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Accurately modeling nitrification and understanding the role specific ammonia- or nitrite-

oxidizing taxa play in it are of great interest and importance to microbial ecologists.

In this study, we applied machine learning to 16S rRNA sequence and nitrification

potential data from an experiment examining interactions between cropping systems and

rhizosphere on microbial community assembly and nitrogen cycling processes. Given

the high dimensionality of microbiome datasets, we only included nitrifers since only a

few taxa are capable of ammonia and nitrite oxidation. We compared the performance

of linear and nonlinear algorithms with and without qPCR measures of bacterial and

archaea ammonia monooxygenase subunit A (amoA) gene abundance. Our feature

selection process facilitated the identification of taxons that are most predictive of

nitrification and to compare habitats. We found that Nitrosomonas and Nitrospirae were

more frequently identified as important predictors of nitrification in conventional systems,

whereas Thaumarchaeota were more important predictors in diversified systems. Our

results suggest that model performance was not substantively improved by incorporating

additional time-consuming and expensive qPCR data on amoA gene abundance. We

also identified several clades of nitrifiers important for nitrification in different cropping

systems, though we were unable to detect system- or rhizosphere-specific patterns

in OTU-level biomarkers for nitrification. Finally, our results highlight the inherent risk of

combining data from disparate habitats with the goal of increasing sample size to avoid

overfitting models. This study represents a step toward developing machine learning

approaches for microbiome research to identify nitrifier ecotypes that may be important

for distinguishing ecotypes with defining roles in different habitats.

Keywords: nitrifiers, machine learning, nitrification, microbiome, ammonia-oxidizers

INTRODUCTION

Microbial communities mediate a variety of biogeochemical cycles that are important to
agricultural productivity. For example, nitrification, the conversion of ammonia to nitrite
and eventually to nitrate by ammonia- and nitrite-oxidizing bacteria, is greatly influenced
by agricultural practices designed to limit nitrate leaching and contamination of waterways,
particularly in the Midwest corn belt. Given its importance, there has been great interest in
modeling nitrification and the role of specific nitrifier ecotypes (i.e., an ecologically distinct lineage
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within a traditional species classification) (Booth et al., 2005;
Ward et al., 2006; Koeppel et al., 2008; Zhang et al., 2010;
Verhamme et al., 2011), particularly the ammonia-oxidizers
since they mediate the rate-limiting step (Hart et al., 1994). A
greater understanding of the potential role of distinct ecotypes
in nitrification could provide insights into how ecosystems shape
nitrifier evolution and, consequently, their nitrifying properties.

As the number of soil and plant microbiome datasets grows,
there is an increasing desire to use microbiome data to diagnose
disease (Sze et al., 2018, 2019; Topçuoglu et al., 2020), predict
crop yields (Wang et al., 2016; Chang et al., 2017; Shahhosseini
et al., 2020, 2021), or model biogeochemical/ecosystem processes
(Shahhosseini et al., 2019; Thompson et al., 2019). Biological
models of complex systems have long relied on simple
input–output models refined over the course of exhaustive
experimentation. Models utilizing statistical inference offer only
limited predictive capabilities, in part because of the inherent
noisiness and high dimensionality of biological data, such as with
16S rRNA gene amplicon data. Machine learning provides one
possible solution to these challenges and is increasingly used for
modeling complex biological data (Pasolli et al., 2016; Chang
et al., 2017; Thompson et al., 2019). The primary benefits of
machine learning over more traditional statistical methods are
that machine learning models do not rely on strict assumptions
about the sources of data and the data itself, and they are capable
of taking all factors into account despite noise and variation in
data collection methods (Camacho et al., 2018). Additionally, the
express purpose of machine learning models in this capacity is to
predict outcomes based on given data, whereas statistical models
are generally capable of inferring relationships between given
data but are not designed to predict future outcomes (El Naqa and
Murphy, 2015; Camacho et al., 2018). Regression-based machine
learning provides a means to elucidate relationships between
distinct ecotypes/taxons within a habitat and the ecosystem
processes they mediate.

In this report, we usedmachine learning to model nitrification
to determine whether specific nitrifier ecotypes can be identified
as potential biomarkers for unique habitats or management
regimes. Given the high dimensionality of microbiome data,
we only included nitrifiers since they are capable of aerobic
ammonia and nitrite oxidation, and there likely exist unique
ecotypes that define nitrification rates. In soil, nitrifier taxa
include Nitrobacter (α-Proteobacteria), Nitrosomonadaceae (β-
Proteobacteria), Nitrospirota, Nitrospinota, and Thaumarcheota.
Rather than focusing on a binary classification scheme, we
used the relative abundance of each nitrifier OTU to predict
a continuous variable, nitrification potential. In nitrification
potential, nitrate production rates are determined under optimal
conditions over a short period of time when substrate
(ammonium) is not limiting. We assumed that nitrifier relative
abundance measured using 16S rRNA gene profiling reflects the
community’s ability to nitrify. Here, we used rRNA amplicon
microbiome data from a study that examined interactions
between the cropping system and the rhizosphere on nitrification
(Bay et al., 2021). The rhizosphere reflects plant rhizodeposition
influences on the soil microbial communities’ metabolic activities
within 5mm of the root. This is likely crucial to nutrient

cycling since the plant is capable of influencing nutrient
dynamics by directly absorbing nitrogen or by altering microbial
community activities (Henneron et al., 2020). With this dataset,
we explored the use of linear and nonlinear machine learning
to model nitrification to identify nitrifier ecotypes specific to the
rhizosphere or a cropping system. We also explored the benefits
of including other metadata and the potential risks of merging
datasets from distinct habitats.

MATERIALS AND METHODS

Site Description and Data Collection
The soil used for generating the 16S rRNA amplicon data (Bay
et al., 2021) used in this study was collected from the Iowa
State University Marsden Farm’s (Boone County, IA) long-
term cropping system experiment. The Marsden site experiment
examines three cropping systems differing in rotation complexity
and fertilizer inputs; detailed descriptions of management
practices and site properties were previously described (Davis
et al., 2012). We collected soil from a conventional system
consisting of a 2-year rotation of maize and soybean that receives
inorganic N fertilizer and a diversified system consisting of
a 4-year rotation of maize, soybean, oats/alfalfa, and alfalfa
that receives composted cattle manure as fertilizer and an
occasional inorganic N side-dress (Davis et al., 2012; Tamburini
et al., 2020). These soils were used to fill rhizotrons (boxes
that readily disassemble to access roots) to grow two maize
plants to the V4/V5 developmental stage, when plants are
poised to rapidly take-up N to meet their nutritional needs.
We predicted that there would be greater coupling between
plant roots and microbes, resulting in lower nitrification rates
in the rhizosphere of diversified systems. In this study (Bay
et al., 2021), we used one set of rhizotrons for obtaining bulk
soil and rhizosphere samples for extracting DNA for generating
16S rRNA gene amplicon profiles of the microbial community
and for quantitative PCR measurements of ammonia-oxidizing
bacteria (AOB) and archaea (AOA) ammonia monooxygenase
subunit A (amoA) gene abundance. The second set of rhizotrons
was used for collecting rhizosphere soil from rhizotrons planted
with maize and bulk soil from rhizotrons that were unplanted.
The rhizosphere and bulk soil were used for determining
the potential rates of nitrification as determined previously
(Herman et al., 2003). The ammonia and nitrate pool sizes
were determined by the ISU Soil and Plant Analysis Laboratory.
AOA/AOB abundance, nitrification potential and gross rates, and
nitrate/ammonia pool size results have been published previously
(Bay et al., 2021).

16S rRNA Gene Sequencing Data
Bulk soil and rhizosphere samples were used for 16S rRNA
gene sequencing of the V4 region (515F/806R primer set) to
measure the relative abundance of microbial populations. In
this study, the rhizosphere includes fine soil adhering to the
root and the rhizoplane (root surface-soil interface) since the
entire plant root was immersed into a buffer, vortexed, and
sonicated prior to centrifugation to obtain a rhizosphere sample
as described previously (Bay et al., 2021). The sequence data
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used in our analyses were generated by Bay et al. (2021), which
are available through NCBI short read archive (PRJNA686799).
Following the removal of adapters, mitochondria, chimeras,
and singletons, quality filtering and OTUs clustering taxonomy
were assigned at the 97% level using SILVA (version 128). In
this dataset, there were approximately 2,500 conventional bulk
soil, 2,800 diversified bulk soil, 2,250 diversified rhizosphere,
and 2,500 conventional rhizosphere OTUs (Bay et al., 2021).
From this OTU dataset, we extracted known ammonia- and/or
nitrite-oxidizing bacteria (Thuamarchaeota, Nitrosomondaceae,
Nitrobacter, Nitrospinota, and Nitrospirota); the δ-Proteobacteria
Nitrospinae are now considered a separate phylum, the
Nitrospinota (Luecker et al., 2013). This resulted in 226 OTUs
from which a subset was used in our analyses based on the OTUs
feature selection criteria outlined below.

Study Design
For this study, we had 15–16 measurements (nitrifier OTUs,
nitrification potential rates, qPCR data, ammonia, and nitrate
pool sizes) for each of the conventional bulk soil, conventional
rhizosphere, diversified bulk soil, and diversified rhizosphere.
Consequently, there were 30–31 measurements (nitrifier OTUs,
nitrification potential rates, qPCR data, and ammonia and
nitrate pool sizes) for conventional cropping systems, diversified
cropping systems, bulk soil, and rhizosphere.

Feature Selection
For this study, features for the machine learning modeling
included nitrifier OTUs and ammonia and nitrate pool sizes,
as well as qPCR measurements of AOB and AOA amoA gene
abundance in a separate analysis. Given the large number of
nitrifier OTUs relative to the sample size for each analysis,
we developed a hierarchical OTU feature selection process to
reduce the number of nitrifier OTUs to minimize the potential
for overfitting the model. This process included retention of
an OTU if detected in all the samples, meeting a minimum
taxon-specific relative abundance threshold (∼1/50th of the
most abundant OTU in that taxon), and whether data suggested
the OTUs were potentially metabolically active based on
RNA-based profiling (ribosome abundance) in the same soil
sample (Bay et al., 2021). We did not include OTUs that were
highly correlated (Pearson’s correlation R2 ≥ ±0.8, p ≤ 0.05)
with each other unless the OTUs were identified as a module
or connector hub in separate network analysis (unpublished
data); co-correlated OTUs with the highest relative abundance
were retained. The dataset, which comprises 42 features (OTUs
and meta-data) in each comparison, was then subjected to
principal component analysis (PCA) to further reduce the
number of features by retaining only those that collectively
explain 80% of the data’s variance. We also standardized each
OTU by centering them on their mean and scaling them by
their standard deviation, before the PCA (Abdi and Williams,
2010). The relative abundance of each OTU k in the sample
p has been standardized according to the following equation:

relative abundance of OTU
k,p

standardized
=

relative abundance of OTUoriginal
k,p −mean (relative abundance of OTUk)

std (relative abundance of OTUk)

where mean (relative abundance of OTUk) and std (relative
abundance of OTUk) are the mean and standard deviation of the
relative abundance of kth OTU over all samples, respectively.

Model Training and Evaluation
Supervised machine learning was used to predict nitrification
potential from OTUs of known ammonia- and nitrite-oxidizers
and ammonia and nitrate pool sizes with or without ammonia-
oxidizer amoA gene abundance. Models were developed
primarily using the sklearn package in Python (version 3.7 or
later). We compared linear (multiple regression and support
vector machine (SVM)) and nonlinear (decision tree and random
forest) models. The k-fold cross-validation is used for both
hyperparameters tuning and the performance evaluation of each
prediction model. In k-fold cross-validation, data is split into k,
equal-sized folds, and in each iteration, k-1 folds are considered
as the training set and the remaining fold as the test set. This
process continues until all folds have been considered once as a
training set and once as a test set. This approach was used since
the number of samples was too low for the classically portioned
separate training and test sets. The hyperparameters of each
prediction model were tuned through a 3-fold cross-validation,
using a grid or random search algorithm, depending on the
number of hyperparameters and the computational limitations.
We selected hyperparameters that generated lower average cross-
validation root mean square error (RMSE) values. Using the
tuned hyperparameters, training mean absolute percent error
(MAPE) was calculated based on all samples, whereas a 10-fold
cross-validation with 30 replications was adopted to calculate the
test MAPE. The lower the MAPE, the better the model performs,
and the closer the training and test MAPE are, the less the model
is prone to overfitting. RMSE and MAPE are defined as follows:

RMSE =

n
∑

i=1

√

(ŷi − yi)
2

MAPE =
1

n

n
∑

i=1

∣

∣ŷi − yi
∣

∣

yi

∗

100

where yi, ŷi, and n define the measured relative abundance of ith

OTU, the predicted value of relative abundance of ith OTU, and
the number of samples in the set (training set or each fold in the
cross-validation), respectively.

Model Descriptions
The linear (multiple linear regression) model also known as least
square regression predicts a line that is the best possible fit to the
data points, for which the formula is as follows:

ŷi = β̂0 + β̂1xi1 + β̂2xi2 + . . . + β̂PxiP

Ŷ = Xβ̂
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β̂ matrix is estimated using the least squares method (Brown,
2009). Hyperparameter tuning is not defined for this prediction
model since it does not have one.

Support vector machine (SVM) regression uses a linear kernel
to map the feature space (P dimension) into a higher dimension
(m), followed by the construction of a linear model in the new
feature space, which is used for predicting a data point.

This linear model can be shown as follows:

f (x, w) =

m
∑

j=1

wjgj (x) + b

gi (x) : set of linear or nonlinear transformation (here g (x) = x),

b is the bias term that can be ignored by centering the data

The SVM regression performs linear regression in high-
dimension feature space using an insensitive loss function
and simultaneously reduces model complexity by minimizing
| |w| |2. This can be achieved by introducing nonnegative slack
variables to measure the deviation of training samples outside
the defined insensitive zone. Thus, SVM regression is formulated
to minimize the penalty term that controls how trade-offs are
tolerated (Wang and Hu, 2005). The main difference between a
linear SVR and linear regression is that SVR uses only a subset of
the data, ignoring the points close to the model’s prediction, and
SVR’s optimization function is independent of the dimensionality
of the feature space (Kleynhans et al., 2017).

A decision tree is constructed by recursive partitioning,
starting from the root node (known as the first parent), each node
can be split into children nodes. These nodes can then be further
split, and they themselves become parent nodes of their resulting
children nodes. At each split, one of the features is selected to
split the samples. To split the nodes at the most informative
features, an objective function is defined and optimized via the
tree learning algorithm (Kim and Hong, 2017). From the various
hyperparameters examined, we identified two hyperparameters
(maximum depth of the tree and the maximum number of
features) that significantly influenced model performance, and
thus they were used in these analyses to identify the best
node split. While valuable, decision trees are computationally
expensive and prone to overfitting.

Random forest is an ensemble method that combines multiple
decision trees, which can reduce the variance of decision trees.
The random forest begins withmany bootstrap samples extracted
randomly with the replacement from the original dataset. Then a
regression tree is fitted to each of the bootstrap samples (Wang
et al., 2016). The ensemble prediction is calculated by averaging
the predictions of all trees, producing the final prediction. For
the random forest in this study, we identified three significant
hyperparameters for consideration in each split by using a
random search approach: number of trees (T), maximum depth
of each tree, and maximum number of features.

Code Availability
The code is available on GitHub (https://github.com/amini-ISU/
Machine-Learning-Prediction-of-Nitrification-.git). It is written
using Python 3.7 or later, and the most used package is sklearn.

RESULTS

Model Performance
We used a hierarchical feature selection process to reduce the
number of OTUs tominimize the potential for overfitting models
as described in the “Materials and methods” section. Briefly,
this included retention of nitrifier OTUs only if their relative
abundance met a minimum threshold (1/50th of the largest
relative abundance of an OTU in that taxon) and removal
of OTUs if they were highly correlated (R2 ≥ ±0.8, p ≤

0.05) to each other; the most abundant correlated OTU was
retained (Supplementary Tables S1, S2). The analyses included
37 nitrifier OTUs and ammonia and nitrite pool sizes for a total
of 39 features. In separate analyses, we also included AOA and
AOB amoA gene abundance data, resulting in 42 features. We
then performed principal component analysis on the datasets and
retained only those features that collectively explained 80% of the
data variance.

We evaluated the predictive performance of linear (regression
and support vector machine [SVM]) and nonlinear models
(decision tree and random forest) by comparing training and test
accuracy (held out cross-validation) and assessing mean absolute
percent error (1-MAPE). Both the linear and nonlinear models
performed comparably, with the random forest consistently
performing only slightly better with the inclusion of AOB and
AOA amoA gene abundance (Tables 1, 2), which suggests that
predicting nitrification could be based on microbiome nitrifier
composition data alone. Both the linear regression and SVM
models performed comparably, while the poorest model was the
decision tree.

Interpretation of Feature Importance
To identify nitrifier ecotypes unique to the rhizosphere or a
cropping system, we evaluated the feature importance extracted
from machine learning models. We interpreted the feature
importance of linear models using the rank of absolute
feature weight for each feature and by whether the signs of
feature weights were predictive of potential nitrification rates,
as described previously (Topçuoglu et al., 2020). While only
amendable to linear models, it provides information on the
sign and magnitude of each feature in predicting nitrification.
Very few of the highest ranked features were shared between
linear and SVM regression for each cropping system by
rhizosphere/soil comparison, with diversified bulk soil having
the most in common (5 out of 10) (Figures 1, 2). Only
Nitrosomonadaceae OTU 1013 and NH+

4 pool size was common
in bulk soil and rhizosphere in both cropping systems in the
linear and SVM models, respectively. For each model, there
were more common features within a cropping system than
when comparing the soil or rhizosphere between cropping
systems (Supplementary Table S3). For the nonlinear models,
we evaluated ranked feature importance but lack information
on whether a feature contributes positively or negatively to
the model. Diversified bulk soil had the fewest (1 out of 10)
while the diversified and conventional rhizospheres had 2–
3 (out of 10) features in common between random forest
and decision tree. The decision tree model identified soil
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TABLE 1 | Machine learning model accuracy (% 1-MAPE).

Linear regression SVM Decision tree Random forest

Model Training Test Training Test Training Test Training Test

Conventional bulk soil 87.4 82.3 87.9 80.5 82.0 66.5 81.6 74.5

Diversified bulk soil 67.5 54.6 75.3 68.1 69.3 53.5 74.4 62.5

Conventional rhizosphere 76.9 61.1 79.8 58.1 79.2 64.4 80.0 67.6

Diversified rhizosphere 81.2 74.9 84.2 71.4 82.1 56.4 82.2 74.2

Bulk soil 71.6 64.5 73.9 67.3 70.9 56.1 75.3 67.5

Rhizosphere 69.7 57.4 75.6 60.5 75.8 70.7 71.0 63.2

Conventional cropping system 69.3 57.6 76.0 61.7 70.3 67.9 69.6 62.8

Diversified Cropping system 71.3 63.5 74.1 65.3 70.7 62.9 75.6 66.7

The best performing model (highest % test accuracy) is in bold. Blue, the best; Red, 2nd best; and Green, 3rd best.

TABLE 2 | Machine learning model accuracy (% 1-MAPE) with ammonia oxidizer amoA gene abundance.

Linear regression SVM Decision tree Random forest

Model Training Test Training Test Training Test Training Test

Conventional bulk soil 87.2 81.9 87.8 83.6 78.8 71.8 82.7 77.6

Diversified bulk soil 66.7 59.1 71.0 72.1 78.8 59.2 75.5 66.2

Conventional rhizosphere 79.2 61.0 82.9 57.6 78.9 61.8 79.9 67.8

Diversified rhizosphere 79.1 74.3 84.9 69.0 87.4 65.1 84.5 76.6

Bu 00lk soil 71.3 63.5 74.1 65.3 70.7 62.9 75.6 66.7

Rhizosphere 59.4 57.6 76 61.7 70.3 67.9 69.6 62.8

Conventional cropping system 83.8 73.3 86.6 76.0 74.2 69.3 78.5 70.5

Diversified Cropping system 64.9 61.4 69.0 58.8 68.4 38.0 72.3 59.7

The best performing model (highest % test accuracy) is in bold. Blue, the best; Red, 2nd best; and Green, 3rd best.

crenarchaeotic Gp. OTU 136 was identified as an important
feature in the bulk soil and rhizosphere in both cropping
systems; no common OTUs were identified in the random
forest model. Compared to the linear models, the nonlinear
models had fewer OTUs in common within cropping systems,
and between soil and rhizosphere (Figures 1, 2). Interestingly,
there were no common OTUs between the diversified bulk soil
and the rhizosphere (Figure 2 and Supplementary Table S3).
For each cropping system and soil/rhizosphere combination,
there were no common OTUs among the four machine
learning models.

We also explored whether linear or nonlinear models
identified different nitrifier taxa as top ranked features. There
were more highly ranked Nitrosomonas and Nitrospirae OTUs
in the conventional soil and rhizosphere, while there were
more Thaumarchaea in the diversified soil and rhizosphere
(Figures 1, 2). Interestingly, in the bulk soil, the nitrite oxidizers
that are present are often represented within the first several
important features. Although we identified patterns in higher
taxonomic levels between treatments, there is less consensus
between individual OTUs present in the most important features.
Most OTUs are identified as an important feature in at least
one model across treatments but were not consistently identified
in the top 10 features of a specific cropping system or in
the rhizosphere. Importantly, OTU relative abundance does

not predicate importance, with high abundance OTUs having
both high and low importance (Supplementary Tables S4).
When comparing feature importance ranks by phylogenetic
relationships, there are a few discernable patterns (Figure 3). For
example, the clade comprising Nitrosomonadaceae OTUs 6919,
586, 146, 467, and 582 where comprised of most of the highly
rankedOTUswithin this family. Likewise, themost highly ranked
Nitrospira OTUs (9, 233, and 558) are within the same node
(Figure 3).

While cropping system or rhizosphere datasets were twice
as large as individual cropping system and soil/rhizosphere
comparisons, the increase in dataset size did not improve
model performance (Tables 1, 2). While the inclusion of
ammonia-oxidizer amoA gene abundance greatly improved the
accuracy of all models of the conventional system, it decreased
the accuracy of models of the diversified system: it had little
effect in bulk soil or rhizosphere. This is surprising given
that there are significant correlations between nitrification
and AOB amoA gene abundance in both conventional
and diversified systems, but without a consistent pattern
in the cropping system by soil/rhizosphere comparisons
(Supplementary Table S5). There were no common OTUs
in either the soil/rhizosphere or cropping system analyses
(Figures 4, 5), and there was no relationship between feature
importance and relative abundance (Supplementary Table S6).
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FIGURE 1 | Ranks of absolute feature weights of linear (A,B,E,F) and nonlinear (C,D,G,H) models for conventional bulk soil and rhizosphere. The 10 highest ranked

features in absolute feature weights are displayed from highest to lowest. In regression (A,E) and SVM (B,F), the features and importance of OTUs that were positively

associated with nitrification are represented by black dots, and those negatively associated with nitrification are shown in blue. The values for linear regression are the

absolute feature importance, while for SVM, the log10 relative absolute feature importance. Within each model, bold OTUs indicate the same OTUs in bulk soil and

rhizosphere within a cropping system, and underlined features indicate the same OTUs in bulk soil or rhizosphere between cropping systems. Random Forest (C,G).

Decision Tree (D,H).

There was equal representation of Thaumarchaeota in the
soil and rhizosphere models, with slightly more Nitrosomonas
in soil compared to rhizosphere. Interestingly, there were

more Nitrosomonas OTUs in the top ranked features in the
diversified compared to conventional systems, while there
were more nitrite-oxidizers in the conventional system.
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FIGURE 2 | Ranks of absolute feature weights of linear (A,B,E,F) and nonlinear (C,D,G,H) models for diversified bulk soil and rhizosphere. The 10 highest ranked

features of absolute feature weights are displayed from highest to lowest. In regression (A,E) and SVM (B,F), feature importance of OTUs positively associated with

nitrification are represented by black dots, and those negatively associated with nitrification are shown in blue. Values for linear regression are the absolute feature

importance, while for SVM, the log10 relative absolute feature importance. Within each model, bold OTUs indicate the same OTUs in bulk soil and rhizosphere within a

cropping system and underlined features indicate the same OTUs in bulk soil or rhizosphere between cropping systems. Random Forest (C,G). Decision Tree (D,H).

When comparing feature importance ranks by phylogenetic
relationships, the clade comprised of Thaumarchaeota OTUs
13, 1737, 8961, 21, and 10301 were highly ranked features
in the rhizosphere, and conventional system, but not the

diversified system or bulk soil (Figure 6). In contrast, the
diversified system had many highly ranked features within a
Nitrosomonadacae clade comprised of OTUs 467, 588, 146, 298,
and 582 (Figure 6).
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FIGURE 3 | Heat map of importance of specific OTU’s in linear and nonlinear models for each cropping system by habitat. OTU 16S V4 sequences were aligned

using ClustalW in MEGA11, and the trees were generated using the maximum likelihood method with default parameters. Heat map color (within a column) reflects

importance of the top 10 OTUs: white reflects OTUs ranked 10th or below in model importance (linear regression: L; support vector machine: S; decision tree: D;

random forest: R). SCGF, soil crenarchaeotic group family.

Inclusion of Ammonia-Oxidizer amoA

Abundance in Predictive Modeling
We assessed how inclusion of ammonia-oxidizer amoA
abundance influenced feature importance profiles in random
forest given that model accuracy was similar with or
without its inclusion (Tables 1, 2). Generally, the ammonia
oxidizer amoA abundance ratio was a highly ranked (within
the top 10) feature regardless of the type of comparison

(Supplementary Figures S1–S3). In conventional soil, despite
only slightly increasing model accuracy, inclusion of AOA/AOB
abundance made it the most important feature (∼42%), although

it was not highly correlated with nitrification potential in of
itself (Supplementary Table S5). Yet, despite the influence of

including ammonia-oxidizer amoA abundance on random forest
model accuracy of the diversified system (Table 2), AOB amoA
abundance was not a highly ranked feature in the conventional
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FIGURE 4 | Ranks of absolute feature weights of linear (A,B,E,F) and nonlinear (C,D,G,H) models for bulk soil and rhizosphere. The 10 highest ranked features of

absolute feature weights are displayed from highest to lowest. In regression (A,E) and SVM (B,F), feature importance of OTUs positively associated with nitrification

are represented by black dots, and those negatively associated with nitrification are shown in blue. The values for linear regression are the absolute feature

importance, while for SVM, the log10 relative absolute feature importance. Within each model, bold OTUs indicate the same OTUs in bulk soil and rhizosphere.

Random Forest (C,G). Decision Tree (D,H).
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FIGURE 5 | Ranks of absolute feature weights of linear (A,B,E,F) and nonlinear (C,D,G,H) models for each cropping system. The 10 highest ranked features of

absolute feature weights are displayed from highest to lowest. In regression (A,E) and SVM (B,F), feature importance of OTUs positively associated with nitrification

are represented by black dots, and those negatively associated with nitrification are shown in blue. The values for linear regression are the absolute feature

importance, while for SVM, the log10 relative absolute feature importance. Within each model, bold OTUs indicate the same OTUs in both cropping systems. Random

Forest (C,G). Decision Tree (D,H).
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FIGURE 6 | Heat map of importance of specific OTU’s in linear and nonlinear models examining habitat and cropping system. OTU 16S V4 sequences were aligned

using ClustalW in MEGA11, and the trees were generated using the maximum likelihood method with default parameters. Heat map color (within a column) reflects

importance of the top 10 OTUs: white reflects OTUs ranked 10th or below in model importance (linear regression: L; support vector machine: S; decision tree: D;

random forest: R). SCGF, soil crenarchaeotic group family.

soil. In the rhizosphere analysis, AOB amoA abundance became
a top ranked feature despite it not being highly correlated to
nitrification potential (Supplementary Table S5) and did not
substantively improve model accuracy (Table 2).

DISCUSSION

Our results indicate that nitrification potential can be predicted
from nitrifier microbiome composition data using machine
learning and that the results can be as robust as traditional
multivariate linear regression or correlation approaches

(Herman et al., 2003; Booth et al., 2005; Tourna et al., 2008).
Machine learning offers the ability to incorporate the structure
of the microbial communities or a subset of community
members to identify associations between community structure
and a biogeochemical process (Thompson et al., 2019) or
a diseased state (Sze et al., 2019; Topçuoglu et al., 2020).
Traditional statistical approaches frequently rely on identifying
whether a single organism or group of organisms, such as
ammonia oxidizing bacteria or archaea amoA gene or transcript
abundance (Tourna et al., 2008; Verhamme et al., 2011; Ouyang
and Norton, 2020) is associated with a process/state. While much
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has been learned about the contributions of AOA or AOB to
potential nitrification activity (Herman et al., 2003; Ouyang and
Norton, 2020), less is known about the contribution of different
nitrifier ecotypes to nitrification rates.

Both linear and nonlinear approaches generated results with
equivalent accuracy, each providing information on the relative
importance of taxonomic and nontaxonomic features to the
model. The failure to identify common OTUs or clades of
OTUs predictive of how management or the root influences
nitrification could reflect a limitation of this approach or that
each habitat harbors a unique nitrifier community with unique
nitrifying potential. Despite, from a biological perspective, having
relatively large sample sizes (n = 15–16), machine learning
is most appropriate with very large datasets (often with n >

300). Yet, performance accuracy (test 1-MAPE %) did not
improve substantially overall when doubling the sample size
in the rhizosphere, bulk soil, and cropping system analyses.
This highlights the potential risks associated with merging data
from distinct microbial habitats (e.g., rhizosphere vs. soil or
different cropping systems), particularly if the number of samples
from each habitat is relatively small. Sensitivity analyses of
model prediction performance could provide insight into the
appropriate dataset size (Thompson et al., 2019). Additionally, by
including only the taxa capable of ammonia or nitrite oxidation,
we may have excluded community members who could provide
additional insight. While it would have been desirable to include
other taxa as additional features, the large number of OTUs
(∼3,000) dwarfed the number of samples, increasing the risk of
overfitting the model. It is important to note that our analysis
was based on measurements of the potential for nitrification and
microbiome profiles using samples from a single time point (Bay
et al., 2021). Sampling more frequently, more extensively, and/or
at a finer granular scale may provide a more robust classification
and improve accuracy. Additionally, deep learning methods (Oh
and Zhang, 2020; Reiman et al., 2021) could be explored, but our
dataset may suffer from too few samples for such analyses. In our
case, few-shot learning (FSL)may bemore appropriate, as it relies
less on large sample sizes (Sung et al., 2018).

Ammonia and nitrate pool sizes have been used for predicting
nitrification and/or the growth of ammonia oxidizers (Herman
et al., 2003; Verhamme et al., 2011), using standard statistical
techniques, such as stepwise linear regression. Here, inorganic
N pool sizes were more often identified as a top ranked
feature in linear than in nonlinear models, with NH+

4 pool
size being more highly ranked in SVM models. There was no
single taxonomic group whose feature rankings were consistently
higher than other taxonomic groups. For example, Nitrosomonas
and Thaumarchaea generally represented a similar frequency
of top ranked features, with some variation between specific
analyses. What did differ was the representation of specific OTUs
(potential ecotypes) between specific cropping systems soil and
rhizosphere communities. By identifying common highly ranked
OTUs and considering whether those OTUs represent one or
more co-correlated OTUs, we can begin to develop hypotheses
about relationships between these features and nitrification, and
how the plant or management influences those relationships.

We anticipated that the gradients in physiochemical and
microbial properties present in different cropping systems and

between the rhizosphere and bulk soil would provide a means
to determine if specific ecotypes contribute to nitrification
(Smith et al., 2014; Hink et al., 2018). Our analyses revealed
some relationships between feature importance and phylogenetic
similarity in some of the comparisons. For example, specific
Nitrosomonadaceae and Thaumarchaeota clades comprised large
numbers of highly ranked features in multiple models for specific
cropping systems or for soil/rhizosphere. Likewise, there was
the absence of certain Nitrospira lineages in both conventional
and diversified rhizospheres. Whether these patterns reflect
the identification of specific ecotypes needs to be determined
experimentally in future studies assessing nitrification rates by
these specific lineages.

In general, random forest outperformed the linear models
and decision trees, without or with the inclusion of ammonia
oxidizer amoA gene abundance data. Random forest is relatively
easy to perform, but interpretability of the influence of selected
features on the nitrification process is more difficult due to the
lack of insight into whether a feature positively or negatively
influences nitrification. As we do not know a priori which set of
ecotypes drives changes in nitrification, the selection of features
from a group of models may be better than from one method
alone. Our results suggest that inclusion of the time-consuming
(and costly qPCR) ammonia-oxidizer amoA abundance data is
not essential. Yet, although model performance did not change
appreciably when it was included, it did dramatically influence
the identity and position of highly ranked features, providing
different perspectives on taxa that are predictive of nitrification.
For example, in conventional bulk soil, the AOA/AOB amoA
ratio was the most highly ranked feature (42%), and only 25%
of the same features (OTUs) were highly ranked in both analyses.

Our analysis provides insight into the suitability of using a
subset of 16S rRNA microbiome composition data to model a
biogeochemical process mediated by a relatively narrow group of
organisms. Our findings highlight the need to compare different
machine learning models and that the identification of ecotypes
predictive of nitrification is model dependent, providing a basis
for constructing hypotheses to assess relationships between
nitrifier ecotypes on nitrogen cycling dynamics. This may entail
exploring the relative metabolic activity of different nitrifying
clades in each cropping system and in the rhizosphere, since
bulk soil does not adequately reflect nitrification and nitrifier
community assembly near plant roots.
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