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Single nucleotide polymorphisms (SNPs) affect base pair stacking, which is the primary

factor for maintaining the stability of DNA. However, the mechanism of how SNPs lead

to phenotype variations is still unclear. In this work, we connected SNPs and base pair

stacking by a 3-mer base pair stacking free energy matrix. The SNPs with large base

pair stacking free energy differences led to phenotype variations. A molecular dynamics

(MD) simulation was then applied. Our results showed that base pair stacking played an

important role in the transcription factor (TF)-DNA interaction. Changes in DNA structure

mainly originate from TF-DNA interactions, and with the increased base pair stacking free

energy, the structure of DNA approaches its free type, although its binding affinity was

increased by the SNP. In addition, quantitative models using base pair stacking features

revealed that base pair stacking can be used to predict TF binding specificity. As such,

our work combined knowledge from bioinformatics and structural biology and provided

a new understanding of the relationship between SNPs and phenotype variations. The

3-mer base pair stacking free energy matrix is useful in high-throughput screening of

SNPs and predicting TF-DNA binding affinity.

Keywords: base stacking, free energy, single nucleotide polymorphisms, molecular dynamics simulation, binding
specificity, transcription factor

INTRODUCTION

The stacking of adjacent base pairs and the pairing between complementary bases via hydrogen
bonding are fundamentally related to the sequence and shape properties of DNA and critically
influence the configurations, stabilities, and other properties of DNA(Yakovchuk et al., 2006; Hase
and Zacharias, 2016; Kilchherr et al., 2016). The structure of a DNA sequence at the transcription
factor (TF) binding site affects the interactions between these molecules (Rohs et al., 2009;
Stormo and Zhao, 2010). In addition to current methodologies (Garvie and Wolberger, 2001;
Slattery et al., 2014), base pair stacking free energy provides a novel way for understanding TF-
DNA interactions. Determining base pair stacking free energy for a DNA sequence is critical
for substantiating this underlying relationship. In the past few decades, several methods have
been developed for determining base pair stacking free energy, including optical spectroscopic
techniques (Warshaw and Tinoco, 1966), NMR spectroscopy (Chan and Nelson, 1969), and self-
diffusion NMR (Stokkeland and Stilbs, 1985). More recently, base pair stacking free energies were
measured in DNA fragments, such as beacon kinetics (Aalberts et al., 2003), thermal denaturation
(Guckian et al., 1996), and mechanical unzipping (Huguet et al., 2010).
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A single nucleotide polymorphism (SNP) is a common
mutation phenomenon in the human genome (Clamp et al., 2007;
Kimchi-sarfaty et al., 2007; Lu et al., 2015) and can significantly
influence interactions between DNA and TFs, leading to related
disease or phenotype variations (Deplancke et al., 2006; Bass
et al., 2015). A single mutation in a SNP affects the base
pair stacking free energies of two consecutive dinucleotides (2-
mers), which compose a trinucleotide (3-mer) with the mutation
site located at the central position. Studying 3-mers provides
more comprehensive information than studying two 2-mers
(Santalucia andHicks, 2004; Taghavi et al., 2017). Another reason
of selection 3-mer is because 3 base pairs are the minimal unit to
describe the base-pairs stacking change of single SNP. However,
measuring base pair stacking free energy for 3-mers is beyond
the capability of current experimental approaches and remains a
challenge to the scientific community (Sponer et al., 2013).

Base pair stacking is the primary factor for maintaining
the stability of DNA structures (Yakovchuk et al., 2006). MD
simulations (Hase and Zacharias, 2016) and quantum mechanics
(QM) calculations (Parker et al., 2013) reveal that changes in
the base pair stacking free energy affect many DNA parameters,
including the twist, slide, groove, and bend of DNA. Recent
studies showed that the structural changes caused by SNPs
affect the binding affinity of protein-DNA complexes (Arkova
et al., 2016). Based on the view that shape readout plays an
important role in TF-DNA interactions (Slattery et al., 2011;
Gordan et al., 2013; Yang et al., 2014), Zhou et al. developed
a quantitative model that utilized sequences as well as DNA
shape features and achieved a higher accuracy than traditional
sequence models (Zhao et al., 2012; Mordelet et al., 2013;
Zhou et al., 2015). Thus, we hypothesize that changes in the
base pair stacking could cause DNA structural variations and
transcriptional regulation disorders, which would eventually
disrupt the TF-DNA interactions and lead to various diseases or
phenotype variations. Therefore, measuring base pair stacking
free energy is greatly beneficial for studying the underlying
relationship between base-pair stacking and related disease or
phenotype variations.

In this study, a 3-mer base pair stacking free energy matrix
was constructed to calculate the base pair stacking free energy
of 3-mers based on those of 2-mers. A 3-mer base pair stacking
free energy difference matrix was then built to establish the
correlation between the base pair stacking free energy and
SNPs. Statistically significant variants from the GWAS database
(GWASdb) were analyzed to identify the relationship between
the base pair stacking free energies and the SNPs related to
phenotype variations. The phenotype variations were enriched
in the regions that possessed large differences in the base
pair stacking free energies. Next, MD simulations revealed that
changes in the base pair stacking free energies led to function
variations via structural changes in the DNA, including twist,
slide, and groove. Lastly, base pair stacking free energy was
combined with experimental sequence data to generate a 1-
mer+1Gs model for quantitatively predicting TF-DNA binding
affinities, which exhibited a higher accuracy efficiency than 1-
mer model. Our study revealed the significance of base pair
stacking free energies for tri- or longer nucleotides and their

relationships with the function of SNPs. We believe that the 3-
mer base pair stacking free energy matrix may pave a new way
for understanding and predicting TF-DNA interactions.

MATERIALS AND METHODS

Generation of the 3-mer Base Pair
Stacking Free Energy Matrix
A base pair stacking interaction involves adjacent base pairs,
which means we need two 2-mers to represent a complete
stacking interaction. Although 2-mer base pair stacking has been
studied (Warshaw and Tinoco, 1966; Chan and Nelson, 1969;
Stokkeland and Stilbs, 1985; Guckian et al., 1996; Aalberts et al.,
2003; Huguet et al., 2010), 3-mer base pair stacking is poorly
studied, partly due to the limitations of experimental techniques
and the computing power of quantum mechanics (Sponer et al.,
2013). To calculate the 3-mer base pair stacking free energy,
we combined the base pair stacking free energies for the two
consecutive 2-mers in the 3-mer (Santalucia and Hicks, 2004;
Taghavi et al., 2017):

1GABC = 1GAB + 1GBC (1)

where 1GABC is the base pair stacking free energy of three
consecutive nucleotides, ABC, and 1GAB and 1GBC are the
stacking free energies of two adjacent nucleotides within the three
consecutive nucleotides, AB and BC, respectively. Our 3-mer
base pair stacking free energymatrix was constructed using the 2-
mer base stacking energies from Protozanova et al.’s experimental
data (Protozanova et al., 2004).

Building the Phenotype Variation Related
3-mer SNPs Dataset
We downloaded SNPs related to human phenotypes (traits)
from the GWASdb (http://jjwanglab.org/gwasdb, before August
2015). The GWASdb is the most widely used GWAS result
database (Li et al., 2012), and it combines the National Human
Genome Research Institute (NHGRI) GWAS Catalog, the tables
and supplementary materials of manuscripts archived in the
NHGRI GWAS Catalog, and the database of Genotypes and
Phenotypes (dbGaP). To obtain the SNPs notably related to
phenotype variations, only statistically significant (P≤ 1× 10−8)
variants were included. A total of 25,029 SNPs, which included
883 human traits, were used for the analysis. To study the changes
in the 3-mer base pair stacking free energy caused by the SNPs,
the SNP adjacent nucleotides were obtained from the BioMart of
Ensembl database (version 88) (Yates et al., 2016). To analyze the
SNPs that were located at TF binding sites, we used RegulomeDB
(http://www.regulomedb.org) to filter out the SNPs in the motif
(Boyle et al., 2012), and there were 10123 SNPs in total. The raw
data can be found in the Supplementary Data Sheet.

Building the High-Resolution TF-DNA
Complex Crystal Structure and JASPAR
Dataset
The crystal structures of the TF-DNA interaction complexes
used in this work were obtained from the Protein Data Bank
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and were published before 11 January 2017. There were 81
crystal structures that contained both TF and DNA with ≤

2.0 Å resolution and no chemical modifications, mismatches or
drugs. All of the TF-DNA interaction crystal structure complexes
are listed in Table S1. The TFBS dataset contains nucleotide
sequences that are within a distance of 3.5 Å of the TF in the
high-resolution TF-DNA complex crystal structure dataset. The
JASPAR database dataset consists of 593 non-redundant core
nucleotide sequences in the JASPAR database that were download
from http://jaspar.binf.ku.dk.

According to the work by Bass et al. (2015), we first selected
the SNPs related to human phenotype variations with the highest
supporting evidence score. Second, the corresponding TF-DNA
complexes from our high-resolution TF-DNA complex crystal
structure dataset were screened. Only 2 SNPs (MUT_17 and
MUT_190) were reserved. MUT_17 was located in a specific
binding site of Hepatocyte nuclear factor 4 alpha (HNF4α), a
transcription factor containing zinc finger motifs, with force
field parameters that still need improvements (Santos-martins
et al., 2014). MUT_190 was located in a specific binding site of
MEIS1. The structure of MEIS1 is similar to that of HNF4α,
which contains a DNA binding domain but not a zinc finger
(Jolma et al., 2015). There is an A→ G SNP in the binding site
(ACTATCGA → ACTGTCGA) that is located in the MCP-
1 promoter sequence (−2511 to −2528) at −2518, and this
SNP increases MEIS1 binding affinity and leads to hepatitis C
virus (HCV)-related liver disease (Bass et al., 2015). The MEIS1
complex (PDB ID: 4XRM) was adopted as a template to construct
the structures of mutated-complexes.

Molecular Dynamics Simulation Protocol
The MD simulations of the constructed systems were performed
by using the NAMD software package (Kal et al., 1999) with
AMBER ff14SB (Hornak et al., 2006) and parmbsc1 force fields
(Ivani et al., 2016). Both the wild-type and mutated complexes
and the free DNA were embedded in a box-shaped (72 × 68
× 84 Å3) bath of water molecules, and there was a layer of
TIP3P water 12 Å in each direction from the atom with the
largest coordinate in that direction. The system was neutralized
with sodium cations. Na+ and Cl− ion pairs were then added to
reach a physiological salt concentration of 0.15M. The solvated
complex was equilibrated by carrying out a series of 1,000 steps
of energy minimization with 10 kcal/mol/Å2 restraints on the
backbone, after 1000 steps of minimization without restraints,
310 ps of heating restricted 2 kcal/mol/Å2 on the backbone
from 0 to 310K and 1 ns of density equilibration with NVT
followed by 200 ns of constant pressure equilibration at 310K.
The system was equilibrated using an NPT ensemble at 310K
and pressure at 1 atm (1 atm = 101.3 kPa). All the simulations
were run with SHAKE on hydrogen atoms, a 2 fs time step
and a Langevin thermostat for temperature control and pressure
control. Periodic boundary conditions and the Particle-Mesh-
Ewald (PME)(Essmann et al., 1998) algorithm were adopted
to compute the long range electrostatic forces, and the cutoff
was set as 12 Å. Trajectory frames were collected at every
5 ps for a total of 50 ns. Curves+ software (Swaminathan
et al., 1990; Blanchet et al., 2011) was employed to calculate
the base pair parameters to define the geometry of the DNA.

The values of the MD geometries presented here ignore the
terminal base pairs of the oligomers since these often suffer
from local deformations (Etheve et al., 2016). The standard
value for the DNA structures used the data from Olson et al.
(2001).

Model of TF Binding Affinity Prediction
For a DNA sequence of length K, the 1-mer feature was used
to represent each nucleotide position, and the target sequence
was seen as a binary vector with a length of 4K. For example,
one nucleotide position was encoded as 0 0 0 1, which indicated
A, T, G, and C, respectively, and a value of 1 represented the
occurrence. Regarding the base pair stacking free energy feature,
a sliding-window approach to the DNA sequence calculated
the base pair stacking with every 3-mer. We used the genomic
context PBM (gcPBM) data from Zhou et al. to train and test
the 1-mer model, the 1-mer+shape model, and the 1-mer+1Gs

model. The gcPBM was derived from the Gene Expression
Omnibus (GEO) under the accession number GSE59845 (Zhou
et al., 2015), which contained 36-bp genomic sequences. The
gcPBM data for each TF were converted into a matrix after
preprocessing and feature encoding. The first column of this
matrix contained the natural logarithm of the fluorescence signal
intensities of the PBM probes, and the remaining columns
contained the encoded features. The E-SVR algorithm in the
LIBSVM toolkit (Chang and Lin, 2011; Claesen et al., 2014)
was used to train the linear regression model to predict the
natural logarithm of the gcPBM signal intensities based on the
encoded sequence and base pair stacking free energy. The total
length of the DNA base pair stacking vectors was 34 due to
the unavailability of the values at two positions at the end. To
obtain unbiased performance estimates of the regression models
in each dataset, a nested 10-fold cross-validation procedure was
implemented. The details of the gcPBM raw data processing
methods were described by Zhou et al. (2015). The time-
consuming of the model were tested on CPU E5-2683v3.

RESULTS AND DISCUSSION

Building the 3-mer Base Pair Stacking Free
Energy Matrix
The base pair stacking free energies for 3-mers were calculated by
the sum of the base pair stacking free energies for two consecutive
2-mers (see Equation 1 in the Materials and Methods section).
This strategy was used also by SantaLucia et al. (Santalucia
and Hicks, 2004) and Taghavi et al. (2017) and showed reliable
accuracies. Currently, base pair stacking free energies for 2-
mers have been extensively studied, both theoretically and
experimentally. Friedman and Honig calculated 2-mer base pair
stacking free energies theoretically and reported values ranging
from −7.79 to −4.36 kcal/mol (Friedman and Honig, 1995),
whereas, Protozanova et al. measured them experimentally in a
nicked DNA duplex, with values ranging from −2.17 to −0.19
kcal/mol (Protozanova et al., 2004), and later, Kilchherr et al.’s
experimental results values ranged from−3.42 to−0.78 kcal/mol
(Kilchherr et al., 2016). Since the theoretical 2-mer stacking
free energies have a tendency for overestimations (Hase and
Zacharias, 2016), we used the 2-mers stacking free energies from
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Protozanova et al.’s study to calculate the 3-mer base pair stacking
free energies for their wide acceptances (Hase and Zacharias,
2016).

All 64 combinations of the 3-mer base pair stacking free
energies were computed, and a 3-mer base pair stacking free
energy matrix was created (Figure 1A). Generally, the stacking
interaction between the GC base pair is stronger than that
between the TA base pair (Geggier and Vologodskii, 2010). In
2-mers, GC and TA have the most negative and positive values
for base pair stacking free energies, respectively. Similarly, in 3-
mers, GGC and GCC base pairs have the most negative base pair
stacking free energies, while TAG and CTA have themost positive
base pair stacking free energies.

A 3-mer base pair stacking free energy difference matrix was
also developed to study the changes in the base pair stacking free
energies for SNPs (11Gs). In this matrix, the changes in the base
pair stacking free energies for 64 trinucleotides and 4 possible

FIGURE 1 | The heat map of 3-mer base pair stacking matrixes. (A) Heat map

of the 3-mer base pair stacking free energy matrix. The X-axis is the last

nucleotide in the 3-mer, and the Y-axis is the first two nucleotides. (B) Heat
map of the 3-mer base pair stacking free energy difference matrix. The X-axis

is the mutation at the middle position in the 3-mer, and the Y-axis is the 64

combinations of 3-mers. The values for the individual entries in the 3-mer base

pair stacking free energy matrix and the 3-mer base pair stacking free energy

difference matrix are listed in Tables S2, S3.

mutations at each central nucleotide were calculated from the 3-
mer base pair stacking free energymatrix. As shown in Figure 1B,
the base pair stacking free energies for the 3-mers decreased after
mutations to G and C occurred and increased after mutations
to A and T. The maximum changes were CTA→ CGA (−1.09
kcal/mol) and TCG→ TAG (+1.09 kcal/mol). Furthermore, the
value of the 11Gs was always lower for a SNP with a mutation
to G or C compared to the same SNP with a mutation to A or T.

Investigating the Relationship Between the
3-mer Base Pair Stacking Free Energy
Difference Matrix and the Phenotype
Variation
Recent advances in genome-wide association studies (GWAS)
in genetics have enabled us to identify thousands of genetic
variants that are associated with phenotype variations. It is well
known that SNPs are closely linked with various phenotypes or
traits (Kimchi-sarfaty et al., 2007; Helyar et al., 2011; Gutierrez-
arzaluz et al., 2017), such as obesity and age-related macular
degeneration(Sangiovanni et al., 2017; Dong et al., 2018). Herein,
several assumptions were made to explore the relationships
between SNPs and phenotype variations.

The first assumption was that the enhanced of the base pair
stacking free energy was related to the phenotype variation.
To validate this assumption, a phenotype variation-related 3-
mer SNPs dataset was generated. There were 25,029 SNPs in
the dataset, which involved 883 human traits. The base pair
stacking free energy difference of each 3-mer SNP was obtained
via the 3-mer base pair stacking free energy difference matrix.
Interestingly, 47.83% of the variants (Table S4) showed enhanced
base pair stacking interactions after mutation, whereas this ratio
increased to 51.87% (hypergeometric test, P < 10−20) when only
including variants with mutations in the TF binding sites. This
increase may imply that the TFs are more sensitive to enhanced
of base pair stacking. To confirm this hypothesis, we constructed
two datasets (Table 1). The first was a high-resolution crystal
structure dataset of TF binding, which had 81 binding sequences
from the TF-DNA crystal structure complexes. The second one
was the DNA binding motifs from the JASPAR database, which
had 593 sequences of the TF binding motif. The AT contents
in these two datasets were 54.90 and 53.94%, respectively.
Therefore, we concluded that the relatively high ratio of the TF
binding site was from not only the enhanced of the base pair
stacking but also the high AT content of the TF binding site since
the AT pairs havemore room for enhancing the base pair stacking
interactions during mutations.

The second assumption was that the scale of the base stacking
difference was related to the phenotype variation. First, we
focused on the SNPs in TF binding sites, since it may affect TF-
DNA interactions. The changes in the base pair stacking free
energy (|11Gs|) of the phenotype variation-related 3-mer SNPs
dataset (for TF binding site only) were obtained from the 3-
mer base pair stacking free energy difference matrix and were
manually screened. As shown in Figure 2, we categorized the
variants of the |11Gs| values into three bins, namely, 0.0–0.3,
0.3–0.6, and larger than 0.6 kcal/mol. The ratios of the |11Gs|
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TABLE 1 | The ratio of AT and GC in the two different datasets.

Dataset Ratio (%)

AT GC

TFBS 54.90(538) 45.10(442)

JASPAR database 53.94(772) 46.06(654)

The TFBS dataset is the nucleotide sequences that were within a distance of 3.5 Å of
the TF in our high-resolution TF-DNA complex crystal structure dataset. The JASPAR
database dataset consists of the nonredundant core nucleotide sequences in the JASPAR
database.

FIGURE 2 | The distribution of the base pair stacking free energy differences.

The SNPs of the TF binding sites are labeled in blue, and the distribution of the

3-mer base pair stacking free energy difference matrix is labeled in orange.

Student’s test of the two series yielded a value of P < 10−9.

values were 17.7, 34.5, and 47.8%, respectively. Interestingly, the
total number of the SNPs with a |11Gs| value lager than 0.6
kcal/mol was almost half of all the phenotype variation-related
SNPs (the overall SNP results that had the same trend as the SNP
located at the TF binding sites are found in Figure S1). At the
same time, we calculated the |11Gs| value distribution of the
3-mer base pair stacking free energy difference matrix. It was
nearly evenly distributed, and the ratio of >0.6 kcal/mol was
∼30%. Student’s test on the two series yielded a value of P< 10−9,
indicating that the SNPs located in TF binding sites with a larger
|11Gs| had a higher ratio. To confirm this finding, the SNPswere
recategorized based on their mutation types (Figure 3A). There
was a marked preference A→ G, C→ T, G→ A, and T→ C
mutations, which accounted for 70.0% of all SNPs. Interestingly,
the average |11Gs| values for these four types of mutations were
also the top 4, as shown in Figure 3B. Furthermore, as shown
in both Figures 3C,D, the distribution of the |11Gs| for SNPs
in the 4 preferred mutation types displays a similar trend to
that found in all the chosen variants, in which a larger |11Gs|
occupies a higher ratio.

In contrast, SNPs with a low |11Gs| were speculated to
be disfavored. A total of 590 variants in the two lowest ratio
mutation types displayed a significantly different distribution
from those in the preferred mutation types. Variants with a
|11Gs| smaller than 0.3 kcal/mol accounted for over 70% of

the total in these two mutation types (Figure 4). Therefore,
SNPs with a smaller |11Gs| appeared to be disfavored in
our GWASdb results. Since all of our chosen variants were
statistically significant, this implied that the SNPs in the TF-
binding sites with a larger |11Gs| were more likely to lead to
a phenotype variation. In summary, our study with statistically
significant variants from the GWASdb showed that phenotype
variation prefers SNPs with a large |11Gs| and made a solid
case, where a 3-mer base pair stacking free energy matrix and a
3-mer base pair stacking free energy difference matrix helped to
probe the relationship between base pair stacking free energy and
diseases.

Simulation of the Relationship Between
Base Pair Stacking and TF-DNA
Interactions
As discussed earlier, SNPs result in changes in base pair stacking
free energies. Recent studies showed that the base pair stacking
free energy is closely related to DNA structure (Luscombe et al.,
2001; Baker and Grant, 2007; Gu et al., 2015), which means
it is likely that base pair stacking free energies affect TF-DNA
interactions via DNA structural changes. However, the impact
of SNPs on the structure of DNA is poorly studied, especially
the relationship between the change in the base pair stacking
free energy caused by the SNP and TF-DNA interaction. To
explore this potential relationship, we searched the entire PDB,
but did not find a TF-DNA cocrystal complex that had crystal
structures for both wild-type and mutated complexes. To solve
this problem, we combined our existing high-resolution TF-DNA
complex crystal structure dataset with the study by Bass et al.
(2015). The SNPs with the highest supporting evidence scores
listed in the study by Bass et al. were selected. These SNPs are
all located in the regulatory region and have been studied for
their influence on TF-DNA binding affinities (Bass et al., 2015).
Only two TF-DNA complexes with these SNPs in the regulatory
region have available cocrystal structures, namely, HNF4α and
Meis homeobox 1 (MEIS1). However, HNF4α was excluded due
to inaccurate force field parameters for the zinc finger motifs
(Santos-martins et al., 2014).

MEIS1 plays an essential role in the development and function
of vertebrate organs (Shen et al., 1999). It is a homodimer of
the TALE type homeobox transcription factor that regulates gene
expression by binding specific DNA sequences (Jolma et al., 2015)
(Figure 5). There is a SNP at the binding site (ACTATCGA →

ACTGTCGA) that causes an increase in the binding affinity and
results in hepatitis C virus (HCV)-related liver disease (Bass et al.,
2015). More interestingly, this mutation (A→ G) was one of
the 4 preferred mutation types in our chosen variants from the
GWASdb (Figure 3A). The cocrystal structure for the MEIS1
complex (PDB ID: 4XRM) was adopted as a template to construct
the structures of the mutated complexes.

To verify our molecular models for the MEIS1 complexes,
both the Helmholtz (1Hb) and binding free energies (1Gb)
for the wild-type and mutated complexes were calculated. As
shown in Table S5, the 1Hb for the mutated complex was −6.27
kcal/mol. After considering the entropic penalty (Chang et al.,
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FIGURE 3 | The distribution of the different mutation types. (A) The percentage of the different mutation types in the GWASdb result. (B) The average |11Gs | for the
variants chosen from the GWASdb in the different mutation types. (C) The percentages of the variants in the top 4 mutation types of (A) with different |11Gs | ranges.
(D) The distributions of the |11Gs | for the top 4 mutations types in (A).

FIGURE 4 | The percentages of the variants in the 2 mutation types with the

lowest ratio mutation types with different |11Gs | ranges.

2007), the1Gb for the mutated complex was still−1.42 kcal/mol.
This was consistent with the experimental measurements, in
which the binding affinity for the MEIS1 complex increases after

the A→ G mutation in the TF binding site (Bass et al., 2015).
Our MM/GBSA results correlated well with the Montclare’s
DNAmutation binding affinity experiments, which report values
ranging from−5.0 to−1.3 kcal/mol (Montclare et al., 2001).

The average parameters of the DNA structures of the wild-
type andmutated complexes were then compared (Blanchet et al.,
2011). We analyzed the average structure difference values (D-
values) of the DNA parameter between the wild-type complex,
the mutated complex, the mutated free DNA and the wild-type
free DNA. First, the differences (D-values) in the twist and slide
for the wild-type and mutated complexes and the mutated free
DNA at themutation site were small, whereas those for other sites
were relatively larger (Figures 6A,B). This phenomenon showed
that the stronger base pair stacking free energy (Table 2) made
the DNA structure closer to that of the free DNA, since the
inter parameter was directly related to the base pair stacking free
energy, and it also showed that the base pair stacking free energy
was a long-range allosteric effect (Gu et al., 2015). Second, the
amplitude of the variation for left and right at the mutation site
was inconsistent. As shown, the changes in the left side were
obviously larger than those in the right side. For the complexes,
the D-values of the twist and slide had a larger amplitude of
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FIGURE 5 | The structure of MEIS1 and its DNA. The blue DNA sequence is

the motif, and the red nucleotide is the mutation site.

variation than the free DNA. This suggested that the asymmetry
of the left and right was due to the TF interaction (Figure 5
shows that the left side of the mutation site was the binding
location of the other monomer). Lastly, for the slide, there was a
small difference between the wild-type and mutated complexes.
However, the difference in the wild-type and mutated for the
twist were more notable than those for the slide, which meant the
effect of the SNP on the twist was greater than that on the slide for
the TF-DNA interaction (Czapla et al., 2006; Cooper et al., 2008;
Carvalho et al., 2014; Machado et al., 2015; Ngo et al., 2016). In
addition, the average values of the probability distribution curves
for both twist and slide for the mutated complex (Figures 6C,D)
were closer to the standard values than those for the wild-type
complex. In the meantime, the base pair stacking free energy
calculated from the 3-mer base pair stacking free energy matrix
for TGT in the mutated complex was more negative than that for
TAT in the wild-type (Table 2). The more significant structural
changes in the mutated MEIS1 complex than in the wild-type
complex demonstrated a solid example that changes in the base
pair stacking free energies resulted in DNA structural variation
and altered the binding affinity for TF-DNA complexes. It also
indicated that the interplay between protein and DNA plays an
important role in the regulation of the variation of base stacking
(Koshland, 1958; Ramakers et al., 2017).

Quantitative Modeling of TF Binding
Specificities Using Base Pair Stacking
Protein-DNA binding is an essential biological process that
is involved in DNA replication, restriction, and modification,
transcriptional regulation, etc. (Halford and Marko, 2004).
Increasing efforts have been made to understand how proteins
recognize specific binding sites in the genome. Rohs et al.
divided protein-DNA interactions into two major categories,

including base readout and shape readout (Rohs et al., 2010). Base
readout refers to proteins that recognize DNA by forming specific
hydrogen bonds and hydrophobic contacts with bases in the
major or minor grooves (Seeman et al., 1976), and shape readout
refers to proteins that recognize DNA by sequence-dependent
DNA structures and deformability (Travers, 1989; Shakked
et al., 1994; Koudelka et al., 2006). Although high-throughput
experimental methods, such as protein-binding microarrays
(Berger et al., 2006), measure the binding affinities for tens of
thousands of DNA sequences in vitro at the same time, it still
takes extensive efforts to carry out these experiments. To achieve
a higher efficiency, several theoretical models for predicting the
TF-DNA binding were developed based on massive experimental
data (Foat et al., 2006; Zhao and Stormo, 2011; Weirauch et al.,
2013; Orenstein and Shamir, 2014). A 1-mer model, one of the
earlier models, predicts TF-DNA binding affinity solely based on
sequence information. This model displays a high efficiency, yet
a low accuracy (R2

< 0.8) when compared to more sophisticated
models (Mordelet et al., 2013). Recently, the 1-mer+shape model
(Zhou et al., 2015) was developed, which combines the sequence
with the DNA structural information, such as the minor groove
widths, propeller twists, rolls, and helix twists, as input features to
achieve a higher accuracy (R2

> 0.9) at the cost of a significantly
increased computing time. The 1-mer+shape model requires
not only predictions of the structural information, which are
usually obtained from resource-hogging all-atom Monte Carlo
simulations (Zhou et al., 2013), but also a significant amount of
time to be trained and tested.

In this work, we confirmed, with an example, that base pair
stacking free energy has an unambiguous relationship with TF-
DNA interactions. In this respect, base pair stacking free energy
might be used as a feature to predict TF-DNA binding affinity.
Here, we extended the input matrix in the 1-mer model to
include the base pair stacking free energies for all 3-mers in
the DNA sequence to build the 1-mer+1Gs model. A 10-fold
cross-validation was performed on the gcPBM data for three
human basic helix–loop–helix TFs, including Mad1 (Mxd1)–
Max (Mad), Max–Max (Max), and c-Myc–Max (Myc)(Mordelet
et al., 2013), to compare our 1-mer+1Gs model with both
the 1-mer and 1-mer+shape models. The person correlation
coefficient (PCC) obtained by the 1-mer+1Gs model improved
markedly compared with that of the 1-mer model. The PCC
values were > 0.9 for all three TFs (Mad: PCC= 0.92, Max: PCC
= 0.92, Myc: PCC = 0.91). Although the 1-mer+shape model
demonstrated a higher Pearson correlation coefficient, it required
significantly more features and running time (Figure 7A). By
contrast, both the number of features per nucleotide position
and the running time for the 1-mer+1Gs model were close
to those required for the traditional 1-mer model (Figure 7B).
Therefore, the 1-mer+1Gs model proved to be both accurate and
efficient for predicting TF-DNA binding affinities, which might
be exceedingly beneficial for preliminary disease screening.

Furthermore, as seen in the 3-mer base pair stacking free
energy matrix, base pair stacking is sequence-dependent and is
related to the DNA structures in the TF binding site. Thus, our 1-
mer+1Gs model is deeply associated with the DNA’s sequence
and structural information, and the base pair stacking free
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FIGURE 6 | The variation of DNA structure parameters. (A,B) The difference (D-values) in the twist and slide for the wild-type and mutated complexes and the

mutated free DNA were obtained from the average structures of last 50 ns of the simulations. The mutated site is marked in red. (C,D) The probability distribution of a

twist and slide at the mutation site for the wild-type and mutated complexes. The vertical dotted line is the standard value of the twist and slide. Most of the DNA

structures had the same phenomenon as the twist and slide (Figures S2, S3).

TABLE 2 | Twist, slide, and base pair stacking free energy for the wild-type and

mutated MEIS1 complexes.

Type Twista (◦) Slidea (Å) 1Gs
b (kcal/mol)

Wild-type 38.3 −0.73 −1.53 (TAT)

Mutated-type 34.4 −0.53 −2.36 (TGT)

Standard Valuec 36.0 0.23 /

aTwist and slide of the DNA structures obtained from the average structures. b1Gs was
the calculated by the 3-mer base pair stacking free energy matrix for the 3-mer at the
mutation site. cThe standard value for the DNA structures used the data from Olson et al.,
2001

energy, as a new prospect for understanding TF-DNA binding,
has intrinsic connections to both base and shape readouts.

CONCLUSIONS

Base pair stacking free energy is an essential property of DNA,
and it is intrinsically associated with DNA sequences and shapes.
Since the sequence and shape information have already been
successfully employed to understand TF-DNA interactions, base

and shape readouts, base pair stacking free energy provides a
new prospect in this area. In the present study, we presented
an unambiguous relationship between base pair stacking free
energy and TF-DNA interactions. Both a 3-mer base pair stacking
free energy matrix and a 3-mer base pair stacking free energy
difference matrix were constructed for establishing the matrices
between the SNPs and their base pair stacking free energies.
Our analyses of the variants from the GWASdb showed that
mutations in SNPs with a larger |11Gs| had a higher probability
of leading to a phenotype variation. MD simulations for the
MEIS1 complexes demonstrated that the mutation in the TF-
DNA binding site caused DNA structural changes and resulted
in higher binding affinities. This mutation in the regulatory
region was one of the four mutations with the largest |11Gs|,
which suggested that changes in the base pair stacking free
energy might lead to phenotype variations via DNA structural
changes. Lastly, we generated the 1-mer+1Gs model to apply
base pair stacking free energy for predicting TF-DNA binding
affinities, and it exhibited a higher accuracy than the traditional
1-mer model and a high efficiency compared to the 1-mer+shape
model.
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FIGURE 7 | Performance (A) and efficiency (B) comparisons for the 1-mer, 1-mer+1Gs, and 1-mer+shape models in predicting the binding affinities of Mad1

(Mxd1)–Max (Mad), Max–Max (Max), and c-Myc–Max (Myc) bound with DNA.

Our molecular dynamics simulation also indicated that
the interplay between protein and DNA is important to the
regulation of base stacking. This was in consistent with our
finding that the SNPs with a larger base pair stacking free energy
change led to phenotype variations. This is because a larger base
pair stacking free energy change might affect the protein-DNA
interactions more easily. We believe that the 3-mer base pair
stacking free energy matrix and the 3-mer base pair stacking
free energy difference matrix are useful for high-throughput
SNP screening and for predicting TF-DNA binding affinities.
Furthermore, as demonstrated in this work, proteins also play an
important role in the TF-DNA interaction, and how they effect of
TFs is still an open question. Improving the precision of 3-mer
base pair stacking free energy is now being carried out using the
QM/MMmethod (Warshel and Levitt, 1976).
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