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Abstract: Background: Imbalance of homocysteine (Hcy) metabolism links with several pathologies;
nevertheless, it is poorly characterized in pediatric populations. This study investigated the impact
of age on plasma concentrations of Hcy and relevant biomarkers along with correspondent genotype
interactions. Methods: A healthy pediatric cohort aged 9 (n = 195) and 17 (n = 128) years old (yo)
was studied. Immunoassays and GC-MS-SIM-mode quantified plasma levels of Hcy and biomarkers.
PCR-RFLP or quantitative-PCR assays assessed common variations in related genes. Results: Age
impacted on levels of Hcy and metabolic markers: older children presented with the lowest folates
and total-cobalamin (tCbl), while with the highest Hcy concentrations, whereas methylmalonic
acid (MMA) and holotranscobalamin (Holo-TC) levels remained similar in 9-yo and 17-yo children.
The relationships between B-vitamins and metabolic markers were also dependent on age. Only in
the older children, MMA correlated with tCbl and Holo-TC, and MMA levels were markedly higher
in the 17-yo subjects presenting with the lowest quartiles of Holo-TC concentrations. Lastly, age also
impacted on the correlations between genotype and biomarkers. In the 17-yo group, however not in
the 9-yo children, tHcy differed between MTHFR 677 genotypes, with subjects who had the MTHFR
677TT genotype displaying the highest tHcy concentrations. Conclusions: Age impacts on the Hcy
metabolism dynamics in a pediatric population.
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1. Introduction

The homocysteine (Hcy) metabolism is a metabolic network centered on the folate and methionine
cycles in which one-carbon (1-C) groups are transferred, supporting multiple physiological processes,
including nucleotide biosynthesis, amino acid homeostasis, epigenetic maintenance and redox
defense [1,2]. Consequently, a disturbed Hcy metabolism is associated with common pathologies, such
as neurodegenerative and cardiovascular (CVD) diseases and cancer [3–11].

The metabolisms of Hcy, folate and vitamin B12 (or cobalamin, Cbl) are biochemically linked
sharing several metabolic intermediates [9]. Hcy is formed from the essential amino acid methionine.
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Once formed, Hcy may be conserved and remethylated back to methionine by methionine synthase
(MS). This enzyme requires the presence of methylcobalamin (methylCbl), as a cofactor, to carry on
its function. In turn, the synthesis of methylCbl needs the intervention of 5-methyltetrahydrofolate
(5-methyl-THF), the main circulating form of folate [7]. Then, 5-methyl-THF transfers the methyl
group to Cbl, thus releasing tetrahydrofolate (THF) that will sustain several 1-C transfer reactions.
Transcobalamin II (TC), a plasma protein, binds Cbl and transports it to cells. Transcobalamin-bound
vitamin B12 is designated as holotranscobalamin (Holo-TC) [12]. The common term total Cbl (tCbl)
also includes other circulating forms of Cbl, of which its functions are unclear. However only
the Holo-TC fraction enters into the cells and releases the Cbl [12]. Consequently, insufficient
levels of methylCbl may be associated with a conditional folate deficiency [7,13], impairing the
remethylation of Hcy, which will accumulate in plasma [7,9,13,14], reflecting the insufficient Cbl and
folate intracellular status. Moreover, Cbl is also converted to adenosylCbl, which is used for the
metabolism of methylmalonyl-CoA [15,16]. Therefore, an insufficient B12/Cbl cell status leads to the
build-up of plasma Hcy and methylmalonic acid (MMA), formed from methylmalonyl-CoA [17–20].
A more comprehensive description of the Hcy metabolism can be found in references [8–10].

Genetic background may also impact on the levels of plasma Hcy. Gene variants coding
for enzymes involved in Hcy metabolism may modulate the correspondent enzyme activities [2].
MTHFR participates in the remethylation of Hcy to methionine. The MTHFR 677C>T polymorphism
(p.A222V) results in a thermolabile variant of MTHFR with a decreased enzyme activity [21–24] and is
a well-established genetic determinant of elevated plasma tHcy (total homocysteine; all the circulating
forms of Hcy) levels [25–27]. Other common gene variations, which are also involved in the Hcy
remethylation, have been reported, albeit with less consistent effects on Hcy circulating levels [2,27,28].
These include the MTHFR 1298A>C (p.E429A) [29] and the MTR 2756A>G (p.D919G) [30] and MTRR
66A>G, the last two being related with MS activity [31]. Further, variations in the TC encoding gene,
or TCN2, may also affect the circulating concentrations of tHcy. The TCN2 776C>G (p.P259R) and
67A>G (p.I23V) variants diminish the TC’s ability to bind and transport cobalamin to tissues, causing
an accumulation of Hcy due to deficient remethylation [32,33].

Despite the pivotal importance of Hcy metabolism for cellular homeostasis, data are scarce in
the pediatric population, which is particularly vulnerable due to the higher requirements of nutrients
for healthy growth and development. Adequate reference values for Hcy and related metabolic
biomarkers in the pediatric population are important in clinical decision-making, with possible health
impacts. Nevertheless, providing reference values in school-age children is challenging, and most
of the available reference values for Hcy are obtained from adults. Another question in establishing
pediatric reference values is to consider the potential effect of specific ages on Hcy metabolism.
For instance, differences in physical size, organ maturity, fluid body compartments, immune and
hormone responsiveness are likely to affect the concentrations of Hcy in children and youth. Here,
we investigated the Hcy metabolism in 9 and 17 year-old (yo) subjects by exploring the impact of age,
gender and genotype on the levels of tHcy, MMA and B-vitamins.

2. Materials and Methods

2.1. Subjects

Two groups of a pediatric population from Madeira Island, Portugal: 128 adolescents aged 17-yo
(71 females, 57 males) and 195 children aged 9-yo (88 females, 107 males) were studied. Subjects
were enrolled from schools that were selected from different areas of the island. All participants were
Caucasian. Data on dietary and lifestyle habits were collected and used as a basis for the selection
of eligible individuals. All subjects were under a Mediterranean diet and the intake of protein and
vegetables/fruit followed the recommended dose/age. Dietary intake was evaluated by application of
a semi-quantitative Food Frequency Questionnaire. Acute and chronic illnesses were the exclusion
criteria. All selected individuals presented an irrelevant anamnesis and did not take drugs and vitamin
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supplementation. For all participants, written informed consents were obtained. All procedures were
conducted in accordance with the International Ethical Guidelines for Biomedical Research Involving
Human Subjects and the study was approved by the Scientific and Research Committee of our Institute
at Madeira University.

2.2. Anthropometric Data

All participants were assessed for Body Mass Index (BMI), waist circumference, systolic and
diastolic pressure using standard methods.

2.3. Blood Sample Collection and Biochemical Analyses

Overnight fasting blood samples were collected by venipuncture in EDTA containing tubes.
Part of the blood was used for DNA extraction (as described below) and the remaining blood was
immediately centrifuged at 4000 g for 10 min at 4 ◦C. Plasma was collected, divided into several
aliquots and stored at −80 ◦C until analysis.

Plasma levels of total cholesterol, HDL-cholesterol, LDL-cholesterol, triacylglycerols, creatinine
and uric acid were quantified by standard routine methods (Unicel DXC, Beckman Coulter Inc., Brea,
CA, USA).

Plasma tHcy and folate were evaluated, respectively, by a fluorescence polarization immunoassay
and an ion-capture enzyme immunoassay from IMx Systems (Abbott Laboratories, Chicago, IL,
USA), according to the manufacturer’s instructions. Plasma tCbl and Holo-TC were determined
by a microparticle enzyme immunoassay using an AxSYM analyser (Abbott Laboratories, Chicago,
IL, USA). Plasma MMA concentration was determined by gas chromatography coupled with mass
spectrometry in a selected ion mode (GC-MS-SIM) following a laboratory procedure adapted from
a previously published method [34].

2.4. Genotype Analyses

Genomic DNA was isolated from peripheral blood leucocytes (Puregene, DNA purification
system, Gentra Systems) and was stored at 4 ◦C until use. Identification of the allelic variants MTHFR
677C>T, MTHFR 1298A>C, MTR 2756A>G, TCN2 67A>G and TCN2 776C>G was performed by
PCR-RFLP assay using Hinf I, MboII, HaeIII, RsaI and ScrFI endonucleases, respectively [16,30,35].
After restriction enzyme digestion, PCR products were evaluated by gel electrophoresis analysis.
Allelic discrimination of MTRR 66A>G variants was performed by real-time PCR (iQ5 Real-Time PCR
Thermocycler, BioRad, California, USA) using TaqMan probes (TaqMan® SNP Genotyping Assays,
Applied Biosystems, Waltham, MA, USA).

2.5. Statistical Analysis

All statistical analyses were performed using the program IBM SPSS Statistics 22.0. Normality of
data and homogeneity of variances were evaluated, respectively, by Kolmogorov-Smirnov and Levene
tests. Data were expressed as the mean ± standard deviation (SD). Continuous variables were
compared by independent samples T-test and by one-way analysis of variance (ANOVA). Spearman
correlation coefficients were calculated to determine the relationship between all metabolites and
vitamins. A p-value lower than <0.05 was considered statistically significant.

3. Results

3.1. Anthropometric and Biochemical Parameters

Anthropometric and routine biochemical parameters (data not shown) of the studied population
were stratified according to age and gender. All the analyzed parameters were within the normal
range according to age and gender. Between genders, significant differences were observed in the 9-yo
group only for the systolic pressure (p < 0.05), which was higher in females. In the 17-yo group, males
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presented significantly higher systolic pressure (p < 0.01), waist circumference (p < 0.001) and creatinine
(p < 0.001), however lower HDL-cholesterol (p = 0.001) than females. All the included individuals were
eutrophic according to BMI cut-off values of the World Health Organization (WHO) Growth Reference
Data 2007.

3.2. Age and Plasma Biomarkers

The levels (mean ± SD) of plasma biomarkers according to age and gender are displayed in
Table 1. Figure 1A–E represents the distribution of the same biomarkers in the 9- (n = 195) and 17-yo
(n = 128) individuals.

Concerning the putative influence of gender within each age-group (Table 1), no significant
differences were observed except for tHcy concentrations, which were significantly higher in 17-yo
males (Hcy: 10.2 ± 4.0 µM) than in same-age females (Hcy: 7.5 ± 2.2 µM). When comparing the
17-yo subjects with the 9-yo individuals within the same gender, plasma concentrations of tHcy (µM)
increased significantly with age, while those of folate, tCbl and Holo-TC decreased significantly.
Moreover, MMA levels decreased significantly with age in females, however not in males.

When both genders were considered together (Figure 1), plasma concentrations of tHcy (µM)
increased significantly (3.8 ± 1.8 to 8.7 ± 3.4; p < 0.001) with age, while those of folate (nM) (22.8 ± 9.3
to 11.6 ± 4.2; p < 0.001) and tCbl (pM) (302.5 ± 118.3 to 286.5 ± 97.2; p < 0.001) decreased significantly.
No significant differences were observed for Holo-TC and MMA plasma levels.

Taking all subjects into account, as expected, tHcy showed a significant negative linear association
with folate, Holo-TC and tCbl (Spearman correlation coefficient, r = −0.625; −0.380 and −0.519,
respectively, p < 0.01). Moreover, a positive linear association was observed between Holo-TC and
tCbl levels (r = 0.426, p < 0.01).

Plasma MMA levels were significantly correlated with tCbl (r = −0.335, p < 0.05) and with
Holo-TC (r = −0.515, p < 0.01) in the 17-yo subjects, however not in the 9-yo group. Moreover, MMA
concentrations for each age group were plotted according to Holo-TC quartiles (Figure 2), and only
in the 17-yo group, the highest MMA levels were associated with the lowest Holo-TC levels. Taken
together, these observations confirm MMA as a good predictive metabolic marker of cobalamin status
in the older children, however also suggest that MMA concentrations do not reflect the cobalamin
status in the younger children.
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Table 1. Plasma concentrations (mean ± SD) of vitamins and metabolic markers in the studied population, stratified according to gender and age.

Males Females
p φ p Ψ

N 9-Year-Old N 17-Year-Old p 1 N 9-Years-Old N 17-Year-Old p 2

tHcy (µM) 107 3.8 ± 1.8 52 10.2 ± 4.0 <0.001 88 3.8 ± 1.9 67 7.5 ± 2.2 <0.001 0.811 <0.001
Folates (nM) 96 22.9 ± 9.1 39 11.1 ± 3.5 <0.001 80 22.8 ± 9.5 37 12.2 ± 4.7 <0.001 0.969 0.229

tCbl (pM) 104 502.1 ± 163.1 35 286.5 ± 97.2 <0.001 83 530.6 ± 168.2 36 318.0 ± 135.3 <0.001 0.243 0.265
Holo-TC (pM) 99 103.2 ± 28.5 38 69.9 ± 25 <0.001 80 97.4 ± 35.1 37 62.4 ± 24.8 <0.001 0.226 0.196

MMA (µM) 99 0.30 ± 0.31 48 0.21 ± 0.14 0.082 85 0.25 ± 0.19 62 0.18 ± 0.16 <0.001 0.211 0.087
1 Independent samples T-test between age-groups within males; 2 Independent samples T-test between age-groups within females. φ Independent samples T-test between 9-yo males and
females; Ψ Independent samples T-test between 17-yo males and females. Total Homocysteine (tHcy); total cobalamin (tCbl); holo-transcobalamin (Holo-TC); methylmalonic acid (MMA).



Nutrients 2019, 11, 646 6 of 15

Nutrients 2019, 11, x FOR PEER REVIEW 5 of 16 

Nutrients 2019, 11, x; doi: FOR PEER REVIEW www.mdpi.com/journal/nutrients 
 

 

 
Figure 1. Distribution of the concentrations of total homocysteine (A), folates (B), cobalamin (C), holo-transcobalamin (D) and methylmalonic acid (E) for the 9-yo 
(n = 195) and 17-yo (n = 128) children. * p < 0.05, Student T test 9-yo versus 17-yo. 
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Figure 1. Distribution of the concentrations of total homocysteine (A), folates (B), cobalamin (C), holo-transcobalamin (D) and methylmalonic acid (E) for the 9-yo
(n = 195) and 17-yo (n = 128) children. * p < 0.05, Student T test 9-yo versus 17-yo.
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Figure 2. Methylmalonic acid (MMA) concentrations by quartiles of holo-transcobalamin (Holo-TC) in
the 9-yo (A) and 17-yo (B) children.

3.3. Genotypes, Age, and Biomarkers

Genotype and allele frequencies for the whole group are displayed in Table 2, with all genotype
frequencies consistent with the Hardy-Weinberg equilibrium.

Table 2. Genotypic and allelic frequencies of single nucleotide polymorphisms (SNPs) in MTHFR,
TCNII, MTR and MTRR genes in the whole studied group (n = 323).

SNP Genotype Allele Frequency (%)

MTHFR CC CT TT C T
C677T (n = 565) 295 (52.2%) 218 (38.6%) 52 (9.2%) 71.5 28.5
MTHFR AA AC CC A C
A1298C (n = 565) 301 (53.3%) 196 (34.7%) 68 (12.0%) 70.6 29.4
TCNII AA AG GG A G
A67G (n = 301) 252 (83.7%) 43 (14.3%) 6 (2%) 90.9 9.1
TCNII CC CG GG C G
C776G (n = 292) 83 (28.4%) 141 (48.3%) 68 (23.3%) 52.6 47.4
MTR AA AG GG A G
A2756G (n = 218) 128 (58.7%) 82 (37.6%) 8 (3.7%) 77.5 22.5
MTRR AA AG GG A G
A66G (n = 246) 75 (30.5%) 114 (46.3%) 57 (23.2%) 53.7 46.3

The plasma concentrations of vitamins and metabolic markers were stratified according to the
various single nucleotide polymorphisms (SNPs), and the results are summarized in Table 3 (9-yo
group) and 4 (17-yo group). In the 9-yo group, no significant differences were observed for any of
the evaluated biomarkers among the different genotypes. However, in the 17-yo group, significant
differences (p < 0.05) were observed for tHcy levels among the MTHFR 677 genotypes and tCbl
concentrations among MTR 2756 genotypes.
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Table 3. Plasma concentrations of vitamins and metabolic markers (tHcy, Folate, Holo-TC, tCbl, MMA; mean ± SD) according to the MTHFR, TCN II, MTR and MTRR
genotypes in the 9-yo group.

9-Year-Old

SNP tHcy (µmol/L) Folate (nmol/L) Holo-TC (pmol/L) tCbl (pmol/L) MMA (µmol/L)

MTHFR C677T
CC 3.7 ± 1.9 (n = 115) 23.1 ± 9.0 (n = 109) 101.8 ± 30.2 (n = 108) 502.2 ± 156.3 (n = 110) 0.274 ± 0.300 (n = 107)
CT 3.7 ± 1.7 (n = 65) 23.4 ± 9.7 (n = 60) 100.0 ± 33.7 (n = 59) 527.6 ± 178.6 (n = 63) 0.270 ± 0.198 (n = 62)
TT 4.5 ± 1.8 (n = 15) 17.4 ± 7.1 (n = 14) 92.7 ± 35.41 (n = 12) 555.3 ± 176.2 (n = 14) 0.295 ± 0.210 (n = 15)

MTHFR A1298C
AA 3.7 ± 1.8 (n = 101) 23.4 ± 10.1 (n = 97) 101.3 ± 33.7 (n = 93) 511.1 ± 157.8 (n = 98) 0.284 ± 0.252 (n = 97)
AC 3.8 ± 1.8 (n = 59) 22.1 ± 8.4 (n = 52) 98.2 ± 27.2 (n = 53) 544.5 ± 186.9 (n = 57) 0.225 ± 0.599 (n = 56)
CC 3.8 ± 2.0 (n = 35) 22.1 ± 7.8 (n = 34) 102.6 ± 33.0 (n = 33) 472.9 ± 141.2 (n = 32) 0.334 ± 0.448 (n = 31)

TCN2 A67G
AA 3.9 ± 1.8 (n = 146) 22.8 ± 9.5 (n = 137) 101.2 ± 29.9 (n = 117) 523.0 ± 168.2 (n = 127) 0.277 ± 0.238 (n = 139)
AG 3.2 ± 2.0 (n = 37) 22.1 ± 7.9 (n = 35) 92.1 ± 26.4 (n = 33) 489.8 ± 178.8 (n = 35) 0.221 ± 0.054 (n = 35)
GG 3.7 ± 2.4 (n = 5) 26.1 ± 8.3 (n = 5) 87.9 ± 40.6 (n = 3) 561.2 ± 100.3 (n = 3) 0.153 ± 0.043 (n = 4)

TCN2 C776G
CC 4.0 ± 1.8 (n = 59) 22.5 ± 8.7 (n = 54) 96.8 ± 29.2 (n = 48) 496.8 ± 171.8 (n = 56) 0.241 ± 0.063 (n = 55)
CG 3.6 ± 1.9 (n = 74) 21.5 ± 9.4 (n = 70) 101.2 ± 29.8 (n = 64) 525.1 ± 160.7 (n = 69) 0.281 ± 0.306 (n = 70)
GG 3.8 ± 2.0 (n = 42) 23.8 ± 8.9 (n = 40) 98.0 ± 29.7 (n = 61) 529. 8 ± 182.1 (n = 40) 0.287 ± 0.267 (n = 40)

MTR A2756G
AA 3.9 ± 1.5 (n = 70) 23.8 ± 10.2 (n = 64) 102.2 ± 25.4 (n = 63) 538.9 ± 188.8 (n = 68) 0.251 ± 0.084 (n = 67)
AG 3.7 ± 1.7 (n = 44) 23.6 ± 9.4 (n = 43) 99.0 ± 33.7 (n = 44) 531.0 ± 152.8 (n = 39) 0.325 ± 0.403 (n = 42)
GG 4.8 ± 3.3 (n = 2) 21.7 ± 7.6 (n = 2) 87.4 ± 28.2 (n = 2) 467.7 ± 33.4 (n = 2) 0.234 ± 0.044 (n = 2)

MTRR A66G
AA 3.9 ± 1.8 (n = 36) 24.8 ± 9.8 (n = 33) 109.0 ± 32.0 (n = 35) 530.8 ± 180.8 (n = 34) 0.257 ± 0.159 (n = 35)
AG 3.8 ± 1.6 (n = 60) 21.8 ± 9.1 (n = 55) 100.4 ± 34.7 (n = 55) 537.0 ± 165.7 (n = 56) 0.262 ± 0.242 (n = 56)
GG 4.0 ± 1.8 (n = 30) 22.9 ± 9.1 (n = 27) 100.4 ± 25.8 (n = 26) 513.8 ± 183.8 (n = 28) 0.354 ± 0.461 (n = 29)

p values for differences between means of the three genotypes were tested with one-way analysis of variance (ANOVA). p values < 0.05 were considered statistically significant.
No statistically significant differences were observed for any of the evaluated biomarkers among the different genotypes. Total Homocysteine (tHcy); total cobalamin (tCbl);
holo-transcobalamin (Holo-TC); methylmalonic acid (MMA).
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4. Discussion

Disruption of Hcy metabolism leads to hyperhomocysteinemia, which has been associated with
different pathological conditions, including vascular and neurodegenerative diseases [11,36–38]. The
causes of hyperhomocysteinemia are multifactorial and include insufficient levels of the B-vitamins,
particularly folates and Cbl, which are cofactors and co-substrates in Hcy metabolism [36,37,39].
European dietary surveys disclosed a widespread prevalence of suboptimal plasma concentrations
of folates and tCbl in various age groups, despite apparent adequate intakes [37,39,40]. This fact
is of particular concern in young age groups in which it has been related to developmental delay
and irreversible neurological damage [41–45]. Nevertheless, few studies have examined the Hcy
metabolism in pediatric populations.

This study was conducted in a healthy pediatric population of children (aged 9-yo) and
adolescents (aged 17-yo). The impact of age on Hcy-related metabolism biomarkers and gender
differences were evaluated along with that of common variants in genes (MTHFR, MTR and MTRR)
encoding enzymes involved in the folate/Cbl dependent Hcy remethylation cycle, or in the TCN2
gene, which encodes the protein that delivers Cbl to cells.

The results showed an increase of tHcy concentration and a decrease of folate and Cbl levels
with age (Figure 1 and Table 1). Moreover, gender differences were found, however only in the 17-yo
group, for tHcy level, with a higher mean value in males. These observations concur with previously
published data [46–49]. The plasma tHcy values are influenced not only by environmental and genetic
factors, however also by nutritional ones, including different fortification policies worldwide [47,48].
Therefore, differences between the dietary habits and lifestyle between the younger children and
adolescents may explain the observed decrease of folate and Cbl levels, which harm Hcy metabolism,
contributing to Hcy accumulation. The increase in tHcy concentrations is also influenced not only by
hormonal factors, which support gender differences, however also by the increment of body mass,
along with healthy development, which demands a high ratio of creatine synthesis. This metabolic
reaction is the leading consumer of the methyl groups donated by S-adenosylmethionine, which is
formed during the conversion of methionine to Hcy [9].

The 9-yo group displays a tHcy plasma mean level (3.8 µmol/L) (Table 1) that is lower than
those reported for Dutch children aged 6–10 yo (6.2 µmol/L) [49]; for Belgian children aged 5–9
and 10–14 yo (6.2 to 7.1 µmol/L, respectively) [46]; and for American children aged 6–11 yo (5.0 to
5.4 µmol/L) [48]. The observed difference may be attributable to the Mediterranean diet, characterized
by a high consumption of fresh vegetables and fruits, which, at this age, is still under family control,
therefore contributing to the high levels of plasma vitamins observed and its lowering effect on
tHcy concentrations.

The isomerization of L-methylmalonyl coenzyme A by methylmalonyl coenzyme A mutase, using
AdoCbl as a cofactor, and its independence from folate metabolism, have made MMA an attractive
biomarker of Cbl deficiency [41]. In this study, despite a decrease in tCbl and Holo-Cbl levels with
age, MMA plasma concentrations in the 9- and 17-yo groups were not significantly different (Figure 1
and Table 1). This observation agrees with the NHANES study, which states that circulating MMA
is generally stable at an age below 20 years and only increases later, with an upward trend after
40 years of age [50]. In the present report, MMA levels did not correlate with tCbl or with Holo-TC
levels in the 9-yo group, while significant correlations were observed in the adolescents’ group. This
observation suggests that, in pediatric populations, the usefulness of MMA as a metabolic biomarker
of cobalamin status needs to be further investigated. It should be taken into account that several
factors may cause variability of plasma MMA, among them alterations in the gut microbiota [51],
as well as in the metabolism of odd-chain fatty acids and amino acids precursors of MMA (such as
methionine, isoleucine and threonine) [18,20,41,50]. Moreover, genetic background may also influence
plasma MMA concentrations. Recently, in an Irish population, a common polymorphism in the HIBCH
gene, encoding 3-hydroxyisobutyryl-CoA hydrolase, was strongly associated with elevated MMA
concentrations independently of tCbl or Holo-TC levels [52].
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The frequency of the MTHFR 677TT genotype was 9.2% (Table 2), similar to other European
populations, including the Netherlands (8.2%) [49], Germany (9.7%) [25] and Czech Republic
(10%) [53,54], however was slightly lower than the one reported for Northern Ireland (13.5%) [55],
France (11.8%) and Spain (11.8%) [56]. Moreover, MTHFR 1298CC, MTR 2756GG, MTRR 66GG,
TCN2 776GG and TCN2 67GG genotype frequencies were also comparable to those reported for other
Caucasian European populations [53–55,57].

MTHFR 677C>T is a well-established genetic determinant of elevated plasma tHcy [25–27], and
lower folate concentrations significantly enhance this effect. Accordingly, in the 9-yo group (Table 3),
which presents high plasma folate levels, tHcy plasma concentrations did not differ significantly
among the MTHFR 677 genotypes, suggesting that folate levels modulate the expected correlations
between genotype and metabolic markers. Supporting that correlation, in the 17-yo group (Table 4),
subjects bearing the MTHFR 677TT genotype displayed significantly higher tHcy concentrations than
those bearing the wild-type genotype. A similar situation was observed concerning the MTR2756GG
genotype, since it was associated with significantly decreased tCbl plasma levels in 17-yo adolescents
(Table 4).
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Table 4. Plasma concentrations of vitamins and metabolic markers (tHcy, Folate, Holo-TC, tCbl, MMA; mean ± SD) according to the MTHFR, TCN II, MTR and MTRR
genotypes in the 17-yo group.

17-Year-Old

SNP tHcy (µmol/L) Folate (nmol/L) Holo-TC (pmol/L) tCbl (pmol/L) MMA (µmol/L)

MTHFR C677T
CC 8.4 ± 2.4 (n = 62) * 11.9 ± 3.4 (n = 34) 71.9 ± 26.3 (n = 33) 307.6 ± 114.2 (n = 32) 0.170 ± 0.101 (n = 55)
CT 8.8 ± 3.9 (n = 48) * 11.8 ± 5.1 (n = 34) 63.8 ± 24.3 (n = 34) 305.4 ± 124.2 (n = 32) 0.175 ± 0.092 (n = 39)
TT 11.3 ± 5.0 (n = 12) * 9.0 ± 9.2 (n = 7) 51.4 ± 19.1 (n = 7) 250.6 ± 124.4 (n = 6) 0.252 ± 0.161 (n = 10)

MTHFR A1298C
AA 9.4 ± 3.0 (n = 58) 11.6 ± 4.3 (n = 35) 69.5 ± 27.9 (n = 35) 320.4 ± 131.6 (n = 33) 0.190 ± 0.114 (n = 47)
AC 8.5 ± 4.0 (n = 46) 11.2 ± 3.7 (n = 25) 63.2 ± 19.1 (n = 25) 292.0 ± 100.7 (n = 23) 0.162 ± 0.067 (n = 41)
CC 7.9 ± 3.1 (n = 18) 12.2 ± 4.9 (n = 15) 63.7 ± 28.5 (n = 14) 273.5 ± 115.9 (n = 14) 0.197 ± 0.155 (n = 16)

TCN2 A67G
AA 8.7 ± 3.5 (n = 105) 12.0 ± 4.4 (n = 62) 66.2 ± 25.5 (n = 61) 298.8 ± 119.6 (n = 58) 0.183 ± 0.113 (n = 90)
AG 10.3 ± 2.5 (n = 6) 9.6 ± 2.6 (n = 4) 68.1 ± 30.1 (n = 4) 286.1 ± 71.5 (n = 4) 0.146 ± 0.010 (n = 5)
GG (n = 1) - - - (n = 1)

TCN2 C776G
CC 8.9 ± 2.4 (n = 24) 9.6 ± 4.5 (n = 13) 73.2 ± 28.8 (n = 13) 292.0 ± 107.8 (n = 13) 0.154 ± 0.073 (n = 21)
CG 8.8 ± 3.2 (n = 66) 12.5 ± 4.5 (n = 44) 65.8 ± 25.1 (n = 44) 314.5 ± 125.2 (n = 41) 0.194 ± 0.128 (n = 55)
GG 8.9 ± 5.0 (n = 26) 10.4 ± 3.5 (n = 14) 63.7 ± 24.5 (n = 13) 279.8 ± 131.0 (n = 12) 0.175 ± 0.074 (n = 23)

MTR A2756G
AA 8.6 ± 2.4 (n = 57) 11.9 ± 4.5 (n = 35) 68.7 ± 28.8 (n = 34) 333.0 ± 126.3 (n = 31) * 0.188 ± 0.124 (n = 50)
AG 8.6 ± 2.7 (n = 38) 11.6 ± 4.2 (n = 22) 67.1 ± 20.8 (n = 22) 283.1 ± 96.9 (n = 22) * 0.165 ± 0.062 (n = 31)
GG 10.1 ± 7.3 (n = 6) 10.5 ± 3.0 (n = 5) 61.1 ± 31.8 (n = 5) 200.2 ± 112.3 (n = 5) * 0.230 ± 0.193 (n = 6)

MTRR A66G
AA 8.8 ± 3.8 (n = 38) 11.3 ± 3.9 (n = 24) 64.3 ± 27.8 (n = 24) 337.4 ± 138.6 (n = 22) 0.193 ± 0.141 (n = 33)
AG 8.6 ± 2.5 (n = 54) 12.0 ± 4.7 (n = 33) 68.9 ± 27.5 (n = 32) 282.8 ± 110.2 (n = 31) 0.178 ± 0.076 (n = 48)
GG 8.8 ± 2.4 (n = 27) 11.4 ± 3.8 (n = 16) 65.6 ± 17.3 (n = 16) 297.4 ± 106.2 (n = 15) 0.165 ± 0.107 (n = 22)

* p value statistically significant. p values for differences between means of the three genotypes were tested with one-way analysis of variance (ANOVA). p values < 0.05 were considered
statistically significant. Significantly different plasma concentrations were found for tHcy between MTHFR 677 three genotypes (p = 0.027) and for tCbl between MTR 2756 genotypes
(p = 0.041). Total Homocysteine (tHcy); total cobalamin (tCbl); holo-transcobalamin (Holo-TC); methylmalonic acid (MMA).
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5. Conclusions

Most available reference values for Hcy plasma concentrations have been established in adults.
Therefore, the present study adds new information reporting plasma concentrations of tCbl, Holo-Cbl,
tHcy and MMA in two groups, 9-yo and 17-yo, of a healthy pediatric cohort. The study of genetic
variants related to Hcy metabolism in young pediatric populations may also allow for better knowledge
of native phenotypes, as time was not enough for environmental factors to modify them substantially.

In conclusion, this work contributes to a better characterization of Hcy metabolism in pediatric
populations. Moreover, it reinforces the notion that regarding the plasma concentrations of relevant
biomarkers and their interactions with genotype, age powerfully impacts on Hcy metabolism within
these populations. Extensive studies are needed to assess further knowledge concerning the impact of
age on the modulation of Hcy metabolism and related pathologies, enabling the implementation of
disease prevention measures.
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