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INTRODUCTION

Purinergic signaling participates in physiological and pathophysiological processes in the developing
and adult brain. Here, we discuss the state of the art of developments in P2 adenosine (ATP) and
uridine (UTP) triphosphate activated purinergic receptor research and subsequent applications for
the better understanding of the participation of purinergic signaling in neurodegeneration and
neuroprotection.

In a seminal review in 2008, Burnstock (2008) already defined the most important features of
purinergic P2 receptors in neurodegeneration, defining their roles in brain tissue damage by
excessive extracellular ATP release, induction of neuroinflammation and interference in neural
regeneration processes (scar formation, neuronal sprouting and adult neurogenesis). Professor
Burnstock cited in this regard cerebral ischemia, Parkinson’s (PD), Alzheimer’s (AD) and
Huntington’s (HD) diseases and concluded that hyper-expression and hyperactivities of some
purinergic P2 receptors would be disease worsening, such as P2X7 receptors (P2X7R).

Neuroinflammation is strongly related to P2X7R activation, since danger associated molecular
patterns (DAMPs), including extracellular ATP, are released (Ribeiro et al., 2020). Hence, ATP-
induced activation of P2X7R prompts downstream release of proinflammatory mediators, such as
interleukin 1β (IL-1β), through the assembling of the NLRP3 inflammasome (Bartlett et al., 2014).
Thus, the NLRP inflammasome is followed by a downstream pro-apoptotic signaling cascade
involved in neurodegenerative diseases (Heneka et al., 2010). Neuroinflammation involves the
activation of microglia and astrocytes (Beamer et al., 2016), and the P2X7R can be found at highest
density in the microglia (Weisman et al., 2012b). Its hyper-activation promotes the over-release of
neurotransmitters from neuronal presynaptic terminals, contributing to apoptosis (Sperlágh and
Illes, 2014). Further, we have shown that P2X7R are important inhibitors for neural phenotype
determination using mouse pluripotent stem cells (Glaser et al., 2014; Glaser et al., 2020b), and
promotion of glial differentiation (Yuahasi et al., 2012), aggravating tissue repair.

Inducing endogenous neurogenesis or implanting in vitro obtained neurons or their precursors
are promising strategies for neurodegeneration prevention or neuronal recovery. Our laboratory has
been contributing to the field of neurogenesis by detailed investigation of P2 receptor subtype
expression and activity pattern along the course of neural differentiation (reviewed by Burnstock and
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Ulrich, 2011). Correspondingly, we clarified the neuroprotective
features exerted by P2Y2 receptors (P2Y2R) during neural
progenitor differentiation (Resende et al., 2008; Ulrich et al.,
2012).

The P2Y2R is a Gq-coupled receptor sensitive to activation by
ATP and UTP/UDP, interacting with integrins and growth factor
receptors (Weisman et al., 2012a) as well as inducing neuronal
differentiation through activation of NGF/TrkA signaling, as
shown for PC12 cells. Thus, this receptor can also promote
proliferation of glioma C6 cells through the Ras–ERK pathway
(Homolya et al., 1999; Arthur et al., 2005; Franke and Illes, 2006).
Recently we demonstrated P2Y2R roles in favoring GABAergic
phenotype determination (Glaser et al., 2020b). In addition, a
novel concept in the neurodegeneration field characterizes the
P2X7R as a trigger of pro-inflammatory responses, while the
P2Y2R has neuroprotective properties. In this opinion article, we
compare the role of both receptors in different neurodegenerative
diseases we are working on.

BALANCE OF P2Y2R AND P2X7R IN
MOTOR SYSTEM-RELATED DISEASES

In a previous review article, we discussed the intercorrelation
between two basal ganglia disorders that compromise the
motor system, HD and PD (Oliveira-Giacomelli et al., 2018;
Glaser et al., 2020a). Reinforcing this idea, administration of
the P2X7R antagonist Brilliant Blue G (BBG) could restore
dyskinesia, a common symptom between both diseases
(Fonteles et al., 2020).

Huntington’s Disease
HD is a genetic degenerative and fatal disorder characterized by
the loss of GABAergic neurons in the basal ganglia in the earlier
stages, and extensive cortex degeneration later on, causing motor,
cognitive and psychiatric dysfunctions. The mutation causing the
disease consists of an expansion of repeated CAG triplets in the
huntingtin gene (HTT), encoding for an expanded polyglutamine
(polyQ) stretch.

Some previous works using mutant huntingtin expressing
neurons or HD transgenic mouse models demonstrated roles for
P2X7R in HD pathophysiology (Díaz-Hernández et al., 2009).
In vitro, elevated levels of P2X7R and P2X7R-mediated calcium
influx in soma and terminals of HD neurons increased
susceptibility to apoptosis. In vivo administration of the
P2X7R-antagonist BBG to a HD mouse model prevented
neuronal apoptosis and attenuated body weight loss and
motor-coordination deficits. In the last year, a study using
postmortem striatum of HD patients corroborated the
previous animal data. In both studies, the full-length form of
the P2X7R protein and the naturally occurring trunked
C-terminus region variant, showed upregulated expression
levels. Taken together, P2X7R activity is prejudicial to brains
of HD subjects.

In a recent work, we showed that neural precursor cells derived
from embryonic stem cells regulate spontaneous calcium
oscillations that control the translocation of phosphorylated

CREB into the nucleus, activating the ASCL-1 pro-neuronal
gene, thereby favoring neurogenesis towards the GABAergic
phenotype (Glaser et al., 2020b). Consistently, our data from
human neural precursor cells derived from induced pluripotent
stem cells of HD subjects demonstrated impaired P2Y2R-
mediated intracellular calcium mobilization and absent
calcium spontaneous oscillations related to ASCL-1 activation
(Glaser et al., 2020b).

Parkinson’s Disease
PD is a motor disorder caused by the degeneration of the
substantia nigra, thereby decreasing the amount of released
dopamine in the basal ganglia. Due to intense
neuroinflammation, mitochondrial dysfunction and neuronal
degeneration of PD, the P2X7R has been extensively studied.
PD patients exhibit the 1513A→C single nucleotide
polymorphism in the P2X7R gene, which induces loss-of-
function (Gu et al., 2001) and elevated risks of sporadic/late-
onset PD development (Liu et al., 2013). In the striatal 6-
hydroxydopamine (6-OHDA) lesion, increased binding of
radioligands to the P2X7R was found in the striatum and
substantia nigra of rodents (Crabbé et al., 2019).
Corroborating these results, P2X7R gene expression was
gradually increased within 5 weeks after forebrain bundle
lesion by 6-OHDA in rats (Oliveira-Giacomelli et al., 2019).

Antagonism of P2X7R demonstrated promising results. 6-
OHDA-injured rats treated with BBG restored dopaminergic
fibers in the striatum and dopaminergic neurons in the
substantia nigra (Ferrazoli et al., 2017; Oliveira-Giacomelli
et al., 2019). Importantly, P2X7R blockade prevented motor
impairment, mitochondrial dysfunction and dopamine
deficit as well as decreased pro-apoptotic regulator
expression and micro/astrogliosis induced by 6-OHDA
(Marcellino et al., 2010; Carmo et al., 2014; Kumar et al.,
2017; Oliveira-Giacomelli et al., 2019). BBG also alleviated
dyskinesia, the aberrant balance between D1 and D2
receptors expression and micro/astrogliosis associated with
L-DOPA treatment, the current gold standard treatment for
PD (Fonteles et al., 2020).

In vitro, α-synuclein induced P2X7R activation in SH-SY5Y-
derived dopaminergic neurons that modulated mitochondrial
dysfunction, ATP release, recruitment of pannexin-1 and
decreased ATP degradation, with consequent cell death
(Wilkaniec et al., 2017, Wilkaniec et al., 2020).

Preventing and Recovering Basal Ganglia
Lesions
As we highlighted here, strong evidence points at the P2X7R as a
neurodegeneration inducer for both PD and HD through
neuroinflammation. Pharmacological tools, such as blockade of
the P2X7R over activation by BBG, may prevent the further
damage. We believe that endogenous neurogenesis inducers, such
as the P2Y2R, may add therapeutic strength by promoting the
delivery of newly born neurons from the subventricular zone to
the site of degeneration and recovering the lesioned striatum and
movement control.
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BALANCE OF P2Y2R AND P2X7R IN
COGNITIVE-RELATED DISEASES

Both AD and epileptic seizures impair cognition and steadily
damage hippocampal circuitry, leading to progressive memory
loss. Neuronal hyperexcitability induced by seizures amplifies the
synaptic release of the main component of senile plaques found in
the brain of AD patients, such as beta amyloid peptide (Aβ),
enhancing cell death and cognitive decline. Nowadays, strong
evidence indicates epilepsy as a comorbidity of AD, which is
corroborated by P2X7R and P2Y2R functions in these brain
disorders (Noebels, 2011).

Alzheimer’s Disease
P2X7R expression is upregulated in AD patients and animal
models (Parvathenani et al., 2003; McLarnon et al., 2006; Ryu and
McLarnon, 2008). Receptor expression augments in microglia
surrounding Aβ plaques, occurring in parallel with AD
progression (Lee et al., 2011). Aβ aggregation triggers
neuroinflammation in AD, as patients may have Aβ deposits
as early as 10 years prior to first AD symptoms (Vermunt et al.,
2019). Upon ATP binding, the P2X7R activates microglia, leading
to a proinflammatory state that can promote amyloid-precursor
protein (APP) release and oxidative stress in AD pathology,
leading to synaptic dysfunction/loss and cell death.

In SH-SY5Y neuroblastoma cells, BzATP stimulated the
release of APP, and the use of antagonists or knockdown
with siRNA confirmed P2X7R dependence of APP release
(Delarasse et al., 2011). AD animal models showed that the
P2X7R function is as necessary for Aβ deposition. The treatment
with P2X7R antagonists decreased the size and number of
8 months old J20 mice hippocampal amyloid plaques (Diaz-
Hernandez et al., 2012), while 10 months old P2X7R knock-out
APP/PS1 mice displayed less Aβ lesions, improved cognitive
deficits and synaptic plasticity (Martin et al., 2019). Aβ plaques
promoted the release of IL-1β, an event depending on P2X7R
activation (Sanz et al., 2009). This occurred at least in part
through Aβ-induced generation of pore-like structures, allowing
ATP leakage into extracellular environments and binding to
P2X7R, enhancing excitatory synaptic activity (Sáez-Orellana
et al., 2016). The inflammatory process resulting from
hyperexcitability is one of the key factors in AD (Busche and
Konnerth, 2015). Lastly, high levels of reactive oxygen species
(ROS) are commonly detected in postmortem brains of AD
patients (Tönnies and Trushina, 2017). P2X7R activation is
associated with Aβ-induced microglial H2O2 release through
NADPH oxidase activation (Soo et al., 2007). P2X7R-positive
microglial cells located around Aβ plaques expressed the
catalytic NADPH subunit, and P2X7R upregulation
combined to ROS release was associated to Aβ deposition
increase and synaptotoxicity in AD (Lee et al., 2011).

Adversely, in vitro and in vivo studies corroborate
neuroprotective roles of P2Y2R activation in AD. Postmortem
studies showed that P2Y2R immunoreactivity is preserved in the
occipital cortex (minimally affected region) while it is reduced in
the parietal cortex (highly affected region) of AD patients.
Interestingly, decreased expression of P2Y2R in the parietal

cortex is correlated with AD neuropathologic scores and
markers of synapse loss (Lai et al., 2008).

In human 1321N1 astrocytoma cells, P2Y2R stimulation
enhanced non-amyloidogenic processing of APP.
Corroborating these results, P2Y2R activation in rat primary
cortical neurons treated with IL-1β enhanced the release of
α-amyloid protein (Kong et al., 2009). In addition, treatment
with P2Y2R agonists (ATP and UTP) enhanced the uptake and
degradation of Aβ, while Aβ application increased P2Y2R gene
expression in mouse primary microglial cells (Kim et al., 2012).
The role of P2Y2R has also been investigated in transgenic mice
bearing human APP with Swedish and Indiana mutations, an
animal model of AD. In these animals, haploinsufficiency of
P2Y2R augmented plaque formation and enhanced Aβ levels in
the cerebral cortex and hippocampus as well as led to neurological
deficits within 10 weeks (Ajit et al., 2014). Moreover, P2Y2R
deletion induced premature death in these transgenic mice (Ajit
et al., 2014).

Epilepsy
Epilepsy can impact cognitive function, since the seizures cause
excitotoxicity and cell death (Helmstaedter, 2013). Similarly to AD,
P2X7R protein levels are upregulated in regions damaged by seizures
and in the hippocampus of animal models. As previously
summarized (Engel et al., 2012; Engel et al., 2016), the lack of the
P2X7R promotes susceptibility to status epilepticus, while P2X7R
antagonists are potent anticonvulsants (Engel et al., 2012; Engel et al.,
2016; Beamer et al., 2017; Zeng et al., 2017; Burnstock and Knight,
2018; Song et al., 2019; Doǧan et al., 2020; Hong et al., 2020; Morgan
et al., 2020). P2Y2R knockout animals present higher glutamate
release in the hippocampus (Alhowail et al., 2020), and uridine
triphosphate administration had sleep-promoting and anti-epileptic
actions, improved memory function and affected neuronal plasticity
(Dobolyi et al., 2011; Alves et al., 2017).

Preventing and Restoring Cognition
Both AD and Epilepsy harm cognition capabilities, mainly
through microglial activity, thus damaging the hippocampus.
P2X7R sensitization promotes the accumulation of plaques,
while P2Y2R activity enhances their uptake and degradation.
In this case, we have two major players, the good and the evil, one
stimulated by ATP and the other by UTP, like a Yin Yang effect.

DISCUSSION AND PERSPECTIVES

Pharmacological intervention of purinergic signaling provides
promising therapeutic avenues. We focused in this Opinion
article on beneficial and harmful actions of purinergic
receptors, affecting neuroinflammation and neuronal repair
(Figure 1). In this scenario, two main players have been
identified: 1) The P2X7R, known to counteract neuronal
differentiation during development, which supposedly has
similar effects on adult neurogenesis and also limits the
available neural stem cell pool (Oliveira et al., 2016). This
receptor is also directly connected to ATP induced
inflammasome activation, mediating sterile inflammation of
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the brain; 2) The P2Y2R, shown to promote neuronal
differentiation and neuronal phenotype determination of stem
cells, has been associated with neuroprotective features in various
brain disorders, including AD, HD as well as in epilepsy. The
P2Y2R is highly expressed in axonal projections in the striatum
and substantia nigra (Amadio et al., 2007) as well as in microglia,
mediating the uptake of toxic peptides such as Aβ (Kim et al.,
2012). In this sense, we hypothesize that the P2Y2R participates
in the phagocytic process of α-synuclein in PD. However, the
P2Y2R is unexplored in the PD pathogenesis, evidencing a gap in
the literature and a promising target for future research. IL-1β
induces P2Y2 receptor expression (Peterson et al., 2013); thereby,
we propose that P2Y2R activity acts as an effort to restore brain
homeostasis.

Several BBB-permeant small molecule P2X7R antagonists
were developed (for a review, see Andrejew et al., 2020), and
some of them are undergoing clinical trials for the treatment of
neurodegeneration: CE22,535, already tested in phase 2 and 3
clinical trials; and JNJ541754467 tested in a phase 1 clinical trial
(for a detailed review, see Calzaferri et al., 2020). Therapeutic
P2Y2R agonists include diquafosol (Lau et al., 2014) and
Denufosol tetrasodium (Deterding et al., 2007). However,
BBB-permeant P2Y2R activators need yet to be developed.
P2X7R antagonists and P2Y2R agonists could be
administered alone or in combination with conventional
drug therapy. An interesting pharmacological approach
would be based in the combination of P2X7R antagonist and
P2Y2R agonist.

FIGURE 1 | The yin and yang effects of P2Y2R and P2X7R activities. A thin balance between P2Y2R and P2X7R activities is required to maintain a healthy
communication between neural cells. Increased P2Y2R activation (Health—left) induces neuroprotective effects, like neurogenesis, clearance of debris from apoptotic
cells and amyloid precursor protein (APP) non-amyloidogenic processing in Alzheimer’s Disease. P2X7R expression and activity is augmented in the diseased brain
(Disease—right), inducing neurodegeneration, microglia activation, demyelination, and mitochondrial dysfunction. At the cellular level, ATP is intensely released
during neurodegeneration. Released ATP by activating P2X7R increases intracellular Ca2+ levels and can induce detrimental effects such as mitochondrial dysfunction
and neurodegeneration. In glial cells, P2X7R activation induces the release of more ATP and interleukins, such as IL-1β. ATP and UTP can bind to P2Y2R inducing
neuroprotective effects, including: debris clearance by glial phagocytosis; increase in the sensibility of TrkA receptors and stimulation of the neural growth factor pathway;
amyloid-β (Aβ) uptake and degradation as well as non-amyloidogenic APP processing (in Alzheimer’s Disease). Increased ATP release can also be triggered by Aβ
exposure. Created with BioRender.com.
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