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Abstract

Background Skeletal muscle mass begins to decline from 40 years of age. Limited data suggest that dietary fibre may
modify lean body mass (BM), of which skeletal muscle is the largest and most malleable component. We investigated
the relationship between dietary fibre intake, skeletal muscle mass and associated metabolic and functional parameters
in adults aged 40 years and older.
Methods We analysed cross-sectional data from the US National Health and Nutrition Examination Survey between
2011 and 2018 from adults aged 40 years and older. Covariate-adjusted multiple linear regression analyses were used
to evaluate the association between dietary fibre intake and BM components (BM, body mass index [BMI], total lean
mass, appendicular lean mass, bone mineral content, total fat, trunk fat; n = 6454), glucose homeostasis (fasting
glucose, fasting insulin, HOMA2-IR; n = 5032) and skeletal muscle strength (combined grip strength; n = 5326).
BM components and skeletal muscle strength were expressed relative to BM (per kg of BM).
Results Higher intakes of dietary fibre were significantly associated with increased relative total lean mass
(β: 0.69 g/kg BM; 95% CI, 0.48–0.89 g/kg BM; P < 0.001), relative appendicular lean mass (β: 0.34 g/kg BM; 95%
CI, 0.23–0.45 g/kg BM; P < 0.001), relative bone mineral content (β: 0.05 g/kg BM; 95% CI, 0.02–0.07 g/kg BM;
P < 0.001) and relative combined grip strength (β: 0.002 kg/kg BM; 95% CI, 0.001–0.003 kg/kg BM; P < 0.001).
Conversely, higher dietary fibre intakes were significantly associated with a lower BM (β: �0.20; 95% CI, �0.28 to
�0.11 kg; P < 0.001), BMI (β: �0.08 kg/m2; 95%CI, �0.10 to �0.05 kg/m2), relative total fat (β: �0.68 g/kg BM;
95% CI, �0.89 to �0.47 g/kg BM; P < 0.001), relative trunk fat (β: �0.48 g/kg BM; 95%CI, �0.63 to �0.33 g/kg;
P < 0.001), fasting glucose (β: �0.01 mmol/L; 95% CI, �0.02 to �0.00 mmol/L; P = 0.017), fasting insulin (β:
�0.71 pmol/L; 95% CI, �1.01 to �0.41 pmol/L; P < 0.001) and HOMA2-IR (β: �0.02 AU; 95% CI, �0.02 to
�0.01 AU; P < 0.001).
Conclusions Higher dietary fibre intakes are associated with a lower BM and enhanced body composition, character-
ized by a reduction in fat mass and an increase in lean mass. Higher dietary fibre intakes were also associated with
improvements in glucose homeostasis and skeletal muscle strength. Increasing dietary fibre intake may be a viable
strategy to prevent age-associated declines in skeletal muscle mass.
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Introduction

Increased dietary fibre intake is associated with a reduction in
cardiometabolic disease risk and all-cause mortality.1 This
relationship is likely mediated in part by the effect of dietary
fibre on decreasing body mass.2 However, human interven-
tion studies demonstrate that increasing dietary fibre intake
can lower adiposity without changing body mass,3,4 indicat-
ing that increased dietary fibre intake can also raise lean body
mass. The improvements in cardiometabolic outcomes in
these studies are typically attributed to a decrease in total
and regional fat mass, although the impact of raised lean
body mass is often neglected.

Skeletal muscle is the largest and most malleable compo-
nent of lean body mass (accounting for ~50% of lean body
mass5), and hence, changes in lean body mass can be primar-
ily attributed to skeletal muscle mass. The maintenance of
skeletal muscle is fundamental to locomotion, energy
homeostasis and overall quality of life.6,7 Skeletal muscle is
of particular importance to cardiometabolic disease risk, act-
ing as the primary site of insulin-stimulated glucose uptake
in the human body.8 Indeed, skeletal muscle insulin resistance
has been proposed as the principal defect in Type 2 diabetes.9

Skeletal muscle mass and associated strength, however, begin
to decline after the fifth decade of life,10,11 with adults losing
~20% of their skeletal muscle mass between the ages of 40
and 80 years12; this directly contributes to the metabolic dys-
regulation and functional impairments observed in the elderly
population. Consequently, strategies that promote or protect
skeletal muscle mass in middle age are needed to help main-
tain functional independence and cardiometabolic health in
later life.

In most countries, there is a substantial ‘dietary fibre gap’
between reported intakes in adult populations and the
amount recommended by national dietary guidelines and
health institutes. For example, in the United States, mean
intake is approximately 17 g/day, and the recommended
intake of 14 g/1000 kcal (∼28–34 g/day) is met by <10%
adults.13,14 However, the relationship between dietary fibre
intake and skeletal muscle mass, strength and associated
glycaemic parameters in adults at increased risk of skeletal
muscle atrophy is currently unknown.

We therefore used nationally representative US popula-
tion data from 2011 to 2018 to investigate associations be-
tween dietary fibre intake and body mass components,
glucose homeostasis and skeletal muscle strength in adults
aged 40 years and older. We hypothesized that a higher in-
take of dietary fibre would be associated with improved body
composition (increased lean body mass and decreased fat
mass). Furthermore, we hypothesized that this improvement
in body composition would be paralleled by an enhancement
in glucose homeostasis and skeletal muscle strength with in-
creasing dietary fibre intake. The findings from this study will
help to inform whether interventions to raise dietary fibre

intake are a worthwhile avenue for the prevention of
age-associated declines in skeletal muscle mass and strength.

Methods

This manuscript was written in accordance with the Strength-
ening the Reporting of Observational Studies in Epidemiology
(STROBE) statement for cross-sectional studies.15

Study design

This study used publicly available data from the National
Health and Nutrition Examination Survey (NHANES).
NHANES is a continual cross-sectional survey designed to
evaluate the health and nutritional status of the civilian,
non-institutionalized population of the United States.
NHANES employs a complex, multistage, probability sampling
design with oversampling of specified population subgroups
to increase the reliability and precision of estimates. Partici-
pants completed in-home interviews, physical examinations
(including the collection of blood and urine samples) and die-
tary interviews. Comprehensive descriptions of methodology
and data collection are provided elsewhere.16 NHANES was
conducted in line with the Declaration of Helsinki and
approved by the National Center for Health Statistics Ethics
Review Board. Informed consent was obtained from all partic-
ipants prior to involvement.

Study participants

This study involved participants aged ≥40 years from four
consecutive survey cycles: 2011–2012, 2013–2014, 2015–
2016 and 2017–2018 (each survey cycle represents an inde-
pendent sample from the population). A cut-off age of
≥40 years old was chosen based on evidence that loss of skel-
etal muscle mass may begin to accelerate after this age.10,11

Dietary intake

NHANES uses in-person 24-h dietary recall interviews using
the US Department of Agriculture (USDA) Automated
Multiple-Pass Method to quantify food and beverage intake.
Nutrient intakes are then calculated from food and beverage
data using the USDA Food and Nutrient Database for Dietary
Studies.17,18 Energy intake (kcal), dietary fibre, alcohol and
macronutrient intake (grams) per day were then determined.
The accuracy of this method has been repeatedly assessed
and shown to produce estimates within 10% of true
intake.19,20
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Outcomes

Outcomes included in this study were body mass, body mass
index (BMI), total lean mass (excluding bone mineral
content), appendicular lean mass (excluding bone mineral
content), bone mineral content, total fat, trunk fat, fasting
glucose, fasting insulin, insulin resistance as calculated by
the updated homeostasis model assessment (HOMA2-IR)
and combined grip strength. However, several outcomes
were only measured in specific survey cycles and subsamples.
Analyses were therefore performed using three distinct
datasets.

Body mass components dataset
Body mass (kg) and BMI (kg/m2) were measured for all survey
cycles (2011–2018) and collected in the mobile examination
centre.

For all survey cycles (2011–2018), total lean mass (g), bone
mineral content (g), total fat (g) and trunk fat (g) were mea-
sured using in eligible participants. Appendicular lean mass
(g), a well-recognized proxy for skeletal muscle mass,21 was
calculated by summing the lean mass (excluding bone min-
eral content) of the right and left leg and the right and left
arm as measured by dual-energy x-ray absorptiometry
(DEXA). Bone mineral content was also included due to the
well-documented coupling of bone and skeletal muscle
wasting during the ageing process.22 All variables measured
by DEXA were expressed relative to body mass (g per kg of
body mass; g/kg BM) to account for the influence of body
mass on differences in these outcomes. Participants older
than 59 years were not eligible for DEXA measurements,
and therefore, the age range of all body mass components
dataset variables (including body mass and BMI) was limited
to 40–59 years.

Glucose homeostasis dataset
For all survey cycles (2011–2018), fasting measures of glucose
(mmol/L) and insulin (pmol/L) were taken in a subsample of
eligible participants. Fasting glucose and insulin concentra-
tions were then used to calculate HOMA2-IR23 (arbitrary
units; AU).

Skeletal muscle strength dataset
For survey cycles 2011–2012 and 2013–2014 only, skeletal
muscle strength was measured through a grip test using a
handgrip dynamometer in eligible participants. Grip strength
is a widely used objective measure of global skeletal muscle
strength that predicts functional impairment and all-cause
mortality.24 Combined grip strength (kg) was calculated by
summing the largest reading from the right and left hand
and expressed relative to body mass (kg/kg BM).

Covariates

Covariates included in this study were sex, age, ethnicity, so-
cial economic status, smoking status, sedentary activity, total
daily energy intake, total alcohol intake and the percentage
of energy contributed by fat, carbohydrate and protein to
total daily energy intake. All covariates were assumed to
confound the relationship between dietary fibre intake and
outcome variables.

Age (years), sex (male, female), ethnicity, socio-economic
status and smoking status (smoker, non-smoker) were self-re-
ported during in-home interviews. Ethnic groups included
Mexican American, other Hispanic, non-Hispanic White,
non-Hispanic Black and other. Social economic status was
classified using the ratio of family income to poverty (PIR),
with participants being categorized as low (PIR ⩽ 1.3), middle
(PIR > 1.3 to ⩽3.5) or high (PIR > 3.5) socio-economic status.
Sedentary activity (minutes) was calculated from the physical
activity questionnaire and was preferred over other measures
of physical activity due to its high response rate. Total daily
energy intake (kcal) and total daily alcohol intake (grams)
were derived from the 24-h dietary recall (first day). The per-
centage of energy contributed by fat (%), carbohydrate (%)
and protein (%) to total daily energy intake was calculated
using the amount of each macronutrient consumed (g) de-
rived from the 24-h dietary recall (first day). This amount
was multiplied by its energy content (4 kcal/g for carbohy-
drate and protein, 9 kcal/g for fat) and then divided by total
daily energy intake to provide a percentage.

Statistical analysis

All statistical procedures were performed in Stata 16
(StataCorp, USA) and accounted for the complex survey de-
sign used in the NHANES (stratification and clustering). Taylor
series linearization methods were used for variance
estimation.

Four- (2011–2014) and 8-year sample weights (2011–2018)
were generated by combining 2-year sample weights for each
survey cycle as previously described.25 Sample weights were
applied to all analyses to produce nationally representative
estimates. Eight-year dietary Day 1 sample weights were used
for the body mass components dataset, 8-year fasting sub-
sample weights were used for the glucose homeostasis
dataset, and 4-year dietary Day 1 sample weights were used
for the skeletal muscle strength dataset.

Multiple imputation of missing data
As recommended in the NHANES analytic guidelines,25 out-
come variables for which >10% of data are missing for el-
igible participants require adjustment prior to analysis.
Consequently, multiple imputation with chained equations
was used to impute missing values for total lean mass,
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right leg lean mass, left leg lean mass, right arm lean
mass, left arm lean mass, total fat and trunk fat. Full
details of the imputation model are provided in
Appendix S1.

Participant eligibility
For the body mass components dataset, participants who
were not eligible for DEXA measurements or did not under-
take the 24-h dietary recall interviews (Day 1) were excluded
from analysis. Participants with missing values for body mass
components outcomes (body mass, BMI, trunk fat, total fat,
total lean mass, appendicular lean mass, bone mineral con-
tent), dietary fibre intake and/or covariates were, however,
not excluded, as multiply imputed values were used. This re-
sulted in 6454 eligible participants for the body mass compo-
nents dataset (Appendix S2).

Within the glucose homeostasis dataset, participants with
missing data for fasting glucose, fasting insulin, HOMA2-IR,
dietary fibre intake or covariates were excluded from analy-
sis. Similarly, participants with missing data for combined grip
strength, dietary fibre intake or covariates were excluded
from analysis within the skeletal muscle strength dataset.
This resulted in 5032 and 5326 eligible participants for the
glucose homeostasis and skeletal muscle strength datasets,
respectively (Appendix S2).

Association of dietary fibre intake with outcomes

Simple and multiple linear regression analyses were used to
examine the association between dietary fibre intake
(treated as continuous variable) and all outcome variables.
Model 1 was an unadjusted model. Model 2 adjusted for
socio-demographic and behavioural variables: gender, age,
ethnicity, socio-economic status, smoking status and seden-
tary activity. Model 3 adjusted for socio-demographic, behav-
ioural and dietary variables: gender, age, ethnicity,
socio-economic status, smoking status, sedentary activity, to-
tal energy intake, total alcohol intake, percent energy from
protein, percent energy from carbohydrate and percent en-
ergy from fat. The results from Model 3 are presented as
the main results. For body mass components and skeletal
muscle strength outcomes that showed a significant associa-
tion with dietary fibre intake in Model 3, a further model
was created (Model 4). Model 4 was identical to Model 3, ex-
cept that it was adjusted for an additional covariate (HOMA2-
IR) to evaluate the role of insulin resistance in the relationship
between dietary fibre and outcomes in the body mass compo-
nents and skeletal muscle strength datasets. Restricted cubic
splines were used to model non-linear relationships between
dietary fibre intake and outcomes, with three knots placed at
the 10th, 50th and 90th percentiles.26

Results from regression analyses are presented as regres-
sion coefficients (β) and corresponding 95% confidence

Table 1 Population-weighted socio-demographic and behavioural characteristics of the glucose homeostasis, body mass components and skeletal
muscle function datasets

Characteristics

Body mass components
dataseta

Glucose homeostasis
datasetb

Skeletal muscle strength
datasetc

n = 6454 n = 5032 n = 5326

Sex (%)
Male 48.3 (0.9) 47.9 (0.6) 48.0 (0.9)
Female 51.7 (0.9) 52.1 (0.6) 52.0 (0.9)

Age (years) 49.9 (0.1) 58.0 (0.3) 57.7 (0.2)
[40–59] [40–80d] [40–80d]

Ethnicity (%)
Mexican American 8.5 (1.0) 6.1 (0.7) 5.5 (1.0)
Other Hispanic 6.1 (0.7) 5.0 (0.6) 4.5 (0.7)
Non-Hispanic White 64.3 (1.9) 72.0 (1.7) 73.1 (2.3)
Non-Hispanic Black 11.8 (1.0) 9.7 (0.9) 10.3 (1.4)
Other 9.4 (0.6) 7.3 (0.5) 6.6 (0.6)

Socio-economic status (%)
Low 20.2 (1.3) 18.3 (1.2) 19.5 (1.8)
Middle 32.7 (1.3) 35.6 (1.2) 34.1 (1.4)
High 47.1 (1.8) 46.1 (1.8) 46.4 (2.4)

Sedentary activity (min/day) 389.2 (5.0) 391.2 (4.5) 407.3 (4.9)
Total daily energy intake (kcal) 2180 (18) 2126 (16) 2077 (18)
Energy contribution from carbohydrate
(%)

47.3 (0.3) 47.4 (0.3) 48.1 (0.3)

Energy contribution from fat (%) 34.7 (0.2) 35.2 (0.2) 34.0 (0.2)
Energy contribution from protein (%) 15.8 (0.1) 15.8 (0.1) 15.9 (0.1)
Fibre (g) 17.4 (0.2) 17.2 (0.2) 17.6 (0.3)

Data are %N (SE) or mean (SE) [range].
aEight-year dietary Day 1 sample weights (2011–2018).
bEight-year fasting subsample weights (2011–2018).
cFour-year dietary Day 1 sample (2011–2014).
dIndividuals aged over 80 years were top-coded as 80 years.
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intervals (CI), P-values and coefficients of determination (R2).
Significant differences were defined as P < 0.05.

Results

Population-weighted means of socio-demographic and
behavioural characteristics for each dataset are presented
in Table 1. Mean dietary fibre intake was ≈17 g/day for all
datasets.

Dietary fibre intake and body mass components

Dietary fibre intake showed a significant negative association
with body mass and BMI (Table 2). Assuming linearity, each
5 g increase in daily dietary fibre intake was associated with
a decrease of 0.98 kg (95% CI, �1.39 to �0.55 kg) and
0.38 kg/m2 (95% CI, �0.52 to �0.24 kg/m2) in body mass
and BMI, respectively.

Dietary fibre intake showed a significant positive associa-
tion with relative total lean mass, relative appendicular lean
mass and relative bone mineral content (Table 2). Assuming
linearity, each 5 g increase in daily dietary fibre intake was as-
sociated with an increase of 3.44 g/kg BM (95% CI, 2.40–
4.47 g/kg BM), 1.69 g/kg BM (95% CI, 1.13–2.25 g/kg BM)
and 0.23 g/kg BM (95% CI, 0.09 to 0.36 g/kg BM) in relative
total lean mass, relative appendicular lean mass and relative
bone mineral content, respectively.

Dietary fibre intake showed a significant negative associa-
tion with relative total fat and relative trunk fat (Table 2). As-
suming linearity, each 5 g increase in daily dietary fibre intake
was associated with a decrease of 3.40 g/kg BM (95% CI,
�4.45 to �2.36 g/kg BM) and 2.40 g/kg BM (95% CI, �3.14
to �1.67 g/kg BM) in relative total fat and relative trunk
fat, respectively.

Including HOMA2-IR as an additional covariate (Model 4)
produced comparable findings to the main results (Model 3)
for all outcomes in the body mass components dataset; direc-
tion, magnitude and statistical significance of regression coef-
ficients were largely unaltered (Appendix S3).

Dietary fibre intake and glucose homeostasis

Dietary fibre intake showed a significant negative associa-
tion with fasting glucose, fasting insulin and HOMA2-IR
(Table 2). Assuming linearity, each 5 g increase in dietary
fibre intake was associated with a decrease of 0.04 mmol/L
(95% CI, �0.08 to �0.01 mmol/L), 3.55 pmol/L (95% CI,
�5.03 to �2.07 pmol/L) and 0.08 AU (95% CI, �0.12 to
�0.05 AU) in fasting glucose, fasting insulin and HOMA2-
IR, respectively. Ta
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Figure 1 Dose–response relationship between dietary fibre intake and (A) body mass, (B) BMI, (C) relative total lean mass, (D) relative appendicular
lean mass, (E) relative bone mineral content, (F) relative total fat and (G) relative trunk fat. Values represent difference in predicted response in ref-
erence to a dietary fibre intake of zero. Red and blue solid lines represent linear and restricted cubic spline models, respectively. Black dotted line
indicates no change from a dietary fibre intake of zero. Linear and spline models were adjusted for gender, age, ethnicity, socio-economic status,
smoking status, sedentary activity, total energy intake, total alcohol intake, percent energy from protein, percent energy from carbohydrate and per-
cent energy from fat. Grey-shaded area represents 95% confidence interval from restricted cubic spline model predictions.
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Dietary fibre intake and skeletal muscle strength

Dietary fibre intake showed a significant positive association
with relative combined grip strength (Table 2). Assuming lin-
earity, each 5 g increase in daily dietary fibre intake was
associated with an increase of 0.012 kg/kg BM (95% CI,
0.006–0.018 kg/kg BM) in relative combined grip strength.

Including HOMA2-IR as an additional covariate (Model 4)
produced comparable findings to the main results (Model 3)
for relative combined grip strength; direction, magnitude
and statistical significance of the regression coefficient was
largely unaltered (Appendix S3).

Dose–response relationships

Dose–response relationships between dietary fibre intake and
all outcomes are shown in Figures 1 and 2. Outcomes were
also analysed across quarters of daily dietary fibre intake

and level of dietary guideline adherence (meeting recom-
mended dietary fibre intake vs. not meeting recommended di-
etary fibre intake), producing comparable findings to the main
results (Appendices S4 and S5).

Discussion

The aim of the present analysis was to examine the relation-
ship between dietary fibre intake and body mass components,
glucose homeostasis and skeletal muscle strength in adults
aged 40 years and older. Using nationally representative data
of the US population from the NHANES, we show that higher
dietary fibre intakes in adults at increased risk of skeletal mus-
cle mass loss are associated with an increase in relative total
lean mass, relative appendicular lean mass, relative bone min-
eral content and relative combined grip strength. We also
demonstrate that higher dietary fibre intakes are associated
with a lower body mass, BMI, fasting glucose, fasting insulin,

Figure 2 Dose–response relationship between dietary fibre intake and (A) fasting glucose, (B) fasting insulin, (C) HOMA2-IR and (D) relative combined
grip strength. Values represent difference in predicted response in reference to a dietary fibre intake of zero. Red and blue solid lines represent linear
and restricted cubic spline models, respectively. Black dotted line indicates no change from a dietary fibre intake of zero. Linear and spline models were
adjusted for gender, age, ethnicity, socio-economic status, smoking status, sedentary activity, total energy intake, total alcohol intake, percent energy
from protein, percent energy from carbohydrate and percent energy from fat. Grey-shaded area represents 95% confidence interval from restricted
cubic spline model predictions.

2140 J. Frampton et al.

Journal of Cachexia, Sarcopenia and Muscle 2021; 12: 2134–2144
DOI: 10.1002/jcsm.12820



HOMA2-IR, relative fat mass and relative trunk fat mass. To
our knowledge, the association between dietary fibre and
skeletal muscle mass and function has not been previously in-
vestigated in a cohort of this size and scope. Previous research
in this area has used relatively small sample sizes and a
narrower age range of study participants (65–79 years) and
did not adjust for important covariates (e.g. socio-economic
status, physical activity level, smoking status and alcohol
intake).27 The findings of the present study indicate that the
divergent changes in the lean and fat components of body
mass associated with higher dietary fibre intakes are also al-
lied to improvements in glucose homeostasis and skeletal
muscle strength. Consequently, interventions that aim to in-
crease dietary fibre intake, via supplementation or increased
consumption of high-fibre foods, may be a viable strategy to
prevent age-associated declines in lean body mass and associ-
ated strength.

The finding that a higher dietary fibre intake is associated
with a lower body mass and BMI is consistent with prior
observational, prospective and interventional studies.1 As-
suming a linear relationship between dietary fibre intake
and body mass, our analysis suggests that the average US cit-
izen (dietary fibre intake of ∼15 g/day) would be ∼2 to ∼4 kg
heavier than a similar individual (matched by covariates in-
cluded in Model 3) who met the recommended dietary fibre
intake (∼30 g/day). The effect of dietary fibre on fat mass ob-
served in the present analysis is also supported by previous
research investigating this relationship.28 Furthermore,
increased total fat and trunk fat are associated with insulin
resistance,29 and therefore, lower total fat and trunk fat likely
contribute to the relationship between higher dietary fibre in-
takes and lower fasting glucose, fasting insulin and HOMA2-IR.

Alongside its favourable effects on body mass and fat
mass, higher dietary fibre intakes are associated with an in-
crease in relative total lean mass and relative appendicular
lean mass. This is congruent with the limited available evi-
dence in humans showing fibre supplementation can modify
lean body mass.3,4,30 Indeed, diets that have shown promise
in preventing the age-related decline in skeletal muscle mass
are typically characterized by a high intake of fibre-rich foods
such as fruits, vegetables and wholegrains.31 The increase in
relative appendicular lean mass (a proxy for skeletal muscle
mass) with increasing dietary fibre intake likely contributes
to the positive relationship between dietary fibre intake and
improvements in glucose homeostasis outcomes (alongside
the concurrent reduction in relative fat mass) as skeletal mus-
cle is the primary site of glucose storage.32 However, due to
the scarcity of research in this area, the mechanisms respon-
sible for the putative relationship between dietary fibre and
skeletal muscle mass have been little explored or discussed.
As dietary fibre exhibits pleiotropic effects on the human
body, it may influence skeletal muscle mass via multiple ave-
nues. For example, dietary fibre supplementation has been
shown to decrease insulin resistance33,34 (in agreement with

the findings of the present analysis) and concentrations of
pro-inflammatory cytokines35,36—two factors that increase
muscle protein loss37,38 and are implicated in the
age-related decline in skeletal muscle mass and function.39

Nevertheless, our results show that after adjusting for
HOMA2-IR, the relationship between dietary fibre, body com-
position and skeletal muscle strength is largely unchanged.
This suggests that any potential effect of dietary fibre on
these outcomes is not entirely dependent on improvements
in insulin resistance and fibre-induced changes in body com-
position and skeletal muscle strength may be driven via alter-
nate mechanisms. Dietary fibre intake has a major impact on
the composition and metabolic activity of the gut
microbiome. For example, higher dietary fibre intake raises
the abundance of saccharolytic gut bacteria and production
of short-chain fatty acids (SCFAs),40,41 which have recently
been proposed as regulators of skeletal muscle mass, metab-
olism and function.42. SCFAs are also implicated in energy
balance and glucose homeostasis43 and may therefore con-
tribute to the relationship between higher dietary fibre in-
takes and lower body mass, BMI, fasting glucose, fasting
insulin and HOMA2-IR.

The positive association between dietary fibre intake and
relative combined grip strength is likely explained by the pos-
itive association between dietary fibre intake and relative ap-
pendicular lean mass, considering the strong linear
relationship between skeletal muscle mass and strength.44

This is in line with previous work showing that elderly individ-
uals in the highest tertile of skeletal muscle mass had signifi-
cantly higher relative handgrip strength and physical function
test scores than individuals in the lowest tertile27 and that
chronic fibre supplementation (comprising inulin and fructo-
oligosaccharides) could significantly improve hand grip
strength in this same population.45 Collectively, this would
suggest that dietary strategies that impact skeletal muscle
mass likely have downstream effects on skeletal muscle
strength and function and may therefore have important im-
plications for the maintenance of skeletal muscle mass and
function during the ageing process.

Dose–response curves suggest that most outcomes display
an approximate linear relationship with dietary fibre intake
and display no sign of a plateau over the range of dietary fi-
bre intake explored. Despite some outcomes in the body
mass components datasets showing a possible decrease in
the strength of the relationship when dietary fibre intakes ex-
ceed 20 g/day, the data presented in the current analysis sug-
gest that increasing dietary fibre intake above the current
population intake (and towards recommended levels46)
would likely be associated with improvements in body com-
position, glucose homeostasis and strength in adults aged
40 years and older.

Nevertheless, the present analysis has several limitations.
Firstly, this analysis only includes non-institutionalized partic-
ipants from the United States, and therefore, it is unknown
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whether the relationship between dietary fibre and skeletal
muscle mass and function are present in other populations
or countries. The findings from this analysis were also par-
tially limited by the age restrictions imposed on the DEXA
measurements, resulting in total lean mass, appendicular
lean mass, total fat and trunk fat only being measured in in-
dividuals aged up to 59 years old. This may be problematic
if the effect of dietary fibre on body composition is mediated
by the gut microbiota, as reports have consistently identified
age-related alterations to the composition and metabolic ac-
tivity of the faecal microbiota.47,48 However, previous re-
search has shown that dietary fibre intake is a major factor
influencing the composition of the gut microbiota in the el-
derly and correlates with decreased incidence of frailty.49 Fur-
thermore, the response of the gut microbiota to dietary fibre
ingestion was shown to be comparable between middle-age
(30–50 years) and older (≥70 years) adults.50 Thus, any asso-
ciation between dietary fibre and body composition pro-
duced by the gut microbiota is still likely to be present in
adults aged >60 years. A further limitation of this analysis
was the approach employed for dietary assessment. Dietary
fibre intake and other diet-related variables were calculated
using 24-hdietary recall, a method prone to misreporting51

and possibly not representative of an individual’s typical diet.
Additionally, specific classes (e.g. soluble vs. insoluble fibre)
or sources (e.g. vegetable vs. wholegrain) of dietary fibre
may be more efficacious than others for particular
applications,46 but the method of dietary assessment
employed did not differentiate between these. Lastly, inher-
ent to all cross-sectional data analysis, a causal relationship
between dependent and independent outcomes cannot be
established.

In summary, higher dietary fibre intakes are associated with
a lower body mass and an improvement in body composition
(characterized by a higher ratio of lean body mass to fat mass)
in adults aged 40 years and older. Moreover, the improve-
ments in body composition with higher dietary fibre intakes
are allied with improvements in glucose homeostasis and skel-
etal muscle strength. Future research should look to evaluate
the therapeutic potential of increasing dietary fibre intake (via
diet modification and/or supplementation) on skeletal muscle
and associated outcomes, with a focus on the preservation of
skeletal muscle mass in adults aged 40 years and older.
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