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Multiple adaptations to polar and
alpine environments within
cyanobacteria: a phylogenomic and
Bayesian approach
Nathan A. M. Chrismas, Alexandre M. Anesio and Patricia Sánchez-Baracaldo*

Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, UK

Cyanobacteria are major primary producers in the polar and alpine regions contributing
significantly to nitrogen and carbon cycles in the cryosphere. Recent advancements
in environmental sequencing techniques have revealed great molecular diversity
of microorganisms in cold environments. However, there are no comprehensive
phylogenetic analyses including the entire known diversity of cyanobacteria from these
extreme environments. We present here a global phylogenetic analysis of cyanobacteria
including an extensive dataset comprised of available small subunit (SSU) rRNA gene
sequences of cyanobacteria from polar and high altitude environments. Furthermore, we
used a large-scale multi-gene (135 proteins and 2 ribosomal RNAs) genome constraint
including 57 cyanobacterial genomes. Our analyses produced the first phylogeny of
cold cyanobacteria exhibiting robust deep branching relationships implementing a
phylogenomic approach. We recovered several clades common to Arctic, Antarctic
and alpine sites suggesting that the traits necessary for survival in the cold have
been acquired by a range of different mechanisms in all major cyanobacteria lineages.
Bayesian ancestral state reconstruction revealed that 20 clades each have common
ancestors with high probabilities of being capable of surviving in cold environments.

Keywords: cyanobacteria, cryosphere, evolution, SSU rRNA gene, phylogenomics, ancestral state reconstruction
(ASR)

Introduction

Some cyanobacteria can tolerate and even thrive under the extreme conditions found in cold, arid,
andUV-exposed environments. They play a key ecological role inmany cryo-habitats such as lakes,
cryoconites, and lithic substrates (e.g., sandstone and quartz; Quesada and Vincent, 2012), and can
be found globally in habitats where temperatures exceed −20 C◦ (the assumed bottom limit for
active metabolism in prokaryotes from natural environments, Clarke et al., 2013) either annually
or seasonally. Recent studies that address the evolution of cold cyanobacteria have focused on the
mat forming Microcoleus autumnalis (= Phormidium autumnale; Strunecký et al., 2012a, 2013)
and the endolithic Chroococcidiopsis sp. (Bahl et al., 2011), but the evolutionary histories of many
other lineages remain largely unexplored. Studying the phylogenetic relationships of cyanobacteria
from polar and high-altitude environments is essential if we are to understand the mechanisms by
which these organisms radiated into such extreme habitats.
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Recent advancements in genome sequencing and improved
taxon sampling have helped resolve deep branching relationships
of the cyanobacteria tree (Sánchez-Baracaldo et al., 2005;
Blank and Sánchez-Baracaldo, 2010; Larsson et al., 2011;
Shih et al., 2013; Bombar et al., 2014). Large-scale multi-
gene phylogenetic analyses have begun converging on similar
topologies (Shih et al., 2013; Bombar et al., 2014; Sánchez-
Baracaldo et al., 2014) and now provide a robust framework
in which to investigate cyanobacterial evolution. Several studies
have proposed connections between the diversification of
cyanobacteria and major global biogeochemical transitions
recorded in the fossil record (Blank and Sánchez-Baracaldo,
2010; Schirrmeister et al., 2013; Sánchez-Baracaldo et al.,
2014). While cyanobacterial genomes have helped clarify
deep-branching relationships necessary for such analyses, our
understanding of the role that cold-tolerant cyanobacteria
might have performed in global change has been hindered
by an absence of genomes from cold environments. The
majority of sequence data available for cyanobacteria from
cold habitats are restricted to the small subunit (SSU) rRNA
gene (otherwise known as 16S RNA) sequenced direct from
environmental samples. While the use of the SSU rRNA
gene as a conserved phylogenetic marker has advanced our
understanding of microbial communities, its application can
be limited when resolving phylogenetic relationships of early
divergent microorganisms such as cyanobacteria (Sánchez-
Baracaldo et al., 2005) because multiple substitutions at
individual loci over long periods of time can lead to false
tree topologies when single genes are used, regardless of the
number of sequences (Philippe et al., 2011). Furthermore, the
ability of short reads to accurately resolve phylogenetic relations
has been called into question (Huse et al., 2008; Liu et al.,
2009; Youssef et al., 2009) and reliance upon fragmented SSU
rRNA gene sequences from environmental samples alone can be
problematic. Previous studies of cold filamentous cyanobacteria
have treated paraphyletic groups as monophyletic (Casamatta
et al., 2005; Strunecký et al., 2010) resulting in misleading
interpretations of their evolutionary histories. While Jungblut
et al. (2010) and Martineau et al. (2013) employed broader
taxon sampling, the extent of the global diversity recovered
remains unclear, with poorly resolved relationships between
clades.

A key aim of understanding the evolution of cyanobacteria in
the cryosphere is to identify cold-specific lineages and ecotypes.
One method for predicting cold adaptation involves analyzing
the G–C content of rRNA stems, which varies with optimal
growth temperature (Galtier et al., 1999). However, since the
majority of cyanobacteria from the cryosphere are mesophiles
rather than true psychrophiles (Tang et al., 1997), such an
approach is unlikely to be informative. Other methods of
inferring ancestral characteristics that use genome wide G–C
content or amino acid composition (Boussau et al., 2008) require
full genomes (or at least multiple proteins) from within a clade
of interest. The current lack of complete genomes from cold-
tolerant cyanobacteria prohibits such approaches. To compound
this, incomplete taxon sampling can introduce biases when
interpreting diversity in particular environments. One way to

address this is perform analyses independent of these factors.
By using ancestral state reconstruction (ASR; Pagel et al., 2004)
it is possible to infer the probable habitat preference of the
most recent common ancestor (MRCA) of a given clade. This
is done by using the length of branches on a phylogenetic
tree combined with information about the order in which
lineages diverge, and can be used even if few sequences are
available.

By using an up-to-date genome constraint (Bombar et al.,
2014) deep branching relationships can be enforced (Sánchez-
Baracaldo et al., 2005, 2014; Blank and Sánchez-Baracaldo,
2010) on the SSU rRNA gene sequences isolated from the
cryosphere. The use of this genome constraint resulted in a
robust tree topology, thus presenting a clearer representation of
the evolutionary history of cyanobacteria from the cryosphere
while confirming that cold-tolerant cyanobacteria are found
throughout the tree of life of cyanobacteria. By reconstructing the
most probable ancestral habitat of clades containing cold-tolerant
cyanobacteria, 20 lineages are shown to have likely adapted to
cold environments.

Materials and Methods

Construction of SSU rRNA Dataset
To construct the dataset of cyanobacterial SSU rRNA genes,
an extensive search of the literature was carried out to
identify previous studies covering cyanobacterial diversity. This
provided a basic dataset of well-documented SSU rRNA gene
sequences isolated from cold environments (Figure 1). In
order to expand upon this, naïve BLAST searches (i.e., no
sequence information) were then performed with the search
terms ‘cyanobacteria’, ‘16S’ ‘SSU’, and combinations of location
(e.g., ‘arctic’, ‘antarctic’, and ‘alpine’) and environment (e.g.,
‘snow’, ‘ice’, ‘cryoconite’, and ‘cold’). Sequences yielded in this
manner were then used as a query for further BLAST searches
to uncover more sequences that were less explicitly identified.
By doing so, a far larger dataset was built than would
have been returned by standard BLAST searches alone. In
addition, sequences of temperate and arid origin featuring
>92% sequence identity to cryosphere-derived cyanobacteria
were also kept. Despite the large range of short reads from
environmental studies available, only ‘full length’ SSU rRNA
gene sequences were used (n = 440, ∼1400 bp) where possible,
although some shorter sequences (n = 76, ∼700 bp) were
allowed due to the relevance of their original publication
(such as previous studies into diversity of cyanobacteria in
the cryosphere, e.g., Jungblut et al., 2010). Even with these
criteria, many sequences had not been assigned species identity
and were classified only as ‘uncultured cyanobacteria’. A total
of 516 sequences were collated in this manner: 144 from
Antarctica, 89 from the Arctic, 60 from alpine environments,
and further 223 from other environments. To the above
dataset we added the combined SSU rRNA gene sequences
used in the phylogenomic studies carried out by Bombar
et al. (2014) and Sánchez-Baracaldo et al. (2014) based upon
an original dataset compiled in Blank and Sánchez-Baracaldo
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FIGURE 1 | Geographical locations of cyanobacterial SSU rRNA gene sequences from cold environments used in this study. Original study and number
of sequences from each are shown. Markers indicate either Arctic (blue), Antarctic (orange), or alpine (purple) sampling sites; marker size scales approximately with
number of sequences found. Sequences marked N/A are deposited on NCBI GenBank as ’Unpublished’ with no associated journal reference. See Supplementary
Tables S1–S3 for further details.
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(2010). Out of a total of 89 sequences, 32 were exclusive to
Sánchez-Baracaldo et al. (2014), 22 were exclusive to Bombar
et al. (2014), and 35 were shared between datasets. Overall,
this generated a final dataset consisting of 605 sequences
representing a diverse cross-section of cyanobacterial lineages
from both cold and temperate environments. Details of all
sequences obtained from cold environments are shown in
Supplementary Tables S1–S3.Where no specific journal reference
is available, the name associated with the GenBank submission is
supplied.

Sequence Alignment
Alignments were carried out in SATé 2.2.7 (Liu et al., 2009) [using
MAFFT (Katoh and Standley, 2013),MUSCLE (Edgar, 2004), and
FASTTREE with the CAT approximation (Price et al., 2010)].
Decomposition strategy was set to longest to compensate for
long-branch attraction (LBA) and run with a stopping rule of
three iterations without score improvement. SATé ran for a total
of eight iterations with a final maximum likelihood (ML) score
of -110335.388. The alignment was checked in Mesquite 3.01
(Maddison andMaddison, 2015) and trimmed to 1712 characters
to remove poorly aligned regions. Trailing gaps were converted
to missing data.

Phylogenetic Analysis
Phylogenies were reconstructed using the CIPRES (Miller et al.,
2010) implementation of RAxML-HPC2 on XSEDE 8.1.11
(Stamatakis, 2014). Best model fit as determined by jModelTest
2.1.6 (Darriba et al., 2012) was found to be the general time-
reversible model (GTR) with a gamma distribution (G) and
a proportion of invariable sites (I) according to the Akaike
information criterion (AIC). Despite showing improved model
fit, the GTR + G + I model has been demonstrated to be non-
identifiable on a tree (Allman et al., 2008); in light of this the
GTR + G model was used. A genome constraint was applied in
the form of a 57 taxa phylogenomic tree (Bombar et al., 2014)
reconstructed using a concatenated alignment of 135 proteins
and 2 ribosomal RNAs (see Blank and Sánchez-Baracaldo, 2010
for complete list of sequences used). This tree represents a broad
taxonomic sampling across major clades from the cyanobacterial
tree. Automatic bootstopping was applied using majority rule
criterion and the bootstrap search was automatically halted after
400 replicates. RAxML completed with a final ML optimization
likelihood of -66816.485. Trees were checked using FigTree 1.4.01
and annotated using the EvolView web interface2 (Zhang et al.,
2012). Graphical alterations were done manually using InkScape
0.483.

Ancestral State Reconstruction
To establish the possibility of past habitat preference for
cold environments in specific cyanobacterial lineages, ASR was
performed using BayesTraits 2.0 (Pagel et al., 2004)4. A truncated

1http://tree.bio.ed.ac.uk/software/figtree/
2http://evolgenius.info/evolview
3http://www.inkscape.org/
4http://www.evolution.rdg.ac.uk/BayesTraits.html

version of the initial dataset was created to include closely related
sequences from independent habitats while removing near
identical sequences from geographically close locations, leaving
a total of 270 sequences. Phylogeny was then reconstructed
as described previously. The BayesMultiState program (Pagel
et al., 2004) of BayesTraits 2.0 was implemented using the
single best ML tree with each sequence coded as either cold
(C) or other (O). To determine the probabilities that lineages
shared a cold-tolerant MRCA, analyses were performed on
monophyletic clades containing at least two sequences from cold
environments using reversible jump MCMC (RJ-MCMC). To
assist in choice of priors, an initial ML analysis was run to
determine expected transition rates; an exponential prior drawn
from a uniform hyperprior with an interval of 0–1 was chosen
as providing the best fit for the data. Rate deviation was set to
10 to maintain acceptance values between 0.2 and 0.4. Analyses
were run for a total of 5050000 iterations sampling every 1000
and discarding the first 100000 as burnin. Confidence in each
probability was determined by calculating Bayes factors (BFs)
from the harmonic means of a pair of analyses in which the node
of interest was fixed to either state C or state O (BF < 2 = weak
support, BF of 2–5 = positive support, BF of 5–10 = strong
support, and BF > 10 = very strong support; see BayesTraits
2.0 documentation). For all analyses, the average was taken
from three independent runs to account for variability between
runs.

Results

Phylogenomic Constraint
The use of a genome constraint has considerable effect on
the overall tree topology. Phylogenetic analyses based on SSU
rRNA alone generate misleading phylogenetic relationships
for Pseudanabaena, Aphanocapsa, and Chroococcidiopsis (see
Supplementary Figure S1). The genome constraint has helped to
resolve the evolutionary histories of these lineages (Figure 2).

Multiple Origins of Cold-Tolerant Clades within
Cyanobacteria
Through out the cyanobacterial tree, BFs support evolutionary
shifts enabling some lineages the ability to cope with low
temperatures characteristic of polar and alpine regions. ASR
revealed 20 lineages with putative cold-tolerant ancestors
(Figure 3). In the basal group containing the temperate
Gloeobacter violaceus PCC7421, the majority of sequences from
the cryosphere were found in a clade sister to temperate
Gloeobacter and showed very strong support for a cold-tolerant
ancestor (Figure 3, letter A: ASR probability = 0.99, BF= 10.66).
Pseudanabaena appears common in cold environments, with
sequence diversity being broadly distributed over several sub-
clades. Four sub-clades showed positive support of having a
cold-tolerant ancestor (Figure 3, letter B: ASR probability = 0.98,
BF = 3.91; letter C: ASR probability = 0.99, BF = 10.13;
letter D: ASR probability = 0.68, BF = 2.2; and letter E:
ASR probability = 0.98, BF = 7.78). Two clades bearing
sequence similarity to Aphanocapsa and Thermosynechococcus
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FIGURE 2 | Phylogeny of cyanobacteria in the cryosphere. The phylogenetic tree was estimated in a two-step process. First, a genome constraint with 57 taxa
was generated using 135 proteins and 2 ribosomal RNAs. Second, a broader taxa sampling including sequences from cold environments was achieved for an
additional dataset using SSU rRNA gene sequences and by enforcing the cyanobacteria genome tree in step one (RAxML).

Frontiers in Microbiology | www.frontiersin.org 5 October 2015 | Volume 6 | Article 1070

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Chrismas et al. Phylogeny of cold-tolerant cyanobacteria

FIGURE 3 | Ancestral state reconstruction (ASR) of past habitat preference in cyanobacteria found in the cryosphere. Sequences were assigned a binary
character state of cold (Arctic, blue diamonds; alpine, purple diamonds; Antarctic, orange diamonds), or other (white diamonds). Letters A–T denote clades
predicted to have a cold-tolerant most recent common ancestor (MRCA) based upon Bayes factor (BF) analysis.

elongatuswere found to have support for a cold-tolerant ancestor;
one containing sequences from Tibet (strong positive support;
Figure 3, letter (F): ASR probability = 0.98, BF = 8.3) and a
second containing sequences from Antarctica (positive support;
Figure 3, letter G: ASR probability = 0.87, BF = 3.71).
A subclade of Chamaesiphon subglobosus had positive support
for a cold ancestor (Figure 3, letter H: ASR probability = 0.83,
BF = 2.28). Leptolyngbya (Group II) contained two adjacent
clades with putative cold-tolerant ancestors. The clade containing
Leptolyngbya antarctica had positive support for a cold-
tolerant MRCA (Figure 3, letter I: ASR probability = 0.83,
BF = 2.86) whereas its sister had strong positive support
(Figure 3, letter J: ASR probability = 0.87, BF = 4.037).
There was slight indication of increased probability for a
cold-tolerant ancestor to both of these clades combined (ASR
probability = 0.62) but this value was poorly supported
(BF = 1.21). A clade related to Phormidesmis/Plectolyngbya
had strong support for a cold-tolerant ancestor (Figure 3,
letter K: ASR probability = 0.94, BF = 6.01). Phormidesmis
priestleyi (= Phormidium priestleyi; Komárek et al., 2009)
was found to be present in Antarctic, Arctic, and Alpine
environments and had a high probability of a cold MRCA with
positive support (Figure 3, letter L: ASR probability = 0.88,
BF = 3.92). An abundance of sequences for the well-studied
Microcoleus autumnalis were recovered from the Arctic and
Antarctic while samples of this same taxonomic group from
outside the cryosphere were relatively uncommon. The clade
showed positive support for a cold-tolerant ancestor (Figure 3,
letter M: ASR probability = 0.93, BF = 4.29). Sequences
corresponding to Wilmottia murrayi (= Phormidium murray;
Strunecký et al., 2011) were recovered from both the Antarctic
and Alpine environments with high probability and positive
support of a cold-tolerant ancestor (Figure 3, letter N: ASR
probability = 0.88, BF = 3.92). Two clades of Chroococcidiopsis
had high probabilities of cold ancestors with positive (Figure 3,
letter O: ASR probability = 0.97, BF = 4.7) and very positive
(Figure 3, letter P: ASR probability = 0.96, BF = 7.33)
support. Within the Nostocales, the entire Nodularia clade

had strong support for cold-tolerant ancestor (Figure 3,
letter Q: ASR probability = 0.95, BF = 7.24) and a sub-
clade of Tolypothrix had positive support (Figure 3, letter
R: ASR probability = 0.97, BF = 2.11). Two sub-clades of
Nostoc were found with very strong (Figure 3, letter S: ASR
probability = 0.99, BF = 24.02) and strong (Figure 3, letter T:
ASR probability = 0.99, BF = 5.23) support for a cold-tolerant
ancestor.

Discussion

Molecular ecology studies (Figure 1) have shown that putative
cold adapted cyanobacteria can be found in different biomes
and exhibit a wide range of morphological traits (e.g.,
unicellular, colonial, or filamentous). Although species inference
in cyanobacteria is difficult without ecological and physiological
data, and many sequences from environmental samples are
unclassified, our analyses revealed that several clades contain
sequences almost entirely from cold habitats (Figure 2). In 20
cases there is strong statistical support based on BF analysis
to suggest that lineages can be traced back to an ancestor
that was capable of survival in cold extreme environments
(Figure 3). Jungblut et al. (2010) explored the possibility of
biogeographical connections linking cyanobacteria at both poles;
here we build upon that understanding based on the results of
this study.

Arctic and Northern Hemisphere Alpine
Strong biogeographical links exist between the Arctic and
Northern Hemisphere Alpine regions and contiguous cold
habitats may have existed in geologically recent times during
Pleistocene glaciations (Ehlers et al., 2011). An expected
consequence of this would be that cold-specific lineages from
throughout the Northern hemisphere might cluster together.
This prediction appears to hold true for certain taxa (e.g.,
Gloeobacter: Figure 3, letter A;Pseudanabaena:Figure 3, letter C)
where it is possible to distinguish clades with multiple sequences
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from the cold biomes of the non-equatorial Northern hemisphere
[i.e., within the 10 ◦C July isotherm (Vincent and Laybourn-
Parry, 2008) and/or at altitudes exceeding 2500 m]. Such clusters
may represent relict populations of cold resistant strains that were
broadly distributed throughout the Northern hemisphere during
the last glacial maximum (LGM).

Antarctica
It has been proposed that Antarctica may host endemic strains of
cyanobacteria due to extensive periods of geographic isolation.
Previous candidates for Antarctic endemics have included
Wilmottia murrayi (Figure 3, letter N) and Phormidesmis
priestleyi (Figure 3, letter L) (Taton et al., 2006a; Komárek et al.,
2009). However, both have been shown to be present in other
cold environments (Figure 2) corroborating previous findings by
Jungblut et al. (2010) in which taxa presumed to be endemic to
Antarctica were also found in the high Arctic. Several lineages
may still show some potential for Antarctic-specific endemism
including the Aphanocapsa-like clade (Figure 3, letter G), and
Leptolyngbya (Figure 3, letter I).

Despite these observations, our patchy understanding
of cyanobacterial diversity in cold extreme environments
makes reliable interpretation difficult. For example, given the
widespread geographical distribution of Gloeobacter (Mareš
et al., 2013) its absence from Antarctica is unclear. Where
similar phylogenetic patterns are seen in otherwise cosmopolitan
lineages, this may indicate a genuine absence of these groups
from particular locations due to: (i) barriers to dispersal, (ii)
extinction events; or alternatively could be the result of (iii)
incomplete taxon sampling. Efforts to tackle the latter will help
to shed light on the possibility of the former two.

Evolution of Cold-Tolerant Cyanobacteria
The mechanisms by which cyanobacteria first radiated into
cold environments are uncertain. While more molecular and
ecological data are needed to fully characterize groups that
have evolved in response to cold extreme habitats, our Bayesian
statistical analyses provide strong support for cold-tolerant
ancestors of 20 clades (Figure 3) that currently thrive in
polar and alpine regions. However, it is not yet known
whether the mechanisms allowing for survival in the cold
were in place before or after the divergence of lineages.
Many of the traits needed for survival in cold environments
(e.g., drought tolerance, high UV tolerance, and low light
conditions for long periods) are also needed in variety of
other habitats such as hot deserts (Quesada and Vincent,
2012), and caves; therefore, organisms that evolved under
these conditions may already carry the adaptations necessary
to exploit cryo-habitats. A similar process has already been
proposed for the colonization of the arctic by angiosperms
(Zanne et al., 2014) and the relationship of the putative cold-
tolerant sub-clade of Nostoc commune (Figure 3, letter T) to
the hot arid Nostoc indistinguenda (Řeháková et al., 2007) is
suggestive of a drought-tolerant lineage that expanded into cold
environments.

Other lineages appear more likely to have a truly cold adapted
ancestor. Microcoleus autumnalis (Figure 3, letter M) is not only

dominant in cold environments worldwide but also represents
the only lineage for which true psychrophilic strains (optimal
growth temperature <15◦C) have been identified (Nadeau and
Castenholz, 2000). The high specificity ofWilmottia murrayi and
Phormidesmis priestleyi to cold environments suggests that these
species are also independent of temperate relatives, at least at a
phylogenetic level. Genomic analyses will shed light as to whether
this also extends to functional adaptations.

Another possibility not yet considered is that of an ancient
cold-tolerant ancestor which later radiated into more diverse
environments. An evolutionary progression such as this might
leave a clear phylogenetic signal in the form of basal groups from
the cryosphere and derived groups from other environments.
Interestingly, such a pattern can be observed in the genus
Nodularia (Figure 3, letter Q). Nodularia is a cosmopolitan
cyanobacterium typified by high morphological and habitat
heterogeneity while displaying characteristically low levels of
sequence variability. While these factors have compounded
attempts at classification (Řeháková et al., 2014), the position of
Antarctic Nodularia (Nodularia quadrata) as basal to Nodularia
spumigena appears to be maintained across studies (Taton et al.,
2006a; Komárek et al., 2015). Although it may be overhasty to
assume a true cold ancestor for Nodularia, these relationships
appear well supported and the reasons for this intriguing
phylogenetic position warrant further analysis.

Cosmopolitan Strains
The currently acceptedmodel of the evolution of cyanobacteria in
the cold assumes cosmopolitan species with broad environmental
tolerances allowing for the exploitation of marginally habitable
environments (Tang et al., 1997). Indeed, in the case of organisms
found throughout the cryosphere but exhibiting weak support
for a cold-tolerant ancestor (e.g., Phormidium sensu stricto,
Microcoleus vaginatus) this seems a likely explanation. Many
cold-tolerant lineages as described here have emerged from
within otherwise cosmopolitan strains and the extent to which
niche adaptation has occurred is likely to vary. The putative
cold-tolerant sub-clade related to Phormidesmis/Plectolyngbya
(Figure 3, letter K) can be extended to include an isolate from
a Greenland thermal spring (accession number DQ431004).
Evidence for a cold-tolerant ancestor of this extended clade is
inconclusive (ASR probability = 0.5, BF = 0.21), implying a link
between the poles independent of strict adaptation to the cold.

It is probable that the true nature behind the evolution of
cyanobacteria in the cryosphere results from the interplay of
each of these processes and more, the details of which will only
become clear with more in depth analyses. For example, the deep
branching cold lineages in Chroococcidiopsis reported by Bahl
et al. (2011) were not so clearly resolved in our analyses. This
is likely due to absence of the improved phylogenetic resolution
afforded by extending the SSU rRNA sequence to include the
intergenic spacer (ITS) and large subunit (LSU) (23S) rRNA gene,
and applying such techniques to other taxa will no doubt reveal
further complexity. Furthermore, more extensive taxon sampling
will likely reveal further cold-tolerant lineages where there are
only single sequences used in this analysis (e.g., Calothrix elsteri;
Komárek et al., 2012b, Komárek et al., 2015).
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Conclusions

Although it is clear that the cryosphere hosts a high diversity
of cyanobacteria our knowledge is by no means complete.
Previous identification by either morphological characteristics or
the SSU rRNA gene alone resulted in inconclusive classification of
organisms, and while matters have been significantly improved
by recent polyphasic studies (Comte et al., 2007; Strunecký
et al., 2010; Komárek et al., 2012a,b), further taxonomic revision
will likely be required once cyanobacterial genomes from cold
habitats are available. Many of the lineages discussed here have
had little or no work towards understanding how these organisms
are adapted to extreme cold environments or how they may
differ from similar organisms from temperate environments.
Genomes of cold-tolerant cyanobacteria are urgently needed to
further improve our understanding of how these microorganisms
have evolved. The reconciliation of these molecular data with
morphological characteristics, ecophysiology, and geographical
distributions of cold-tolerant cyanobacteria justifies considerable
further investigation in both the laboratory and the field.
Furthermore, in depth molecular clock studies combined with
reconstructions of past climate are required to ascertain the
prevailing environmental conditions under which these lineages
might first have appeared. A broad study including speciation
events of cold, temperate, tropical, and thermophilic lineages
may be appropriate to place the appearance of cold-tolerant
cyanobacteria within the context of long-term global climate
evolution. In the absence of complete genome sequences, the
use of a genome constraint has been shown to allow trees

constructed using SSU rRNA genes to retain the topology of
the new generation of phylogenomic cyanobacterial trees thus
opening up the potential for robust evolutionary studies using
existing environmental data.

Regardless of current gaps in our knowledge, the presence of
numerous cryosphere-specific groups highlights the fascinating
potential for cold cyanobacteria as a model system for
investigating evolutionary processes. These include global
biogeography and distribution mechanisms, adaptation to
environmental extremes and biological responses to climatic
change, as well as helping to further our overall understanding
of cyanobacteria as important nutrient cyclers in cold extreme
environments.
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