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Stenotrophomonas maltophilia is an emerging nosocomial pathogen. In many bacteria

iron availability regulates, through the Fur system, not only iron homeostasis but also

virulence. The aim of this work was to assess the role of iron on S. maltophilia biofilm

formation, EPS production, oxidative stress response, OMPs regulation, quorum sensing

(QS), and virulence. Studies were done on K279a and its isogenic fur mutant F60

cultured in the presence or absence of dipyridyl. This is the first report of spontaneous

fur mutants obtained in S. maltophilia. F60 produced higher amounts of biofilms than

K279a and CLSM analysis demonstrated improved adherence and biofilm organization.

Under iron restricted conditions, K279a produced biofilms with more biomass and

enhanced thickness. In addition, F60 produced higher amounts of EPS than K279a but

with a similar composition, as revealed by ATR-FTIR spectroscopy. With respect to the

oxidative stress response, MnSOD was the only SOD isoenzyme detected in K279a. F60

presented higher SOD activity than the wt strain in planktonic and biofilm cultures, and

iron deprivation increased K279a SOD activity. Under iron starvation, SDS-PAGE profile

from K279a presented two iron-repressed proteins. Mass spectrometry analysis revealed

homology with FepA and another putative TonB-dependent siderophore receptor of

K279a. In silico analysis allowed the detection of potential Fur boxes in the respective

coding genes. K279a encodes the QS diffusible signal factor (DSF). Under iron restriction

K279a produced higher amounts of DSF than under iron rich condition. Finally, F60 was

more virulent than K279a in the Galleria mellonella killing assay. These results put in

evidence that iron levels regulate, likely through the Fur system, S. maltophilia biofilm

formation, oxidative stress response, OMPs expression, DSF production and virulence.

Keywords: Stenotrophomonas maltophilia, iron, Fur, biofilms, oxidative stress response, IROMPs, virulence, DSF

Introduction

Stenotrophomonas maltophilia is a widespread environmental, multidrug resistant bacterium.
It has become a nosocomial pathogen of increasing importance; in fact, it is the third most
common nosocomial non-fermenting Gram-negative bacterium. Infection occurs principally in
immunocompromised subjects, and in patients exposed to invasive devices and/or broad spectrum
antibiotics (Looney et al., 2009; Brooke, 2012). S. maltophilia has also emerged as one of the most
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common isolated bacteria from the airway of cystic fibrosis (CF)
patients (Pompilio et al., 2011; Vidigal et al., 2014).

Despite the broad spectrum of clinical syndromes associated
with S. maltophilia infections, little is known about its virulence
factors (Adamek et al., 2011). Factors that could be involved
in the virulence of S. maltophilia include Smf1-fimbrial operon
(de Oliveira-Garcia et al., 2003), protease StmPr1 (Windhorst
et al., 2002; Nicoletti et al., 2011), exopolysaccharides and
lipopolysaccharides (Huang et al., 2006), and siderophores
(Garcia et al., 2012). Another important virulence factor of S.
maltophilia is its capacity to form biofilms, communities of
microbial cells that grow on biotic or abiotic surfaces embedded
within extracellular polymeric substances (EPS) (Huang et al.,
2006; Passerini de Rossi et al., 2007; Pompilio et al., 2008). S.
maltophilia biofilms exhibit phenotypic characteristics that are
distinct from those of planktonic organisms, including increased
resistance to antimicrobial compounds (Di Bonaventura et al.,
2004; Passerini de Rossi et al., 2009, 2012; Pompilio et al.,
2010).

The genome of S. maltophiliaK279a encodes a diffusible signal
factor (DSF) dependent quorum sensing (QS) system that was
first identified in Xanthomonas campestris pv. campestris (Xcc)
(Fouhy et al., 2007; Huang and Wong, 2007). DSF synthesis is
completely dependent on rpfF, which is part of the rpf operon
(for regulation of pathogenicity factors) (Barber et al., 1997).
Fouhy et al. (2007) demonstrated that the disruption of DSF
signaling has pleiotropic effects in S. maltophilia K279a. The
rpfF mutant had severely reduced motility, reduced levels of
extracellular protease and altered LPS profiles. Their results
showed that DSF controls aggregative and biofilm behavior and
virulence in a nematodemodel. A recent study demonstrated that
the significance of the rpf /DSF QS system is not confined to the
virulence caused by S. maltophilia but also used by the plant-
associated biocontrol agent S. maltophilia R551-3 (Alavi et al.,
2013). Furthermore, the S. maltophilia QS signal is involved in
interspecies signaling between different bacterial species within
the CF lung and also has cross-kingdom antagonistic activity on
Candida albicans (Ryan et al., 2008; Passerini De Rossi et al.,
2014).

Besides QS signals, iron availability is a regulatory signal
not only for the acquisition and utilization of this metal but
also for the production of virulence factors in many pathogenic
bacteria (Carpenter et al., 2009). Bacteria find iron limiting
conditions in mammalian hosts, where free iron is limited
and it is normally bound to sequestering proteins such as
transferrin and lactoferrin. Thus, siderophores are considered
important virulence factors for many pathogens allowing the
microorganism to survive in the host. However, an excess of iron
is toxic because of its ability to catalyze Fenton reactions and the
formation of reactive oxygen species (ROS). In consequence, iron
uptake has to be carefully regulated to maintain the intracellular
concentration of themetal between desirable limits (Escolar et al.,
1999). Iron-dependent gene regulation is mediated, in many
bacterial species by Fur (ferric uptake regulator). Fur regulates
the expression of iron uptake genes and is also involved in
virulence and protection against oxidative stress (Carpenter et al.,
2009). Fur is a global regulator that can act as either a repressor or

an activator. Iron limitation induces or inhibits biofilm formation
depending on the species (Wu and Outten, 2009).

Previous studies reported a relationship between Fur and
the QS system. Fur positively regulates acyl homoserine lactone
(AHL) production by Pseudomonas syringae pv. tabaci 11528
(Cha et al., 2008). InVibrio vulnificus the gene vvpE, encoding the
virulence factor elastase, is repressed under iron-rich conditions,
and the repression was due to a Fur-dependent repression of
smcR, a gene encoding a QS master regulator with similarity to
luxR in Vibrio harveyi (Kim et al., 2013). Recently, evidence that
iron limitation enhances AHL production was reported in A.
baumannii (Modarresi et al., 2015).

S. maltophilia is an aerobic bacterium which generates
ROS during metabolism. Superoxide dismutase catalyzes the
dismutation of toxic superoxide radicals into molecular oxygen
and hydrogen peroxide. Three SOD isoenzymes have been
discovered, all prokaryotic organisms contain Mn-SOD or
Fe-SOD while Cu/Zn-SOD is absent except for a few cases
(Fridovich, 1978). Currently very little is known about the
oxidative stress response of S. maltophilia.

The aim of this work was to assess the role of iron on S.
maltophilia biofilm formation, EPS production, oxidative stress
response, OMPs regulation, QS and virulence.

Materials and Methods

Bacterial Strains and Culture Conditions
The reference strain Stenotrophomonas maltophiliaK279a, which
genome is fully sequenced (GenBank: AM743169.1) was used in
this study (Crossman et al., 2008). The spontaneous fur mutant,
F60, derivative from the wild-type (wt) strain S. maltophilia
K279a, was isolated in this study. Xanthomonas campestris pv.
campestris (Xcc) 8004 and Xcc 8523 (rpfF mutant) were used in
the DSF bioassay described by Barber et al. (1997). Strains were
kept frozen at −20◦C in 15% glycerol. Before use, bacteria were
cultured on tryptone soya agar (TSA; Oxoid Ltd, Basingstoke,
Hampshire, UK) for 24 h at 35◦C. Unless otherwise stated, all
cultures were grown in tryptone soya broth (TSB, Oxoid Ltd) in
the presence or absence of 200µM 2,2′-dipyridyl (Dip; Sigma-
Aldrich), and incubated for 48 h at 35◦C. When required, the
cultures were vigorously aerated on a gyratory water bath shaker
(Model G75, New Brunswick Scientific Co. Edison NJ, USA) at
200 r.p.m.

Isolation of fur Mutants
The manganese mutagenesis technique (Hantke, 1987) with few
modifications was used to isolate spontaneous fur mutants of
S. maltophilia. Briefly, an overnight culture of K279a in LB
broth was plated on LB agar containing 20mM MnSO4 and
200µM Dip. After 72 h of incubation, the robustly growing
manganese-resistant colonies were tested on chrome azurol S
(CAS) agar plates prepared with the modifications described
previously by our group (Garcia et al., 2012) and supplemented
with 20mM FeCl3, to identify fur mutants by constitutive
siderophore production. In order to confirm the mutations,
the full-length fur gene and 100 bp upstream from the start
codon were PCR amplified using primers designed in this
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study (For 5′-GGCGGTTGGGGAAATCAAAC-3′ and Rev 5′-
CAACGAAAAACCCCGGGCA-3′) and sequenced. PCR was
performed using Taq DNA polymerase (Promega Corporation)
and chromosomal DNA from S. maltophilia putative furmutants
as template under the following conditions: 1 cycle of 96◦C
for 5min; 30 cycles of 96◦C for 1min, 48◦C for 30 s, and
72◦C for 1min, and a final cycle of 72◦C for 7min (Biometra,
TPersonal48). DNA sequences were determined at Unidad
de Genómica (Instituto de Biotecnología, Instituto Nacional
de Tecnología Agropecuaria-INTA, Argentina). The nucleotide
sequences were edited using the BioEdit Sequence Alignment
Editor (Hall, 1999) and sequences were aligned with MEGA v4.0
(Tamura et al., 2007).

Biofilm Formation Assay
Biofilms were prepared using a static microtitre plate model as
previously described (Passerini de Rossi et al., 2009). Briefly,
overnight cultures of S. maltophilia strains were standardized
to contain approximately 106 CFU/ml. For each test condition
(presence or absence of 200µM Dip in TSB medium), 8 wells
of a sterile flat-bottom 96-well polystyrene microtiter plate
(TPP, Trasandingen, Switzerland) were filled with 200µl of the
standardized inoculum. Uninoculated medium controls were
included. After 48 h incubation, the final culture density was
determined by measuring the OD546 using a Multiskan EX plate
reader (Thermo electron corporation, Hudson, United States).
Then, the culturemediumwas removed from each well and plates
were washed three times with phosphate buffered saline (PBS)
to remove non-adherent cells. Biofilms were stained with 0.01%
crystal violet (CV; Mallinckrodt, Chemical Works, NY, USA) for
30min. The plates were washed, and the dye bound to the biofilm
was extracted with ethanol 95%. The total biomass (attached
cells and extracellular matrix) was quantified by measuring the
OD546 of dissolved CV. Results were expressed as the level of CV
staining relative to the final culture density [CV (OD546)/Growth
(OD546)], to avoid variations due to differences in bacterial
growth generated by the chelator.

Confocal Laser Scanning Microscopy (CLSM)
For confocal microscopy biofilms were formed on Nunc Lab-
Tek 8-well chamber slide (No. 155411) containing a borosilicate
glass base 100µm thick. Overnight cultures of K279a and
F60 were standardized to contain approximately 106 CFU/ml
and for each test condition (presence or absence of 200µM
Dip), chambers were filled with 400µl of the standardized
inoculum. After 48 h of incubation, the wells were rinsed
with sterile physiological saline (0.9% NaCl) in order to
eliminate any non-adherent bacteria. The wells were refilled
with physiological saline containing 2.5µM Syto9 R© (Molecular
Probes, Grand Island, NY), a green fluorescent nucleic acid
marker, and incubated in the dark for 20min. Images were
acquired with a confocal laser-scanning microscope Carl Zeiss
LSM510-Axiovert 100M by sequentially scanning with a 488 nm
argon laser using a 40X water immersion objective lens, at the
Instituto de Investigaciones Biomédicas (Pontificia Universidad
Católica Argentina-CONICET, Argentina). Emitted fluorescence
was recorded within the 505–530 nm range to visualize Syto9

fluorescence, and Z-stacks were captured every10µm at different
areas in the well. Images were analyzed using the ZEN 2009 Light
Edition (Carl Zeiss) and three-dimensional projections of the
biofilms’ structure were reconstructed using the ImageJ program
(ImageJ. Available online: http://rsbweb.nih.gov/ij/).

Extracellular Polymeric Substances (EPS)
Production Assays
The EPS production was measured by ethanol precipitation as
previously described (Boon et al., 2008) with somemodifications.
S. maltophilia strains were cultured in 100ml of LB supplemented
with 0.1% glucose (LB-glc) in the presence or absence of 200µM
Dip. After 48 h of incubation with shaking, the supernatants were
collected by centrifugation at 14,000 r.p.m for 20min. The pellets
were dried overnight at 56◦C before determination of dry weight
of the biomass. After filter sterilization, supernatants were mixed
with 2 volumes of absolute ethanol and incubated at −20◦C
overnight. The precipitated EPS were centrifuged and dried
overnight at 56◦C. Results were expressed as the amount of EPS
(µg) relative to the dry weight of the biomass [EPS (µg)/Biomass
(mg)]. The carbohydrate content in EPS was quantified by the
phenol-sulfuric acid method (Dubois et al., 1956) with glucose
as the standard, and the protein content was measured by the
Bradford method (Bradford, 1976) using bovine serum albumin
(Sigma-Aldrich) as standard.

Attenuated Total Reflection Fourier Transform
Infrared (ATR-FTIR) Spectroscopy
ATR-FTIR spectroscopy was performed with S. maltophilia
ethanol-precipitated EPS samples. Infrared spectra were
recorded using a Nicolet 380 FT-IR (Thermo Scientific Electron
Corporation) with an ATR accessory equipped with a 45◦

single-reflection ZnSe prism. Thin particle films were prepared
by placing a suspension of dried EPS in Milli-Q water (7.5mg
of EPS in 150µl of water) on the ZnSe prism and drying for
60min. Absorption spectra were recorded between 4000 and
900 cm−1 with a resolution of 4 cm−1 and co-addition of 32
scans. Recording of spectra, data storage and data processing
were performed using the OMNIC software version 7.2 (Thermo
Scientific Electron Corporation).

Microscopy Analysis of Matrix
Exopolysaccharides
The presence of exopolysaccharides in the matrix of S.
maltophilia biofilms was detected as previously described
(Passerini de Rossi et al., 2009). Sterile microscope borosilicate
coverslips were aseptically placed into Petri plates along with
15ml TSB inoculated with S. maltophilia strains (106 CFU/ml)
and incubated for 48 h. The coverslips were removed, rinsed
with distilled water and stained in the dark with 0.1% calcofluor
white dye (Fluorescent brightener 28, Sigma-Aldrich) for 10min.
Then, coverslips were rinsed, mounted on the microscope
slides and examined with an Olympus BX50-DP73 microscope
(Olympus, New York, USA). Images were obtained with a 40X
lens objective. Calcofluor emissions were detected using a DAPI
filter (excitation/emission wavelengths: 330–385/420 nm). The
polysaccharide matrix fluoresces blue under the DAPI light filter.
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Determination of SOD Isoenzymes
The determination of the SOD isoenzymes in S.maltophilia
was performed using inhibition methods according to Dunlap
and Steinman (1986). First, crude extracts were prepared from
planktonic cultures. S. maltophilia cells from TSB or TSB-
Dip 48 h-cultures were harvested by centrifugation, washed
and suspended in 7ml of PBS with 0.25mM PMSF (Fluka
Biochemika). Suspensions were sonicated using two 3min pulses
(Vibra cell, Sonics & Materials Inc. Danbury, Connecticut,
USA) and centrifuged at 10,000 r.p.m. for 10min at 4◦C.
The supernatant protein concentration was determined by the
Bradford assay. Proteins were separated by using a 10% non-
denaturing PAGE in the presence of 50mMTris, 300mMglycine,
and 1.8mM EDTA at 120V. Gel lanes were loaded with 20µg
total protein and purified MnSOD from Escherichia coli (Sigma-
Aldrich) was used as standard. The metal present in the active
site of SOD molecule was determined using inhibition methods.
Gels were treated with 10mM NaCN or 3.7mM H2O2 to
inactivate Cu/ZnSOD or FeSOD, respectively. Resistance to both
cyanide and H2O2 is characteristic of MnSODs. SOD activity
was visualized by staining with NBT as described by Beauchamp
and Fridovich (1971). Briefly, after inhibition assays gels were
incubated with shaking for 30min in the dark in a solution
of 500µM NBT (Sigma Aldrich), 50mM potassium phosphate
buffer pH 7.8, 1mM EDTA, 20mM TEMED (Invitrogen,
Carlsbad, CA, USA) and 30µM riboflavin (Sigma-Aldrich). The
gels were illuminated until achromatic zones indicating SOD
activity were visible in a uniformly blue background.

SOD Activity Assay
The SOD activity was determined by the riboflavin/methionine
system (Beauchamp and Fridovich, 1971) in crude extracts from
planktonic (see Determination of the SOD isoenzymes) and
biofilm cultures of S. maltophilia strains under iron replete (TSB)
or iron restricted conditions (TSB-Dip). Biofilm crude extracts
were obtained by using 12-well microtiter plates. Wells were
filled with 3ml of the standardized inoculum (ca. 106 CFU/ml).
After 48 h of incubation, wells were aspirated, washed and then
filled with 1ml of PBS. Adherent cells were detached using
a sterile cell scraper and the resulting cell suspension from 9
wells was centrifuged. The pellet was suspended in 1ml of PBS
with 0.25mM PMSF. Then, crude extracts were obtained and
their protein concentration was determined as described. For
SOD activity determination, aliquots of 100µl from each extract
were treated with 300µl of 13mM methionine (Sigma-Aldrich),
100µl of 1mg/ml NBT, 300µl of 100 nM EDTA, and 300µl of
0.5mM riboflavin in the presence of light. After 15min, OD560

was determined. A unit of SOD was defined as the quantity of
enzyme required to produce a 50% inhibition of NBT reduction.
Activity was expressed as units of SOD permg of protein [SOD
(U)/Total protein (mg)].

Nitro Blue Tetrazolium (NBT) Assay
The NBT assay was performed as described by Aiassa et al.
(2010) with the following modifications. S. maltophilia biofilms
formed in 96-well microtiter plates under iron replete or iron
restricted conditions, as described above, were washed two times

with PBS, then 100µl NBT (1mg/ml) were added to each well.
After incubation for 30min at 37◦C in the dark the reaction was
stopped with 20µl of 0.1 N HCl. Each well was treated with 50µl
of DMSO (Calbiochem, La Jolla, CA, USA) to extract the reduced
NBT. Reduced NBT was measured as formazan blue at 540 nm.
Results were expressed as reduced NBT relative to the biomass
of biofilm normalized to cell density [NBT (OD546)/Biomass
(CV/OD)].

SDS-PAGE of OMP-enriched Fractions
S. maltophilia cells from 48 h-cultures in TSB or TSB-Dip were
harvested by centrifugation (15min, 4◦C, 10,000 r.p.m) and used
for preparation of Sarkosyl-insoluble OMP-enriched fractions
as described previously (Passerini De Rossi et al., 2003). SDS
gel electrophoresis was carried out according to the Tris/tricine
method (Schagger and Von Jagow, 1987). Gradient gels of 4–
20% (1mm thick) were used. Gels were stained with Coomassie
brilliant blue R-250 (Sigma-Aldrich). A high molecular weight
standard mixture for SDS gel electrophoresis (SDS-6H, Sigma-
Aldrich) was used as molecular size standards.

Mass Spectrometric Analysis of Proteins
Selected bands were cut from the SDS-polyacrylamide gel
stained with Coomassie blue and the proteins were subjected
to enzymatic hydrolysis with 25 ng/µl trypsin. The samples
were analyzed at the Laboratorio Nacional de Investigación y
Servicios en Péptidos y Proteínas (LANAIS–PRO, CONICET-
UBA). The sizes of the peptide fragments generated were
determined by mass spectrometry on a LCQ Duo ESI/TRAP
(Thermo Fisher) after separation by HPLC with a column Vydac
RP-C18 (1.0 × 200mm).The data were used to interrogate the
National Center for Biotechnology Information nonredundant
protein data bases by using the MASCOT MSMS program
(Matrix Science) available at www.matrixscience.com.

DSF Production
The bioassay described by Barber et al. (1997) was generally
followed. DSF production was assayed by measuring the
restoration of endoglucanase activity to the rpfF mutant Xcc
8523 by extracts from culture supernatants. To obtain the
extracts, S. maltophilia strains were grown in Stainer-Scholte (SS)
minimal medium plus 0.1% casamino acids (Difco laboratories,
Detroit, MI, USA) (SSC, iron-limited condition) and in SSC
supplemented with 100µM FeCl3 (iron rich condition). After
48 h of incubation the final culture density was adjusted to an
OD540 of 1.00 to avoid variations due to differences in bacterial
growth generated by iron supplementation. Then, the cells were
removed by centrifugation, the supernatants were acidified to
pH 3.0 with chlorhydric acid and loaded onto 30mg Oasis
MAX columns (Waters Oasis R© Milford, USA). The column
was washed with 5mM sodium acetate:methanol (95:5) and
elution was performed with methanol followed by 2% acetic
acid in methanol. The extracts were evaporated and suspended
in 500µl sterile water for the quantitative assay for the DSF.
Diameters of zones of carboxymethyl cellulose (CMC; Sigma-
Aldrich) hydrolysis, produced by 50µl of extract, were measured
and converted to relative endoglucanase units with a standard
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curve constructed using dilutions of a standard of cellulase I
(Sigma Aldrich). One unit of endoglucanase was defined as the
amount which gave a hydrolysis zone of 12mm diameter.

Galleria Mellonella Killing Assay
The virulence of S. maltophilia strains was evaluated by infecting
larvae of the wax moth G. mellonella as described by Seed
and Dennis (2008) with some modifications. First, in order to
establish the optimal inoculum of S. maltophilia required to
kill G. mellonella over 24–96 h, caterpillars of 250–350mg in
weight with a cream-colored cuticle, were inoculated with 10µl
of K279a suspensions containing 104, 105, and 106 CFU. Bacterial
suspensions were obtained from overnight TSA cultures. The
cells were washed twice with physiological saline and diluted to
obtain the different inocula. The concentration of each inoculum
was confirmed by colony counting on TSA plates. Bacteria were
injected into the hemocoels of the caterpillars via a left proleg
using 20µl Hamilton syringes. Caterpillars were incubated in
Petri dishes lined with filter paper at 30◦C for 96 h and scored for
survival daily. Insects were considered dead when they displayed
increased melanization and failed to respond to touch. Second,
G. mellonella killing assays were performed on K279a and F60
using the determined optimal inoculum. In all experiments, 12
caterpillars were used for each condition, including a control
group of caterpillars inoculated with physiological saline to
monitor for killing due to physical trauma. Experiments that
had more than one dead caterpillar in the control group were
discarded and repeated. Survival curves were plotted using
the Kaplan-Meier method, and differences in survival were
calculated by using the log-rank test (Graph Pad Prism version
5.0, Software Inc., La Jolla, CA).

Statistical Analysis
All experiments were performed at least in triplicate and repeated
on three different occasions. Statistical analysis was performed
using GraphPad InStat version 3.01 for Windows (GraphPad
Software, San Diego California USA, www.graphpad.com).
Results were analyzed by One-Way ANOVA with Dunnett’s
post-test, and differences were considered significant at p < 0.05.

Results and Discussion

In order to assess the role of iron on the production of
biofilms and factors potentially involved in biofilm formation and
virulence of S. maltophilia the following studies were performed
under iron-limiting and iron-replete conditions. Iron-dependent
gene regulation in bacteria is generally mediated by the Fur
system (Escolar et al., 1999). To our knowledge, S. maltophilia
fur mutants have not yet been obtained. Thus, we carried out the
manganese-induced mutagenesis of the wt strain K279a to select
fur mutants and test the possible role of Fur in iron dependent
regulation of these factors.

Isolation of S. maltophilia fur mutants
The genome of S. maltophilia K279a (GenBank: AM743169.1)
revealed a gene SMLT_RS09600 (old locus tag Smlt1986, putative
fur gene) encoding a 135 amino acid Fur family transcriptional
regulator.

Sequence similarity searches of the available nucleotide
databases were performed with the BLASTN program (http://
www.ncbi.nlm.nih.gov/blast). The putative fur gene is highly
conserved in S. maltophilia, SMLT_RS09600 from K279a is 99–
96% identical to putative fur genes of S. maltophilia strain 13637
(Accession: CP008838, region: 2056865–2057272), S. maltophilia
JV3 (Accession: CP002986, region: 1789094–1789500), and S.
maltophilia R551-3 (Accession: CP001111, region: 1790286–
1790693). Furthermore, K279a putative fur gene is 86% identical
to Xcc ATCC 33913 fur (XCC1470) and is 76% identical to
Pseudomonas aeruginosa PAO1 fur (PA4764).

These data prompted us to carry out the manganese selection
technique (Hantke, 1987) to select spontaneous fur mutants
of S. maltophilia. This method has been successfully used to
isolate fur mutants in other Gram-negative bacteria (Hantke,
1987; Passerini De Rossi et al., 2003). A total of 51 independent
clones from K279a were obtained on manganese LB agar. A
clone, named F60, showed constitutive siderophore production.
To discard reversion back to the wild type phenotype, the mutant
was tested for the deregulated phenotype on CAS agar plates
supplemented with iron several additional times with consistent
results.

With the aim of confirming the presence of mutations in F60,
a pair of primers were designed to PCR amplify the full-length fur
gene and 100 bp upstream from the start codon. Sequenced PCR
products revealed a point mutation (T C) 65 bp upstream of
the ATG initiation codon, in the promoter region located within
the−10 sequence.

Iron as a Signal for Biofilm Formation
In order to assess the role of iron on S. maltophilia biofilm
formation, K279a and its fur mutant were grown for 48 h in TSB
in the presence or absence of Dip in polystyrene microtiter plates.
The growth yield of F60 in these media was similar to that of
K279a (data not shown). Biofilm formation was quantified by
crystal violet (CV) staining. Figure 1A shows that K279a was
significantly more efficient in producing biofilms in the presence
of Dip than in TSB (p < 0.05). On the other hand, under iron-
replete conditions the amount of biofilm produced by the fur
mutant was higher than that of the wt strain (p < 0.05), and the
addition of the iron chelator did not affect its biofilm production.

To further investigate the role of iron on biofilm formation,
CLSM was used to analyze the architecture of the 48 h-biofilms
stained with Syto9. Figure 2A shows confocal images acquired
from K279a and F60 biofilms. K279a biofilm grown in TSB
presented a confluent growth withmicrocolonies scattered on the
surface (x–y plane) and the z-projection of the x–y stacks revealed
variable thickness. In the presence of Dip, K279a produced a
much more compact biofilm with enhanced thickness. On the
other hand, F60 biofilms grown under both iron conditions
showed larger microcolonies and were thicker than biofilms
from K279a grown in TSB. Figure 2B shows three-dimensional
reconstructions obtained from confocal stack images using the
ImageJ program. The architecture of biofilms consisted of peaks
interlaced with water channels. K279a biofilm presented peaks
with a range of 20–30µm in height while iron restriction resulted
in the formation of taller peaks up to 50µm. Irrespective of
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FIGURE 1 | Biofilm formation and production of EPS by S. maltophilia K279a and its Fur mutant. (A) Biofilm formation assessed by microplate

colorimetric assay. Biofilms were grown in TSB with or without 200µM Dip for 48 h in static 96-well polystyrene plates. The biomass of biofilms was quantified

by CV staining and expressed relative to the final culture density. (B) Production of EPS. S. maltophilia K279a and F60 were cultured in LB supplemented with

0.1% glucose (LB-glc) in the presence or absence of 200µM Dip for 48 h at 35◦C. Supernatants were mixed with 2 volumes of absolute ethanol and the

precipitated EPS were dried overnight at 56◦C before determination of dry weights. Results were expressed as the amount of EPS relative to the dry weight of

the biomass. Results represent the mean ± standard deviation of one representative experiment. Asterisks indicate significant difference (*p < 0.01).

FIGURE 2 | CLSM analysis of biofilms from S. maltophilia K279a and its Fur mutant. Biofilms were grown in glass LabTek chambers, in TSB and TSB

supplemented with 200µM Dip for 48 h. Then, biofilms were stained with Syto9 and analyzed by CSLM, using a 40X water immersion objective lens. (A)

Central panels represent the x–y plane, and the top and right side panels represent the x–z and y–z planes, respectively. Scale bars represent 20µm. (B)

Three-dimensional projections of biofilm structure were reconstructed using the Image J program. The images are representative of those obtained on three

independent occasions.

culture conditions F60 formed biofilms with more and taller
peaks of up to 90µm in height.

Since the growth yield of F60 was similar to that of K279a, the
phenotypic differences observed between these strains were not
due to a growth defect. Our results put in evidence that iron levels
regulate, possible through the Fur system, S. maltophilia biofilm
formation and architecture.

Iron limitation induces or inhibits biofilm formation
depending on the species (Wu and Outten, 2009). The presented
data show that in S. maltophilia iron restriction induces biofilm
formation, a similar behavior to that previously reported
for Legionella pneumophila, Acinetobacter baumannii and
Staphylococcus aureus (Tomaras et al., 2003; Johnson et al., 2005;
Hindre et al., 2008; Modarresi et al., 2015).

Effect of Iron on Extracellular Polymeric
Substances Production and Chemical
Composition
The production of extracellular polymeric substances (EPS) in
planktonic cultures grown under iron-limiting and iron-replete
conditions was quantified by ethanol precipitation. Results
showed that F60 produces 3-fold higher amounts of EPS than
K279a, and the presence of Dip improved the EPS production
only in the wt strain (Figure 1B). Hence, iron limitation, likely
through Fur, increased EPS production in S. maltophilia. This is
in accordance with the enhanced alginate production detected in
P. aeruginosa under iron limitation (Wiens et al., 2014).

The EPS of the majority of bacterial biofilms including
P. aeruginosa consists mainly of polysaccharides, proteins,
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TABLE 1 | Macromolecular composition of EPS extracted from S. maltophilia strains.

Strains EPS (µg EPS/mg Biomass) Chemical analysis of EPS*

Carbohydrates (mg glc/mg EPS) Proteins (mg proteins/mg EPS) Carbohydrate/Protein (mg glc/mg protein)

K279a 64.9 ± 3.3 0.25 ± 0.02 0.49 ± 0.03 0.51

F60 201.1 ± 38.0 0.26 ± 0.05 0.52 ± 0.05 0.50

Results represent the mean ± standard deviation of one representative experiment. *Carbohydrates and proteins were determined by the phenol-sulfuric acid method (Dubois et al.,

1956) and the Bradford method (Bradford, 1976), respectively.

FIGURE 3 | ATR-FTIR spectra of EPS from S. maltophilia strains. Spectra of ethanol precipitated EPS from K279a and F60 are shown in blue and in red,

respectively. Bands associated with lipids (3100–2800 cm−1), proteins (1700–1500 cm−1) mainly identified by the amide I (1646,64 cm−1 ) and amide II bands

(1555,40 cm−1), and polysaccharides and nucleic acids (1300–900 cm−1) are indicated in the spectra.

and nucleic acids (Laverty et al., 2014). The chemical
composition of the S. maltophilia EPS fractions was assessed
by measuring the total carbohydrate and protein contents
(Table 1). Interestingly, EPS from K279a and F60 had a similar
carbohydrate/protein ratio (∼0.50). To gain more insight, at
the biochemical composition level, the EPS of both strains were
also compared using ATR-FTIR spectroscopy. Figure 3 shows
the bands associated with lipids (3100–2800 cm−1), proteins
(1700–1500 cm−1), and polysaccharides and nucleic acids
(1300–900 cm−1) (Jiao et al., 2010). The FTIR spectra revealed
no significant variations in relative abundance of the components
between the two EPS fractions. These results put in evidence that
F60 produces a higher amount of EPS than K279a in the absence
of Dip, but with a similar biochemical composition.

The EPS matrix is important in forming the biofilm
architecture and in protecting bacteria from antimicrobials
and host defense mechanisms. Exopolysaccharides, fundamental
components of EPS, are recognized as virulence factors (Cescutti
et al., 2011; Laverty et al., 2014). In order to detect the
presence of exopolysaccharides in the matrix of S. maltophilia
biofilms samples stained with calcofluor white were examined
with epifluorescence microscopy. Figure 4 shows micrographs
from K279a and F60 biofilms formed in TSB and TSB-Dip.
Samples stained with calcofluor white showed that the cells
and microcolonies of both strains attached to borosilicate were

embedded within a blue fluorescent material. According to the
higher amounts of EPS produced by F60, the mutant formed
more compact structures, resembling cotton wool, than K279a.
Again, under iron-restricted conditions, the biofilm from K279a
showed the presence of EPS as an almost continuous sheet.

We have previously reported that binding of calcofluor white
indicates that β-linked polysaccharides, such as cellulose and
chitin, are part of the matrix of S. maltophilia biofilms (Passerini
de Rossi et al., 2007). This is in accordance with the presence
of many β-1-4 unions in the primary structure of S. maltophilia
exopolysaccharides characterized by Cescutti et al. (2011) from
planktonic cultures of two mucoid clinical isolates obtained
from two CF patients. This is a novel structure among bacterial
polysaccharides: It has three uronic acid residues on a total of
four sugars in the repeating unit and bears an additional negative
charge due to the d-lactate substituent. The authors suggested
that the abundance of negative charges, a common feature of the
exopolysaccharides produced by two other bacteria infecting CF
patients (P. aeruginosa and Inquilinus limosus), is a characteristic
which somehow constitutes an advantage for the microbes in the
lung environment.

Xiao et al. (2012) reported that exopolysaccharides modulate
the development and spatial distribution of microcolonies in
Streptococcus mutans biofilms. These authors suggested that
individual microcolonies encased in polysaccharides may serve
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FIGURE 4 | Microscopy detection of matrix exopolysaccharides in

S. maltophilia biofilms. K279a and F60 biofilms formed on borosilicate

coverslips in TSB (upper panel) or TSB-Dip (lower panel) for 48 h were stained

with calcofluor white and examined by epifluorescence microscopy. The

polysaccharide matrix fluoresces blue under the DAPI light filter. Calcofluor

stains cells as discrete points while EPS is visible as a continuous sheet.

Biofilms were viewed at 400X magnification.

as architectural units that become connected during biofilm
construction, forming compartmentalized networks that confer
highly heterogeneous yet cohesive environments within the
3D architecture. CLSM analysis demonstrated that, under iron
restriction, K279a produces a much more compact biofilm with
enhanced thickness and 3D organization, similar to that of F60
biofilms. These results could be in part due to an increment in
EPS production.

Role of Iron on the Oxidative Stress Response of
S. maltophilia
S. maltophilia is an aerobic bacterium which generates reactive
oxygen species (ROS) during metabolism. Aerobic bacteria
prevent the oxidative stress by producing antioxidant enzymes
including superoxide dismutases (SODs). Superoxide dismutases
is a family of three metalloenzymes containing manganese
(MnSOD) or iron (FeSOD) or both copper and zinc (Cu/ZnSOD)
cofactors. FeSOD and MnSOD are generally evidenced in
prokaryotes (Fridovich, 1978).

First, we decided to determine the type of SOD isoenzymes
produced by S. maltophilia K279a using inhibition methods
(Dunlap and Steinman, 1986). Crude extracts of planktonic
cells of S. maltophilia K279a cultured in TSB or TSB-Dip
were separated by using a 10% non-denaturing PAGE. A single
band was seen under both growth conditions and inhibition
experiments showed that MnSOD is the only SOD isoenzyme
present since this band was inhibited neither by H2O2 nor by
NaCN (data not shown). The mobility of the K279a MnSOD
differs from that of the MnSOD purified from E. coli used as
a reference; this fact could reflect some structural differences
between them. Analysis of the S. maltophilia K279a genome
(GenBank: AM743169.1) showed the presence of five sod genes,

two of them, SMLT_RS13450 and SMLT_RS15415 coding for
putative MnSODs. This was the only isoenzyme detected under
the experimental conditions used in this study. Our result is in
accordance with the report of the expression of only MnSOD
by the quinclorac-degrading strain S. maltophilia WZ2 (Lü
et al., 2009). This fact allowed us to study the role of iron in
SOD regulation by determining the total SOD activity by the
riboflavin/methionine system (Beauchamp and Fridovich, 1971).

Comparative studies of SOD activity were conducted on crude
extracts obtained from biofilms and planktonic cultures of K279a
and F60 in the presence or absence of Dip (Figure 5A). The
use of 12-well microtitre plates instead of 96-well plates for
biofilm formation allowed the recovering of larger amounts of
biomass needed for the assay. The crude extracts obtained from
the biofilm of K279a in the absence of Dip showed the lowest total
SOD activity (12.06± 0.5 U/mg of protein), and iron deprivation
produced a significant increase in SOD activity (19.6± 1.4 U/mg
of protein). On the other hand, the SOD activity in crude extracts
of F60 biofilms obtained in the presence or absence of Dip (22.06
± 0.7 and 18.20 ± 0.5 U/mg of protein, respectively) was higher
than that of K279a cultured in the absence of Dip. The SOD
activity from planktonic cultures of K279a and F60 under both
conditions showed the same behavior. In conclusion, these results
demonstrate that SOD activity in S. maltophilia is negatively
regulated by iron, likely through Fur. In many organisms Fur
regulates the expression of the sodA gene which encodesMnSOD.
Our results are in agreement with those of Hassett et al. (1996)
who reported that, the addition of Dip to the wt P. aeruginosa
PAO1 produced an increase in MnSOD activity, similar to the
furmutant phenotype. Interestingly, the SOD activity of biofilms
was lower than that of the respective planktonic counterparts,
a fact that could be due to the lower metabolic activity of
biofilms.

Finally, the production of ROS by S. maltophilia in biofilms
grown under iron replete or iron restricted conditions was
evaluated by the NBT assay (Aiassa et al., 2010). Figure 5B shows
that the biofilm of K279a cultured in the presence of Dip had
2.5-fold lower levels of ROS than biofilms cultured in TSB. The
biofilms of F60 formed under both conditions showed levels of
ROS similar to that of K279a cultured in TSB-Dip. These results
are in concordance with the respective levels of SOD activity in
the biofilm (Figure 5A). Thus, the formation of biofilms under
low iron conditions led to low ROS generation. A similar result
was obtained when the production of ROS was determined
in supernatants of planktonic cultures (data not shown). One
limitation of these results is that the methodology used for
evaluating ROS production is not quite specific. Further studies
with specific fluorescent probes for detection of superoxide
radicals or hydrogen peroxide, as well as electron spin resonance
(ESR) spectrometry, are needed to quantify and identify these
radicals.

Identification of Iron Regulated OMPs by Mass
Spectrometry
Under iron-limiting growth conditions many bacteria express
high affinity systems to scavenge this metal from different
sources. In Gram-negative bacteria specific outer membrane
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FIGURE 5 | SOD activity and ROS levels in S. maltophilia K279a and

F60. Bacterial cultures were performed in TSB and TSB supplemented with

200µM Dip for 48 h (A) SOD activity of crude extracts from plaktonic and

biofilms cells determined by the riboflavin/methionine system, as described in

the text. Activity was expressed as units of SOD permg of protein. (B) Levels

of ROS in biofilms of S. maltophilia. The biofilms formed in microtiter plates

were treated with NBT. Reduced NBT was measured as formazan blue at

540 nm and expressed relative to the biomass of biofilm. Results represent the

mean ± standard deviation of one representative experiment. Asterisks

indicate significant difference (*p < 0.01).

receptors bind FeIII-siderophore complexes, which are generally
internalized into the periplasm across the outer membrane
with energy transduced by the TonB system (TonB/ExbB/ExbD
complex) from the cytoplasmic membrane (Braun, 1995).
Furthermore, many of these genes are repressed by Fur (Crosa,
1997).

With the purpose of detecting S. maltophilia iron-repressed
outer membrane proteins (IROMP) Sarkosyl-insoluble OMP-
enriched fractions from K279a and F60, grown in TSB and
TSB-Dip, were compared by SDS-PAGE (Figure 6) Under iron
starvation, the SDS-PAGE profile fromK279a presented a pattern
of two iron-repressed proteins in the range of 70–90 kDa. Band 1
(higher MW) appeared to be stronger under low-iron conditions
while Band 2 was only seen when K279a was grownwith Dip. The
SDS-PAGE profiles from F60, cultured in both conditions, were
similar to that of K279a grown with Dip.

Subsequently, Band 1 and Band 2 from K279a were analyzed
by mass spectrometry and identified based on the analysis
of their mass spectra by Mascot (www.matrixscience.com).

FIGURE 6 | SDS-PAGE profiles of Sarkosyl-insoluble OMP-enriched

fractions from S. maltophilia K279a and F60. Bacterial cultures were

performed in TSB and TSB supplemented with 200µM Dip for 48 h. Outer

membrane proteins were extracted as described in the text. Proteins from

Sarkosyl-insoluble OMP-enriched fractions (10µg per lane) were separated by

SDS gel electrophoresis according to the Tris/tricine method (Schagger and

Von Jagow, 1987) using gradient gels of 4–20%. Gels were stained with

Coomassie blue. Lane 1, K279a (TSB); 2, K279a (TSB-Dip); 3, F60 (TSB);

4, F60 (TSB-Dip), and 5: molecular mass markers in kDa. Arrows show two

bands, in the range of 70–90 kDa, regulated by iron: Band 1 (higher MW) and

Band 2.

Band 1 was matched to the outer membrane receptor FepA
from S. maltophilia K279a (gi|190573428, YP_001971273,
score: 283, protein sequence coverage: 57%). Reference
sequence YP_001971273 has been replaced by WP_012479564.
The sequence YP_001971273 is 100% identical to
WP_012479564 over its full length (749 aa). SMLT_RS06850
(gi|190572091:1472622-1474871) codifies WP_012479564, a
protein with a calculated mass of 80.67 KDa.

Band 2 closest match was a colicin I receptor from S.
maltophilia K279a (gi|190575965, YP_001973810, score:
419, protein sequence coverage: 60%). The old locus tag
Smlt4135 (gi|190010013:4245161-4247299) codifies for
the putative precursor of colicin I (also known as CirA,
YP_001973810), a protein of 712 aa. This locus have been
replaced by SMLT_RS19685 (gi|190572091:4245254-4247299)
which codifies for the TonB-dependent receptorWP_044570913,
a protein of 681 aa with a calculated mass of 73.95 KDa. The
sequence YP_001973810 is 100% identical to WP_044570913
over the shared 681 aa.

A BLAST search indicated that the S. maltophilia
WP_012479564 protein displays closest homology to the
outer membrane receptor FepA of Xanthomonas citri
(Accession: WP_011052402, 66% identity), P. aeruginosa
(Accession WP_003111874, 50% identity) and E. coli (Accession:
ADB98042, 47% identity). On the other hand, WP_044570913
showed significant homology to a TonB-dependent receptor of
Pseudomonas putida (Accession: WP_043199708, 55% identity),
a putative colicin I receptor of Acinetobacter sp. WC-323
(Accession: EKU56436, 48% identity), a colicin I receptor of
Acinetobacter guillouiae (Accession: BAP36722, 47% identity),
and a colicin IA outer membrane receptor and translocator, ferric
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iron-catecholate transporter of E. coli str. K-12 substr.MG1655
(Accession: NP_416660, 34% identity).

Therefore, by using SDS-PAGE followed by mass
spectrometry we identified two IROMPs, WP_012479564,
and WP_044570913, which are TonB-dependent receptors. E.
coli K-12 possesses at least five TonB-dependent receptors for the
uptake of different siderophores, including FepA and Cir (also
termed CirA). All of them consist of a 22-β-strand barrel formed
by ca. 600 C-terminal residues, while ca. 150 N-terminal residues
fold inside the barrel to form a hatch, cork or plug domain.
The plug domain acts as the channel gate, blocking the pore
until the channel is bound by ligand. At this point it undergoes
conformational changes which opens the channel (Miethke and
Marahiel, 2007). Consequently, we decided to search the protein
accession numbers obtained through MASCOT in the conserved
domain databases (http://www.ncbi.nlm.nih.gov/Structure/cdd/
wrpsb.cgi). The domain hits for WP_012479564 were PRK13524
(multi-domain, Accession PRK13524), outer membrane receptor
FepA, for the interval of 28-749 aa (E-value 0e+00), and the
ligand_gated_channel (Accession cd01347) corresponding to
TonB dependent/Ligand-Gated channels in the interval of
52-749 aa (E-value 6.06e–122). Furthermore, in the N-terminal
plug of ligand_gated_channel (residues 52–171) 54 of 54 of the
residues that compose this conserved feature have been mapped
to the query sequence. With respect to WP_044570913, the
domain hits were FepA (multi-domain, Accession COG4771),
outer membrane receptor for ferrienterochelin and colicins,
for the interval of 45–681 aa (E-value 0e+00), and the
ligand_gated_channel (Accession cd01347) in the interval of
66–681aa (E-value 2.07e–115). Besides, in the N-terminal plug
of ligand_gated_channel (residues 60–172) 54 of 54 of the
residues that compose this conserved feature have been mapped
to the query sequence. Another hit was PRK13483 (Accession
PRK13483) corresponding to enterobactin receptor protein in
the interval of 43–681 aa (E-value 2.74e–142).

In addition, the SignalP 4.0 program (http://www.cbs.dtu.
dk/services/SignalP-4.0) predicts a cleavable N-terminal signal
sequence for both S. maltophilia proteins, with a potential
cleavage site at amino acid 29 for WP_012479564 and at amino
acid 35 for WP_044570913.

Since several OMPs which are TonB-dependent receptors
are encoded by fur-repressed genes (Andrews et al., 2003),
the presence of putative Fur-binding sites was searched in
the upstream regions of SMLT_RS06850 and SMLT_RS19685,
coding for WP_012479564 and WP_044570913, respectively.
Firstly, −10 and −35 elements similar to the E. coli consensus
promoter sequences were identified in the upstream regions
(−200 to +21 relative to the start codon) of both genes
by using BPROM (Softberry, Inc.) (Figure 7A). Secondly, for
the detection of potential Fur boxes in S. maltophilia genes
a scoring matrix was defined from the 43 Fur binding sites
characterized in other bacteria (Zaini et al., 2008) using the
MEME tool (http://meme-suite.org). Then, the S. maltophilia
K279a genome (GenBank: AM743169.1) was analyzed with the
resulting scoring matrix using the MAST tool (http://meme-
suite.org/tools/mast). Twenty putative S. maltophilia Fur boxes
(p < 10e−4) were detected with MAST tool. Figure 7A shows

FIGURE 7 | In silico analysis of putative Fur boxes of S. maltophilia

K279a iron regulated genes. (A) Upstream regions (−200 to +21) of

SMLT_RS06850 and SMLT_RS19685, coding for the outer membrane

receptor FepA and a TonB-dependent receptor, respectively. The -35 and -10

sites of the predicted promoters are shown in boxes and the +1 transcription

start sites are in bold and underlined. The putative Fur boxes of

SMLT_RS06850 (−144 to −125) and SMLT_RS19685 (−175 to −156) are

highlighted in yellow. (B) Sequence logo of the putative Fur box of S.

maltophilia. Detection of potential Fur boxes present in the genome of S.

maltophilia (GenBank: AM743169.1; (Crossman et al., 2008) was performed

with 43 Fur boxes previously characterized (Zaini et al., 2008) using MEME

tool. A consensus was built from 20 putative S. maltophilia Fur boxes detected

with MAST tool.

the putative Fur boxes of SMLT_RS06850 (−144 to −125, 5′

GCATTTGAGAATCACTCGC 3′) and SMLT_RS19685 (−175
to −156, 5′ GCGAACGGTTATCATTTCA 3′) identified in a
region comprising the −35 element and the −10 element of
the respective promoters. In E. coli, the iron-bound Fur binds
to a well-conserved consensus sequence, known as the Fur box,
located in the promoter region of genes directly repressed by
Fur (Escolar et al., 1999). Therefore, our results suggest that
Fur could regulate the expression of the studied S. maltophilia
genes in response to iron availability. However, the two identified
sequences do not appear to be particularly well conserved
since they are identical in 11 over 19 bases to the Fur-box
consensus sequence 5′ GATAATGATAATCATTATC 3′ of E. coli
(de Lorenzo et al., 1987). Escolar et al. (1999) proposed that the
intracellular iron concentration and the variability and extension
of the sequences targeted by Fur could cause a wide range
of responses in each specific case. Some genes undergo mild
regulation or coregulation by iron, while others are subjected to a
strong repression/induction switch. Figure 7B shows a consensus
S. maltophilia FUR motif built from 20 putative Fur boxes
detected within the 200 bp region upstream a start codon with
MAST tool.

With respect to protein functions, in E. coli K-12 FepA
and CirA are the catecholate siderophore OM receptors for
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the uptake of Fe-enterobactin and linear Fe-enterobactin
degradation products such as dihydroxybenzoyl serine,
respectively (Buchanan et al., 2007; Miethke andMarahiel, 2007).
We have previously reported the optimization of the chrome
azurol S agar assay, based on the addition of Casamino acids
and Dip to the CAS medium, for the detection of siderophores
in S. maltophilia. Moreover, K279a and all local nosocomial
isolates studied produced only catechol-type siderophores
(Garcia et al., 2012). Interestingly, Ryan et al. (2009) suggested
that S. maltophilia K279a and R551-3 produce the catechol-type
compound enterobactin based on their sequenced genomes.
In the genome of S. maltophilia K279a, SMLT_RS13395,
SMLT_RS13400, SMLT_RS13415, and SMLT_RS13420 encode
putative enterobactin synthasa components. According to these
data, our results put in evidence the presence of WP_012479564
and WP_044570913, which are TonB-dependent receptors
homologs to those related to the uptake of Fe-enterobactin. We
are currently performing studies to structurally characterize S.
maltophilia siderophores.

Little is known about S. maltophilia iron uptake systems.
Huang and Wong (2007) identified a homolog of the ferric
citrate receptor FecA in S. maltophilia WR-C, which was
induced in the iron-depleted medium supplemented with a
low concentration of ferric citrate. Interestingly, their results
suggest that this TonB-dependent receptor is regulated by the
rpf /DSF cell-cell communication system. Consequently, we are
going to investigate whether the two iron regulated TonB-
dependent receptors described in this study are also regulated by
S. maltophilia quorum sensing.

Effect of Iron on DSF Production
The effect of iron on DSF production was evaluated through
the bioassay described by Barber et al. (1997). S. maltophilia
strains were grown in SSC (iron-limited condition) and in SSC
supplemented with FeCl3, and DSF present in the supernatants
was extracted with Oasis MAX columns. The iron-limited
condition cannot be achieved by the addition of Dip, since
the chelator present in the extracts inhibits the growth of the
reporter strain. Figure 8 shows that the wt strain under the iron-
limited condition produced significantly higher amounts of DSF
measured as endoglucanase units (18.7 ± 0.6 U) than under the
iron rich condition (16.2± 0.4 U). On the other hand, themutant
F60 under both conditions, produced higher amounts of DSF
(17.9 ± 0.5 and 18.1 ± 0.5 U, respectively) than K279a cultured
with 100µM FeCl3. In conclusion, iron, probably through the
Fur system, negatively regulates DSF production.

Previous studies, mentioned in the introduction, reported a
relationship between Fur and the QS system. In some Gram
negative bacteria iron limitation enhances AHL production. This
is the first report of the regulation of DSF, an unusual QS signal,
by iron, probably through the Fur system.

Virulence of S. maltophilia K279a and F60 in the
Galleria mellonella Infection model
G. mellonella has been utilized to study host-pathogen
interactions in bacteria, including Burkholderia cepacia and
S. maltophilia (Seed and Dennis, 2008; McCarthy et al., 2011;

FIGURE 8 | DSF production by S. maltophilia strains grown under

iron-limited (SSC) and iron rich conditions (SSC-100µM FeCl3). DSF

production was assayed by measuring the restoration of endoglucanase

activity to the Xcc rpfF mutant strain 8523 by culture supernatant extracts

obtained using Oasis MAX columns. The results were expressed as units of

endoglucanase. Results represent the mean ± standard deviation of one

representative experiment. Asterisks indicate significant difference (*p < 0.01).

Nicoletti et al., 2011). G. mellonella caterpillars have a humoral
immune response which involves melanization and production
of antimicrobial peptides, and a cellular response which includes
phagocytosis (Hoffmann, 1995). G. mellonella is an attractive
alternative infection model since its innate immune system
shares a high degree of structural and functional homology to
that of mammals.

The influence of the Fur system in S. maltophilia virulence
was evaluated by infecting larvae of G. mellonella. First, we
established the optimal inoculum size of S. maltophilia required
to kill G. mellonella over 24 to 96 h by injecting larvae with
10µl of K279a suspensions containing 104, 105, and 106 CFU.
The killing was significantly dependent on the number of S.
maltophilia cells injected. Inoculation of larvae with 104 CFU of
K279a did not produce the killing of any of them after 96 h of
infection, whereas the 106 CFU/larva inoculum resulted in the
rapid killing of more than 90% of caterpillars within 24 h. On
the other hand, the dose of 105 CFU/larva which produced a
progressive death of caterpillars over the incubation time was
chosen as the optimal inoculum (data not shown). Then, G.
mellonella killing assays were performed with K279a and F60.
Figure 9 shows the corresponding survival curves of a single
representative trial. Infection of caterpillars with K279a resulted
in 20% of death after 48 h of inoculation, and 43% of death after
96 h, a response significantly different from that obtainedwith the
mutant F60 (p < 0.001) which was able to kill 62% of caterpillars
after 48 h of inoculation and reached 81% of death after 96 h. No
dead caterpillars were detected in the control group. Therefore,
the furmutation led to increased virulence toG.mellonella larvae,
compared to that of its isogenic parental strain, which could be
due to the pleitropic effects of this mutation observed in the
present study, including increased biofilm formation, and EPS
and SOD production.

Very little is known about the pathogenic mechanisms of S.
maltophilia. One study using the G. mellonella infection model
suggests that the major extracellular protease StmPr1 may be a
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FIGURE 9 | Virulence of S. maltophilia K279a and F60 in the Galleria

mellonella infection model. Kaplan-Meier survival curves of G. mellonella

larvae after 96 h from injection with 1× 105 UFC/larva of K279a and F60 are

shown. Each data set corresponds to a single representative trial with the

specified strain (n = 12). Differences in survival were calculated using the

log-rank test for multiple comparisons and were considered statistically

significant at p < 0.05. No more than one control larvae injected with sterile

physiological saline died in any given trial (not shown).

relevant virulence factor of S. maltophilia (Nicoletti et al., 2011).
Another study (McCarthy et al., 2011) using this model reported
that Ax21 protein is a cell-cell signal that regulates virulence in S.
maltophilia. These results and the herein presented show that the
G. mellonella infection model is a useful tool for future research
on S. maltophilia virulence.

Conclusion

The studies described herein are the first to provide evidence
about the important role of iron as a signal, likely through the
Fur system, for S. maltophilia biofilm formation and virulence.
For these studies, a spontaneous fur mutant was obtained for
the first time in S. maltophilia. Iron limitation improved biofilm
formation and organization, as well as EPS production and
SOD activity. Furthermore, MnSOD was responsible for the
oxidative stress response of S. maltophilia. The G. mellonella
infection model was useful to evaluate the virulence of the
strains used in this work. F60 was more virulent than K279a in
the killing assay, in accordance with the described role of iron
in the regulation of potential virulence/survival factors. These
observations are significant since S. maltophiliawould be exposed
to iron-limiting conditions either in the host or the nosocomial
environment.

Moreover, we report the presence of two IROMPs
which showed homology with FepA and another putative

TonB-dependent siderophore receptor of K279a. In silico
analysis allowed the detection of potential Fur boxes in the
respective coding genes. Additionally, several promoters
containing consensus Fur boxes were detected in the genome of
K279a, and a consensus S. maltophilia FUR motif was built.

This is the first report of the regulation of DSF, an unusual QS
signal, by iron, probably through the Fur system. Some authors
suggest that iron and QS converge to regulate the expression of
some virulence factors while an alternative interpretation could
be that QS-regulated traits are likely to be a component of the
Fur regulon (Cha et al., 2008). Future additional studies are

required to fully define the role of the S. maltophilia fur homolog
and to characterize the interaction between the QS system
and Fur.

Finally, it has been proposed that interference with iron
signaling processes could provide an interesting approach to aid
the treatment of bacterial infections (Thompson et al., 2012).
However, our results as well as those of Wiens et al. (2014) raise
concerns about the use of iron chelators in the treatment of CF
infections.
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