
Introduction
Chronic hepatitis B virus (HBV) infection is an epidemic 
with approximately 387 million chronically infected 
carriers worldwide, and chronic infection carries a high 
risk for serious complications, such as cirrhosis and 
hepatocellular carcinoma [1,2]. Current treatments for 
HBV infection include immunomodulators such as inter­
feron-α (IFN-α) and nucleoside/nucleotide analogs, which 
are reverse transcriptase inhibitors, directly blocking 

viral replication. Although nucleoside and nucleotide 
analogs are well tolerated, the emergence of viral resis­
tance remains a problem [3]. Currently, the nucleoside/
nucleotide analogs lamivudine (3TC), adefovir, entecovir 
and telbivudine are approved for use against HBV, with 
lamivudine being the most widely used. However, 
prolonged lamivudine monotherapy is often associated 
with the emergence of viral resistance to the drug [4]. 
Although cross-resistance to other nucleoside/nucleotide 
analogs, such as entecavir, has been demonstrated, the 
preferred first line of therapy includes a combination of 
nucleoside/nucleotide analogs to limit the emergence of 
resistance (reviewed in [5]). IFN-α functions to augment 
the anti-HBV immune response and has been in wide­
spread use for many years [6,7]. Currently, unmodified 
and polyethylene glycol (PEG)-conjugated IFNs are 
licensed for therapy of HBV [8]. However, some patients 
are poorly responsive to IFN-α therapy, and it can induce 
adverse side effects, such as hepatic injury [9]. Moreover, 
IFN-α is often expensive and unavailable in resource-
poor settings.

There is a dire need for new therapies for HBV infection 
and the emergence of RNA interference (RNAi)-based 
technologies is an exciting new frontier in antiviral 
therapeutics. RNAi is a set of conserved eukaryotic 
pathways in which double-stranded RNAs (dsRNAs) 
trigger specific and powerful gene silencing [10,11]. 
RNAi has an important role in regulating gene expression 
through the processing of long dsRNA precursors by the 
RNase III enzymes Drosha and Dicer into endogenous 
microRNAs (miRNAs) or short interfering RNAs 
(siRNAs). RNA ‘guide strands’ of around 22 nucleotides 
in length are each integrated into an Argonaute-
containing RNA-induced silencing complex (RISC) and 
these target mRNAs for degradation or translational 
suppression [12,13]. Considerable enthusiasm followed 
the initial discovery of RNAi in 1998 [11] as it emerged 
that this pathway could be exploited for medical 
applications. Since then, RNAi technologies have 
developed rapidly with the aim of silencing rogue viral 
and host cell genes. This is especially the case for HBV, 
for which, so far, many studies have applied RNAi-based 
tools to inhibit viral replication in vivo and in vitro 
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[14-18]. RNAi-based modalities differ from current 
therapies in that they can be used to block various 
different steps in the viral life cycle, from viral RNA 
replication intermediates to viral mRNAs. Importantly, 
different RNAi activators share similar pharmacological 
properties, allowing multiple RNAi-based drugs to be 
used together in combination treatments. Although 
similar to current multidrug cocktail regimes, RNAi 
combinations can target exclusive regions of the virus, 
thus avoiding problems associated with multi-drug 
sensitivities and toxicities. This makes RNAi-based 
therapies better suited to targeting rapidly evolving viral 
sequences, preventing the emergence of drug-resistant 
virus. Lastly, because RNAi-based drugs can be expressed 

from introduced genes, they offer the possibility for a 
sustained therapeutic response.

The HBV genome and susceptibility to RNAi-based 
therapies
The HBV genome has a relaxed circular DNA (rcDNA) 
structure that is partly double stranded (Figure 1a) 
[19,20]. Having infected a hepatocyte, viral rcDNA is 
converted to covalently closed circular DNA (cccDNA), 
which serves as a template for the expression of viral 
genes and for the formation of the replicative inter­
mediate pregenomic RNA [19-21]. This HBV replication 
intermediate exists naturally as a minichromosome and is 
analogous to the provirus of HIV-1-infected cells. There­
fore, cccDNA ultimately controls the production of 
progeny viruses. One of the principal reasons for the 
poor efficacy of many antiviral treatment regimens has 
been the difficulty in eliminating episomal cccDNA from 
infected hepatocytes; it can reactivate HBV replication 
following withdrawal of treatment.

The entire viral genome is approximately 3,200 bases in 
length and is remarkably compact, encoding four open 
reading frames: core, polymerase, envelope (surface) and 
hepatitis B virus X protein (Figure 1b). All open reading 
frames partially overlap, collectively covering the entire 
genome. Viral regulatory elements, which control trans­
cription and replication, are included within the protein-
coding sequences. Although HBV replicates using an 
error-prone reverse transcriptase, its small, economically 
arranged genome limits sequence plasticity, making HBV 
a good target for RNAi-based therapeutic approaches, 
which rely on nucleic acid hybridization. Moreover, the 
virus produces four transcripts, initiated from four 
different promoters on the cccDNA but all terminating at 
a single polyadenylation site. Therefore, a single RNAi 
modality is theoretically capable of simultaneously 
targeting all four viral mRNAs as well as the pregenomic 
RNA template (Figure 1c).

Synthetic and expressed RNAi activators that 
target HBV
Ideally, anti-HBV sequences should be effective at low 
concentration (potent), stable, with no off-target non-
specific silencing, have limited toxic immunostimulatory 
effects and be easily delivered in various prescribed 
doses. To achieve this, both expressed and synthetic 
RNAi activators have been used. Exogenous anti-HBV 
siRNAs are synthetic analogs of mature miRNA duplexes 
and activate RNAi at the stage of guide strand 
incorporation into RISC. Expressed RNAi activators are 
produced from exogenous genetic elements and mimic 
upstream RNAi intermediates that are recognized by 
Drosha and/or Dicer enzymes to produce active siRNAs. 
The chronic nature of HBV infection means that a 

Figure 1. A schematic of the hepatitis B virus genome structure, 
gene arrangement and expressed transcripts. (a) The partially 
double-stranded genome is shown associated with a viral capsid 
(gray hexagon). (b) The four viral open reading frames encoding 
the core (C), polymerase (P), surface (S) and hepatitis B virus X (HBx) 
proteins, colored to show how they partially or fully overlap each 
other. (c) Four major viral RNA species (outer arrows) are transcribed 
from the covalently closed circular DNA (cccDNA) template and 
terminate at a single polyadenylation signal. Targeting the X 
transcript of the viral genome (indicated by shaded gray region) 
ensures that a single RNAi modality inhibits all viral-produced RNAs, 
including the greater-than-genome-length pregenomic RNA.
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sustained effect of anti-HBV agents is essential. 
Unmodified synthetic miRNA mimics generally have a 
short duration of efficacy and may be unsuited to treat­
ment of persistent HBV infection. Sustained silencing 
with chemically modified siRNAs or expressed sequences 
may therefore be preferable.

Improving safety and specificity by chemical modification
Chemical modification has been used to improve 
stability, silencing specificity and efficiency of the RNAi 
activators [22]. Inclusion of 2’-O-methyl RNA and 
2’-fluoro ribose moieties, use of locked nucleic acid 
siRNA derivatives and incorporation of phosphorothioate 
backbone modifications have been reported to improve 
siRNA efficacy [23-26]. Substitution of ribose with the 
six-carbon sugar altritol was also recently found to 
enhance stability and efficacy of siRNAs [27], and this 
chemical modification has shown promise in preclinical 
testing against HBV [28]. Off-target effects caused by 
immunostimulation and activation of the Toll-like 
receptor proteins TLR3, TLR7 and TLR8 [29,30] by 
siRNAs are important considerations in the development 
of RNAi-based HBV therapy. Avoidance of certain ‘danger’ 
motifs (such as 5’-GUCCUUCAA-3’, 5’-UGUGU-3’ and 
GU-rich sequences), ensuring that the length of siRNAs 
does not exceed approximately 27 bp, and various 
chemical modifications can be used to diminish immuno­
stimulation [31].

Unintended hybridization to host cellular sequences 
may be another complicating side effect of therapeutic 
siRNAs. The seed region of any potentially therapeutic 
guide sequence is likely to be complementary to non-
targeted cellular mRNA and result in non-specific trans­
lational suppression. Interestingly, a 2’-O-methyl modifi­
cation at nucleotide 2 from the 5’ end has been found to 
attenuate this off-target silencing by siRNAs [26]. Ensur­
ing a guide strand selection bias in favor of the intended 
antisense sequence is also important to limit non-specific 
gene silencing. Weak interstrand bonding at the 5’ end of 
the intended guide [32] and incorporating a 5’-O-methyl 
group on the terminal ribose of the sense strand [33] 
facilitate appropriate selection of guide strands by RISC. 
Collectively, these results show that chemical modifica­
tions are very useful to improve the safety profile and 
specificity of siRNAs, which are critical for development 
of anti-HBV RNAi-based therapy.

Endoribonuclease-prepared siRNAs are alternative RNAi 
activators
Endoribonuclease-prepared siRNAs (esiRNAs) have been 
developed as interesting alternative RNAi activators 
[34,35]. These silencing sequences are different from the 
new class of endogenous siRNAs (also termed esiRNAs) 
that have been found in Drosophila melanogaster [36] 

and oocytes of mice [37] in that the formation of 
endoribonuclease-prepared RNAs in vitro involves 
processing of large dsRNA by recombinant Dicer or 
Escherichia coli RNase III to produce a large pool of 
different siRNAs targeted to a specific viral sequence. 
When used against HBV, esiRNAs inhibited viral replica­
tion in culture and in vivo [38]. An intriguing observation 
was that esiRNAs were capable of diminishing the 
concentration of viral cccDNA templates. Other 
researchers [39,40] report similar findings and ascribe 
them to a feedback mechanism in which knockdown of 
reverse transcription of pregenomic RNA is effected by 
inhibition of HBV surface antigen production. However, 
inhibition of cccDNA production following RNAi-
mediated HBV gene silencing has not been a constant 
observation [41], and non-specific effects as a cause for 
this observation need to be excluded [17,42].

DNA expression cassettes for delivery of RNAi
Good progress has been made in developing DNA 
expression cassettes that transcribe HBV-silencing 
sequences. Short hairpin RNA (shRNA) mimics of pre-
miRNA or primary (pri-)miRNA shuttle sequences have 
typically been incorporated into expression cassettes. 
RNA polymerase III (Pol III) transcription regulatory 
elements have been used successfully but a concern has 
been that overproduction of anti-HBV shRNAs may 
disrupt endogenous miRNA function [43]. Studies have 
recently shown that Pol II promoters can be used in 
highly effective monomeric or multimeric anti-HBV 
cassettes, which include features of naturally occurring 
miRNAs [44-46]. Research focus has therefore shifted 
towards the use of weaker Pol III promoters and the 
development of Pol II RNAi expression cassettes capable 
of tissue-specific and inducible expression of RNAi 
activators [45,47]. DNA encoding anti-HBV RNAi activa­
tor sequences can be propagated conveniently in plasmids 
(pDNA), PCR amplicons and highly efficient hepatotropic 
recombinant viral vectors such as adenoviruses and 
adeno-associated viruses (AAVs). Although insertion of 
RNAi cassettes into pDNA is a routine procedure of 
molecular biology, safe and efficient use of pDNA is 
limited by plasmids’ large size, and the presence of 
antibiotic resistance genes and immunostimulatory CpG 
motifs (reviewed in [48]). DNA minicircles, which can be 
generated by site-specific recombination of pDNA in 
bacterial cells, may overcome these problems. However, 
variable production efficiency and problems of contami­
nating pDNA currently limit their widespread use. 
Smaller PCR-generated linear expression cassettes, 
which include only essential components of the RNAi 
expression cassettes, have been used successfully as an 
alternative template for expression of anti-HBV RNAi 
effecters [49]. Propagation of these sequences is 

Weinberg and Arbuthnot Genome Medicine 2010, 2:28 
http://genomemedicine.com/content/2/4/28

Page 3 of 7



convenient and incorporation of modifications such as 
stabilizing flanking hairpins [50] and phosphorothioate-
modified oligonucleotide primers is easily achieved [51]. 
Linear DNA traverses nucleopores efficiently [52] and 
may therefore improve delivery efficiency of RNAi 
expression cassettes.

Models of HBV replication
The development of any type of new therapy, including 
RNAi-based HBV therapy, typically involves a series of 
investigations that progresses from initial testing in 
cultured cells to rigorous analysis in animal models 
before clinical trials. A difficulty with research on HBV 
has been the limited availability of cell lines that are 
infectable with HBV, as well as the lack of a suitable small 
animal equivalent of human HBV infection. Surrogate 
models, which usually involve transfection of cells in 
culture or in vivo with HBV replication-competent 
plasmids, have therefore been used. Hydrodynamic injec­
tion of mice with HBV replication-competent plasmid is 
a convenient approach to simulate infection in vivo [53]. 
However, this model has some drawbacks given that the 
procedure itself is hepatotoxic and viral replication is 
transient. HBV transgenic mice have been used as a 
more stringent model and HBV replication in these 
animals resembles the clinical condition of chronic 
HBV infection. Chimeric immunodeficient mice that 
are grafted with human hepatocytes have also been 
used as a murine model of viral replication [54,55]. The 
livers of these mice, which are colonized with human 
hepatocytes, can be infected by HBV to enable testing 
of efficacy of antiviral agents. Larger animal models of 
HBV infection are available but are complicated by 
requirements for specialized housing and ethical issues. 
Examples include the woodchuck [56], tree shrew [57] 
and chimpanzee [58].

Delivery of anti-HBV RNAi activators
As nucleic acids, synthetic and expressed RNAi activators 
are large negatively charged molecules and their delivery 
to cellular targets requires the use of vectors. Although 
progress has been made in this field, achieving safe and 
efficient transport of RNAi activators to cellular targets 
remains the most significant hurdle that needs to be 
overcome before the goal of RNAi-based HBV therapy is 
realized. The hepatotropism of HBV requires systemic 
administration of antiviral formulations. This is more 
complicated than topical administration of antivirals, 
which can be used to counter infections such as those 
caused by respiratory syncytial virus [59]. An additional 
consideration is that to achieve sustained silencing of 
chronic HBV infection, repeated administration of 
vectors may be necessary, in which case avoidance of 
immunostimulation is important.

Viral and non-viral vectors have both been used to 
deliver anti-HBV sequences in vivo. Although a variety of 
non-viral vectors can be used for this purpose, liposome 
nucleic acid complexes (lipoplexes) have been used most 
commonly. Lipoplexes are compatible with the use of 
modular assembly to tailor biological properties for 
specific applications. An example is the addition of galac­
tose residues to non-targeting vectors to enable direct 
interaction with the liver-specific asialoglycoprotein recep­
tor [60]. Addition of ‘stealth’ molecules such as PEG can be 
used to improve vector stability and facilitate passive 
targeting of the liver. Modular lipoplexes were used 
successfully to deliver anti-HBV siRNAs in the stringent 
transgenic mouse model [61]. Chemically modified anti-
HBV siRNAs, encapsulated within lipids to form stable 
nucleic acid-lipid particles (SNALPs), silenced HBV 
replication in mice that had been subjected to hydro­
dynamic injection with an HBV replication-competent 
plasmid [23]. Recently, rational design of cationic lipid 
components of SNALPs has been used to improve their 
efficiency [62]. siRNA doses as low as 0.01 mg per kg body 
weight were capable of silencing an endogenous hepatic 
gene. This is potentially very useful for advancing HBV 
RNAi-based therapy; administration of low doses of the 
RNAi effecter diminishes the risk of unwanted side effects.

Among recombinant viral vectors, adenoviruses and 
AAVs have been used to deliver anti-HBV expression 
cassettes in vivo. Infection of HBV transgenic mice with 
adenoviruses [14,63] or AAVs [43,64] carrying Pol II- or 
Pol III-driven anti-HBV shRNA cassettes inhibited viral 
replication significantly. Although adenoviruses are very 
effective hepatotropic vectors, there are concerns about 
their immunostimulatory effects after systemic adminis­
tration. To attenuate immune responses against the 
vector and also to improve the anti-HBV effects of 
repeated administration, PEG modification of anti-HBV 
shRNA-expressing adenoviruses was used [65]. Newer 
generation helper-dependent or ‘gutless’ adenoviruses, 
which lack viral protein-expressing sequences, have 
diminished immunostimulatory properties and can also 
achieve sustained silencing. A recent study has reported 
the use of anti-HBV helper-dependent adenoviruses [66]. 
Only modest silencing was achieved, but this was 
ascribed to low efficacy of the selected anti-HBV 
expression cassette. The safety and low immunogenicity 
of recombinant AAVs have generated interest in this class 
of vector for delivery of anti-HBV RNAi sequences. Anti-
HBV hepatotropic AAVs have been generated by combin­
ing the widely used AAV-2 serotype with the capsid of 
the liver-specific AAV-8 [67]. To overcome diminished 
HBV silencing efficacy caused by an immune response to 
particular AAV serotypes, sequential administration of 
different vectors with different capsids was used to 
achieve sustained HBV silencing [68].
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Conclusions and prospects for clinical application
The progress made in the field of RNAi-based HBV 
therapy has been impressive. Research on the topic has 
gained momentum, which will no doubt sustain the 
continued progress required to achieve the goal of 
developing HBV treatment suitable for clinical 
applications. Nevertheless, there are significant hurdles 
that need to be overcome. These include optimizing dose 
control, limiting off-target effects, improving delivery of 
RNAi effecters and demonstration of efficacy in suitable 
animal models before embarking on clinical evaluations. 
As the mechanisms responsible for off-target effects 
become better understood, so the approaches to diminish 
their significance have also advanced. New-generation 
antiviral expression cassettes and ingenious methods of 
chemical modification of synthetic siRNAs go a long way 
to avoiding unintended effects. Although promising viral 
and non-viral vectors have been developed for delivery of 
RNAi activators to hepatocytes, improvements in safety 
and efficacy remain an important objective before their 
eventual clinical application. Eliminating HBV cccDNA 
from infected hepatocytes is also an important 
consideration. EsiRNAs apparently caused a decrease in 
cccDNA in transfected hepatocytes in culture [38-40], 
but a recent study demonstrated that shRNA-mediated 
suppression did not alter intracellular cccDNA concen­
trations [41].

The current phase of developing anti-HBV RNAi-
based therapy is still at a preclinical stage. Most studies 
have been carried out in cultured cells and in murine 
models of the infection. Although useful, these models 
have their limitations. Detailed evaluation in animal 
models that simulate the human condition more closely 
is a priority, and outcomes from these studies will be 
useful to guide the development of clinical trials. 
Treatment regimens that use RNAi activators in 
combination with established licensed drugs will be 
interesting to assess and may reveal synergy of drug 
combinations. Despite difficulties with efficient delivery 
and limitation of off-target effects, and despite the 
limited availability of suitable animal models of HBV 
infection, advances in the development of RNAi-based 
HBV therapy are likely to continue to be rapid. Already, 
many other RNAi-based therapies have been tested in 
several early-stage clinical trials. Current indications 
are positive that RNAi-based drugs can be safely 
administered to humans and can specifically degrade 
target RNAs in vivo [69]. Moreover, development of 
anti-HBV RNAi therapies benefits efforts to inhibit 
liver-specific therapeutic targets and specifically other 
liver infections, such as hepatitis C virus. Future 
research should see existing impediments surmounted 
and the prospects for advancing RNAi-based therapy 
for chronic HBV infection are exciting.
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