has attracted maximum interest in recent years [1]. Although many unsolved questions
and controversies have emerged from studies, the anticancer effects of Lf might occur
due to the high selectivity for cancer cells or electrostatic interactions associated with Lf
receptors [168,169] and a wide range of molecular targets that regulate tumor proliferation,
survival, migration, invasion, and metastasis [5]. Indeed, several molecular mechanisms
underlying the anticancer activity of Lf were revealed, including the modulation of cell
cycle progression, induction of apoptosis and ferroptosis, inhibition of cell migration,
invasion, metastasis, and tumor-related angiogenesis [5,36,37], as well as immunomodu-
lation [170]. Notably, Lf was also found to be an ideal carrier for enhancing the efficacy
of chemotherapy, even for the treatment of brain tumors, due to its ability to cross the
BBB [1,5,58]. Moreover, LfRs are overexpressed on the cellular surface of glioma [171],
thus augmenting the specific uptake of Lf by cancer cells. There is sufficient evidence to
support this concept, especially in gliomas [172]. Alternatively, Lf might be secreted by
neoplastic astrocytes [171]. Although the particular mechanism requires further evaluation
and validation, Lf, with its multiple applications, might represent a promising strategy for
inhibiting brain tumors and brain metastases.

6. Perspectives and Challenges

As a major iron-binding protein found in milk and other body fluids, Lf exerts antibac-
terial, antiviral, anti-inflammatory, immune-modulatory and anticarcinogenic effects [1].
Because of its ability to cross the BBB through LfR-mediated transcytosis processes within
brain capillary endothelial cells [44,56] and its relatively good biocompatibility, safety,
stability and resistance to proteolysis [5], the use of exogenous Lf as a therapeutic agent
or the use of drug-loaded Lf-based nanoparticles were explored for the treatment of neu-
rodegenerative diseases, cerebrovascular diseases, childhood developmental delays, brain
tumors and other neurological-related diseases [57,172,173]. In fact, several unsolved
questions emerge from studies including the bioavailability of Lf after oral administration,
differences in physicochemical properties of commercially available Lf (in particularly the
iron content), and difficulties in the clinical application (dosage, durations, evaluation of
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the outcomes), although it exerts pleiotropic biological functions and is safe and low-cost
as a potential therapeutic agent [5,174]. Of note, salivary Lf has potential as a biomarker
for the diagnosis and monitoring of age-related neurodegenerative diseases, and its levels
are, for example, decreased in AD [90,91]. Taken together, these data demonstrate that Lf
may play important roles in the initiation and progression of CNS diseases.

As mentioned above, Lf can play a crucial role in the promotion of neurodevelopment
and neuroprotection through its involvement in the modulation of iron homeostasis,
oxidative stress, inflammatory responses, and innate immunity, as well as in the expression
of HIF-1α and BDNF pathway components (Table 1).

Table 1. The active substance of lactoferrin and its role in CNS diseases.

Action Substance CNS Diseases Effects Of Lactoferrin Ref. Effects of Action
Substance

TNFα NDG diseases, CVD down-regulation [7] ↑
IL-1β NDG diseases, CVD down-regulation [7] ↑
IL-6 NDG diseases, CVD down-regulation [7] ↑
ROS NDG diseases down-regulation [13] ↑

ADAM10 NDG diseases up-regulation [80] ↓
DMT1 NDG diseases up-regulation [81,91,95] ↓
TFR NDG diseases up-regulation [81,91,95] ↓

PHD2 NDG diseases down-regulation [105,106] ↑

HIF-1α NDG diseases, CVD up-regulation [55,80,81,105,
124] ↓

NF-κB CVD down-regulation [123] ↑
p-AKT CVD up-regulation [29] ↓
TLR-4 CVD down-regulation [123] ↑

BDNF NDG diseases, Developmental delay in
children, psychiatric illness up-regulation [37,56,80,81,

141,146] ↓

Casepase-3 NDG diseases, Brain tumors up-regulation [28] ↓
PARP NDG diseases, Brain tumors up-regulation [28] ↓
Bcl-2 NDG diseases, Brain tumors up-regulation [28] ↓
Bax NDG diseases, Brain tumors up-regulation [28] ↓

↑, stimulatory effects; ↓, inhibitory effect; NDG, neurodegenerative; CVD, cerebrovascular disease; CNS, central nervous system.

However, the exact roles of Lf in these biological processes are still unclear. As a major
receptor of Lf, LRP1, whose expression is up-regulated in various CNS diseases, plays an
important role in the transport and metabolism of cholesterol- and apoE-containing lipopro-
teins [55]. It was suggested that circulating Lf levels are inversely related to fasting glucose
and triglyceride levels but directly associated with high-density lipoprotein cholesterol
levels [175]. Additionally, strategies involving Lf supplementation were found to improve
metabolic diseases related to lipid accumulation [176,177]; therefore, the association be-
tween Lf and lipid metabolism in the brain requires investigation. Moreover, BDNF, which
is mainly released by astrocytes, is known to contribute to several aspects of neuronal de-
velopment and function, such as synaptic plasticity, neuronal survival and differentiation,
neuronal process growth, and neuronal repair following injury [178]. Interestingly, BDNF
expression is up-regulated after Lf treatment [45,64,88,89,148,153], suggesting that some
functions of astrocytes may be activated.

In addition, Lf expression is greatly increased during neurodegenerative disorders
and in the brains of elderly patients [44,78], whereas the origin of Lf within the brain under
normal and disease conditions has not yet been determined. Indeed, in addition to the
known infiltration of circulating Lf and its synthesis by activated microglia [55,77,107,109],
we also observed that the expression of Lf in astrocytes was increased with aging and neu-
rodegenerative disorders, suggesting an endogenous neuroprotective mechanism [78,171].
Thus, whether Lf can be produced by astrocytes should be carefully explored, and its
function and origin need to be identified. Due to the lack of clear data from the existing
studies, the establishment of animal models for comparison is of far-reaching significance
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for exploring the relevant mechanism by which Lf exerts its effects. More sophisticated
investigations are required to fully understand the molecular mechanism associated with
Lf, as well as its utility and applicability, to make the best clinical use of Lf for widespread
therapeutic applications.
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