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Abstract

Background: Long Interspersed Nuclear Element-1 (LINE-1) is an autonomous retrotransposon that generates new
genomic insertions through the retrotransposition of a RNA intermediate. Expression of LINE-1 is tightly repressed
in most somatic tissues to prevent DNA damage and ensure genomic integrity. However, the reactivation of LINE-1
has been documented in cancer and the role of LINE-1 protein expression and retrotransposition has become of
interest in the development, progression, and adaptation of many epithelial neoplasms, including prostate cancer.

Results: Here, we examined endogenous LINE-1 protein expression and localization in a panel of prostate cancer
cells and observed a diverse range of LINE-1 expression patterns between cell lines. Subcellular localization of LINE-
1 proteins, ORF1p and ORF2p, revealed distinct expression patterns. ORF1p, a nucleic acid chaperone that binds
LINE-1 mRNA, was predominantly expressed in the cytoplasm, with minor localization in the nucleus. ORF2p,
containing endonuclease and reverse transcriptase domains, exhibited punctate foci in the nucleus and also
displayed co-localization with PCNA and γH2AX. Using a retrotransposition reporter assay, we found variations in
LINE-1 retrotransposition between cell lines.

Conclusions: Overall, our findings reveal new insight into the expression and retrotransposition of LINE-1 in
prostate cancer. The prostate cancer cells we investigated provide a unique model for investigating endogenous
LINE-1 activity and provide a functional model for studying LINE-1 mechanisms in prostate cancer.

Keywords: Transposable element, Prostate cancer, Tumor cell biology, Protein expression, Fluorescence, LINE-1,
Retrotransposition

Background
Long Interspersed Nuclear Element-1 (LINE-1) is an au-
tonomous, non-long terminal repeat retrotransposon that
constitutes approximately 17% of the human genome [1].
Through the utilization of a RNA intermediate, LINE-1
creates new genomic insertions via a “copy and paste”
mechanism known as retrotransposition. While ~500,000
copies of LINE-1 exist throughout the human genome,
most are incapable of retrotransposition due to 5′ trunca-
tions, point mutations, or inversion; reducing full length,

retrotransposition competent LINE-1 to 80-100 copies [2].
Full length LINE-1 mRNA consists of a 5’ UTR, contain-
ing an internal promoter, followed by two open reading
frames coding for proteins ORF1p and ORF2p, and is ter-
minated by a 3’UTR with a polyA sequence [3]. ORF1
protein (ORF1p) functions as a nucleic acid chaperone
that binds LINE-1 mRNA in the cytoplasm during the ret-
rotransposition cycle [4]. ORF2 protein (ORF2p) encodes
the endonuclease and reverse transcriptase required for
retrotransposition and is translated through an unconven-
tional termination/reinitiation mechanism, limiting its ex-
pression relative to ORF1p [5–7]. Recent proteomic
studies, using highly purified LINE-1 RNPs, have demon-
strated a 1:27 ORF2p:ORF1p ratio using L1RP overexpres-
sion [8]. Due to its lower expression, ORF2p detection has
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been a challenge in the field until very recently. During the
retrotransposition cycle, ORF1p and ORF2p bind LINE-1
mRNA in the cytoplasm, forming the ribonucleoprotein
(RNP). The RNP is then transported from the cytoplasm to
the nucleus through an unknown mechanism. Once in the
nucleus, ORF2p creates a single stranded nick in the DNA
through its endonuclease domain [6]. The reverse tran-
scriptase domain of ORF2p then utilizes the LINE-1 mRNA
as a template and creates a new LINE-1 insertion through
Target Primed Reverse Transcription (TPRT) [9]. The ret-
rotransposition cycle is thought to play a role in genomic
variation and evolution, and more recently became of inter-
est due to its role in disease initiation and progression [10].
Because of its ability to create new genomic insertions,

LINE-1 expression is tightly repressed in most somatic tis-
sues to ensure genomic stability. Mechanisms of LINE-1
repression include DNA methylation, histone modifica-
tion, and RNA interference [11–13]. Yet, in many cancers,
especially those of epithelial origin, reactivation of LINE-1
mRNA and protein expression have been observed [14–
16]. Expression of LINE-1 ORF1p has been observed in
40-50% of prostate tumors, while ORF2p expression has
recently been detected in both early and late stages of
prostate cancer, yet, both proteins have been difficult to
detect in matched normal prostate tissue compared to
cancer [14, 17, 18]. Active LINE-1 retrotransposition pro-
vides a mechanism that could possibly drive cancer initi-
ation and progression through genomic rearrangements,
deletions, and translocations. Depending on the insertion
site, LINE-1 can also affect gene expression of tumor sup-
pressors or oncogenes, and has been proposed to poten-
tially cause alternative splice variant formation [19–21].
Thus changes in LINE-1 activity are relevant to many
cancers including prostate cancer. In a recent study, inves-
tigators analyzed 3′ transduction, an event wherein a
unique sequence downstream of LINE-1 elements is co-
transposed due to transcription past the repetitive LINE-1
sequence itself [22]. They found that across a variety of
cancers, 53% had at least one 3′ transduction, indicative
of a new retrotransposition. Interestingly, their analysis of
a small number of metastatic prostate cancers suggested
higher levels of retrotransposition in metastatic compared
to primary prostate cancer.
Prostate cancer is one of the most commonly diagnosed

malignancies in men and remains a leading cause of cancer
related deaths [23]. The androgen steroid hormone recep-
tor, a ligand-dependent transcription factor, is critical for
growth and survival in both normal and malignant prostate
cells and is the major therapeutic target in aggressive pros-
tate cancer. Therapeutics for late stage prostate cancer,
such as enzalutamide and abiraterone, target the activity of
the androgen receptor by blocking androgen synthesis or
androgen/AR binding [24, 25]. Yet, despite their initial effi-
cacy, tumors often become resistant to therapy, and many

patients progress to androgen independent, castration re-
sistant prostate cancer (CRPC) [26]. Mechanisms of resist-
ance include overexpression of the androgen receptor and
formation of ligand independent androgen receptor splice
variants; alterations that have been proposed consequences
of LINE-1 retrotransposition [19, 27]. Alternatively, it has
also been suggested that ORF1p may act as an AR coactiva-
tor in prostate cancer cells, driving growth and survival
[28]. While evidence suggests that LINE-1 protein expres-
sion and retrotransposition may play a role in tumor initi-
ation and progression, many questions remain regarding
the role of LINE-1 in prostate cancer and the progression
to castration resistant prostate cancer. To explore LINE-1
activity and expression in prostate cancer, we examined en-
dogenous ORF1p and ORF2p expression and localization,
as well as retrotransposition potential across a variety of
prostate cancer cells.

Methods
Cell culture
E006AA-hT (CRL-3277), LNCaP (CRL-1740), PC3
(CRL-1435), DU-145 (HTB-81), VCaP (CRL-2876), and
22Rv1 (CRL-2505) cell lines were purchased from the
ATCC. C4-2 cells were obtained from the Characterized
Cell Line Core Facility at MD Anderson Cancer Center
(Houston, TX). LAPC4, LNCaP-abl, and LNCaP-95 cell
lines were generous gifts from R. Reiter, Z. Culig, and J.
Isaacs, respectively. Cells were maintained as follows:
LNCaP, 22Rv1 and C4-2 (RPMI 1640, 10% FBS), PC3
(Ham’s F-12 Nutrient Mixture, 10% FBS), LNCaP-95 and
LNCaP-abl (RPMI 1640, phenol red free, 10% charcoal
dextran stripped FBS), DU-145, VCaP, E006AAhT
(DMEM, 10% FBS), and LAPC4 (Iscove’s DMEM, 10%
FBS). Cells are routinely screened for mycoplasma.

Retrotransposition assay
Cells were seeded in 6 cm plates and transfected with the
synthetic human LINE-1 (pCEP-CMV-ORFeus-Hs-Puro-
mycin-EGFPai (pPM016)) retrotransposition vector, pCEP-
Puromycin-CMV-EGFP control (pLD107), or pCEP-
Puromycin empty vector (pLD207) [8] using Lipofectamine
3000 (Life Technologies) according to the manufacturer’s
instructions. Cells were then selected for 5 days with puro-
mycin: LNCaP and 22RV1 (1 μg/mL), LAPC4 (2 μg/mL),
and PC3 (0.5 μg/mL). GFP expression was quantified using
a BD FACSCalibur flow cytometer using CellQuest Pro
software and results analyzed using FlowJo 10.2 software
[29, 30]. The vector only, negative control assessed the
background fluorescence of each cell line and a cut off was
established to exclude background fluorescence. The vector
only samples had zero counts of GFP using this threshold
and only fluorescence greater than this threshold was
considered positive. pCEP-Puro-EGFP served as a positive
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control for EGFP expression, selection efficiency, and main-
tenance of the plasmids.

Immunohistochemistry
LNCaP-abl xenografts were grown subcutaneously in the
flank of NU/NU mice and harvested after 3.5 weeks as
previously shown [31]. Immunohistochemistry was per-
formed as described [32], using antibodies against ORF1
[14] and ORF2 [17]. 3,3′-Diaminobenzidine (DAB) was
used as the chromogen to indicate positive reactivity
against the antibody.

Subcellular fractionation and western blot analysis
For each cell line, 10-15 × 106 cells were used to isolate
cellular fractions. Cellular fractionations were performed
using a Subcellular Fractionation kit (Thermo Scientific)
according to the manufacturer’s protocol with the
addition of sodium orthovanadate. Total protein lysates
were collected through lysis in RIPA buffer (50 mM Tris
pH 8, 150 mM NaCl, 1% NP-40, 0.1% SDS, and 10 mM
EDTA) supplemented with 10 μg/mL aprotonin and
leuptin, and 0.1 mM PMSF and sodium orthovanadate,
and protein was quantified using a Bradford assay. Ly-
sates were resolved by SDS-PAGE on separate gels and
probed with anti-ORF1 [14], anti-ORF2 [17], or anti-AR
(Santa Cruz 441- sc7305). 25 μg or 100 μg of protein
was loaded on gels to probe for ORF1p or ORF2p, re-
spectively. Blots were stripped with Restore Western
Blot Stripping Buffer (Thermo Scientific), cut, and re-
probed for loading controls, anti-tubulin (Covance
MMS-489P), anti-SP1 (Thermo Scientific PA5-29165)
and anti-H3 (Abcam-1791). Quantification of ORF1p
and ORF2p protein expression were performed using
ImageJ 1.50i software. The densitometry of each band
was calculated and the relative expression of the proteins
normalized to tubulin.

Immunofluorescence
Cells were plated on fibronectin coated glass coverslips
and cultured overnight. Cells were either fixed in ice
cold methanol (ORF2) or 10% neutral buffered formalin
(ORF1) and permeabilized with 0.2% Triton-X-100 in
PBS for 20 min. Slides were blocked with 5% BSA in
TBS for 1 h and incubated with ORF1 or ORF2 anti-
bodies overnight at 4 °C or 1 h at 37 °C, respectively.
For double immunofluorescence, cells were incubated
with ORF2 and γH2AX (Abcam-11,174) or PCNA
(Abcam-18,197) antibodies overnight at 4 °C. Cells were
washed with 0.1% Triton-X-100 in PBS and incubated
with secondary antibodies, Alexa Fluor-555 or Alexa
Fluor-647 (Thermo Fisher), in 5% normal goat and horse
serum for 1 h at room temperature. After washing with
0.1% Triton-X-100 in PBS, cells were counterstained
with DAPI mounting media (Vector Laboratories).

ORF1p expression was visualized using an EVOS flores-
cent microscope and imaged using an EVOS FL Auto
Imaging System.
ORF2p expression and ORF2 co-localization was visu-

alized using an Andor Yokogawa CSU-x spinning disc
on a Nikon TI Eclipse confocal microscope and was re-
corded with an scMOS (Prime95B, Photometrics) cam-
era with a 20× objective (pixel size 0.48 μm). Images
were acquired using Nikon Elements software and ana-
lyzed using ImageJ/Fiji [33]. To quantify the number of
cells that contained at least one co-localized foci, we first
identified the total number of cells present in a 20×
frame by counting DAPI positive nuclei. Next, we
counted all cells with at least one co-localization foci,
evident by the yellow signal from overlapping ORF2p
foci (red) and PCNA or γ-H2AX foci (green). The aver-
age number of cells with at least one co-localization sig-
nal and standard deviations were calculated.

Results
Prostate cancer cell lines express LINE-1 ORF1 and ORF2
protein
To investigate endogenous LINE-1 proteins in prostate
cancer we examined their expression in a variety of
prostate cancer cells. We performed western blot ana-
lysis on total protein lysates from a panel of human
prostate cancer cell lines using antibody against ORF1p
[14]. We also utilized antibody against ORF2p [17] to
determine whether ORF2 expression varied among the
cell lines and whether ORF2p expression correlated with
ORF1p levels (Fig. 1a). We observed that ORF1p is
widely and differentially expressed among prostate can-
cer cell lines (Fig. 1a). We predicted that ORF2p would
correlate with ORF1p since the two proteins are trans-
lated from a single bicistronic mRNA. Indeed, expres-
sion of ORF2p loosely correlated with ORF1p in the
sense that most cell lines with higher levels of ORF1p
also expressed at least some ORF2p. Consistent with a
previous study [17], we find that AR positive LNCaP
cells express ORF2p. The variation of ORF1p and
ORF2p expression in the prostate cell lines did not cor-
relate with common features of prostate cancer such as
PTEN or p53 mutation, or the presence of the
TMPRSS2/ERG gene fusion or AR splice variants
(Additional file 1: Figure S1A and Additional file 2: Table
S1). However, we note that among the AR negative cells,
PC3 cells showed little ORF1p and ORF2p, and DU145
cells had low levels of ORF2p. We also examined expres-
sion in a cell line derived from an African American
man (E006AA-hT) [34] since African Americans with
prostate cancer have worse outcomes than other ethnic
groups. Interestingly, E006AA-hT cells exhibited atypical
LINE-1 protein expression, compared to the other pros-
tate cell lines, where we detected ORF2p and no evident
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ORF1p. It is possible that the actively expressed LINE-1
loci in this cell line contain mutations or deletions in
ORF1, limiting its expression/detection, but permitting
the expression of ORF2p, as has been previously re-
ported [35]. Additionally, western blot of total protein
lysate of E005AA-hT had a significant band ~75KDa,
unlike all other cell lines tested (Fig. 1a and Additional
file 1: Figure S1B). It is possible this band represents a
truncated form of ORF2p or a non-specific background
of similar weight [36]. The predominant ORF2p band in
all other cell lines was ~150KDa, the molecular weight
of full length ORF2p.

Subcellular localization of endogenous ORF1p and ORF2p
in prostate cancer cells
To further investigate the expression patterns of LINE-1
proteins in prostate cancer cells, we conducted cell frac-
tionation studies. As expected based on the literature we
found that ORF1p was predominantly cytoplasmic (Fig. 1b)
where it is known to form trimers and coat LINE-1 mRNA
[37]. However, we could also detect low levels of ORF1p in

the soluble nuclear and chromatin compartments,
consistent with previous observations in exogenously
expressed ORF1p and the fact that ORF1p is required,
along with ORF2p, for LINE-1 retrotransposition [38, 39].
We observed that ORF2p was predominantly nuclear,
localization that is necessary for its role in the retrotranspo-
sition cycle. Yet, we also detected lower levels of ORF2p in
the cytoplasm where the RNP is formed. In contrast to
ORF2p expression in total protein lysates, ORF2p was read-
ily detectable across all the cell lines examined (Fig. 1b).
The E006AA-hAT cells again did not have detectable
ORF1p and the putative 75 kDa truncated ORF2p band
(~75 kDa) was not the predominant band in the nuclear
fractions (Fig. 1b). We note that there is a minor band at
~45 kDa in the nuclear fractions of DU-145, PC3, and
E006AA-hT in western blots for ORF2 that may also repre-
sent a truncation (Additional file 3: Figure S2) [40].
As an additional method to examine the cellular com-

partments where ORF1p and ORF2p are present and to
observe their pattern of localization across prostate can-
cer cell lines with varying dependence on androgens

a

b

Fig. 1 Endogenous ORF1p and ORF2p in prostate cancer cells. a Western blot analysis of total protein lysates from the indicated prostate cancer cell lines
using antibodies against LINE-1 proteins, ORF1 or ORF2, and tubulin. The numbers below the panels denote that densitometry of the band relative to
tubulin. b Subcellular fractions (cytoplasmic, membrane, soluble nuclear, and chromatin bound) of LNCaP, DU-145, PC3, E006AA-hT, LAPC4, and 22RV1
prostate cancer cell lines were subjected to western blot analysis. The indicated antibodies were used. Controls for the fractionation include tubulin
(cytoplasm), SP1 (soluble nuclear) and histone H3 (chromatin)
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(Additional file 2: Table S1), we conducted immunofluores-
cence to detect endogenous proteins. We observed that
ORF1p was predominantly cytoplasmic (Fig. 2) and detect-
able in the cell lines where we detected ORF1p by western
blot (Fig. 1a). ORF1p was not detectable by immunofluores-
cence in E006AA-hT cells where we did not detect protein
by western blot analysis. We also compared endogenous
ORF2p localization across prostate cancer cell lines. In
agreement with western blot analysis shown in Fig. 1b,
ORF2p was primarily localized to nuclear foci (Fig. 3). Previ-
ously, De Luca et al. had demonstrated similar findings in
melanoma A375 cells, where ORF2p and ORF1p formed
distinct foci in the nucleus and cytoplasm [17]. ORF2p was
not detectable in E006AA-hT cells by immunofluorescence,
most likely due to diffuse expression or being below the
level of detection, similar to western blots using total protein
lysates compared to highly concentrated nuclear lysates.
To investigate ORF1p and ORF2p localization in an in

vivo model of prostate cancer, we also performed immu-
nohistochemistry on tissue sections from LNCaP-abl xe-
nografts (Fig. 4). Our immunohistochemistry showed
predominant cytoplasmic ORF1p localization and nuclear
ORF2p localization, reiterating our findings in cultured
cells.

Retrotransposition in prostate cancer cells
The fact that we could detect ORF1p and ORF2p in nu-
clear fractions of prostate cancer cells (Fig. 1b) suggests
that these cells are permissive for retrotransposition.
Therefore, to determine if active retrotransposition could
occur in these prostate cancer cells we conducted retro-
transposition assays using a GFP-based retrotransposition
reporter (Fig. 5). LNCaP, 22RV1, LAPC4, and PC3 cells
were transfected with the retrotransposition reporter cas-
sette containing a synthetic, recoded LINE-1 (ORFeus-Hs)
under control of a CMV promoter. In these assays, the 3’
UTR region of LINE-1 contains an anti-sense GFP inter-
rupted by a γ-globin intron in the opposite orientation of
GFP. Functional GFP is only expressed after retrotranspo-
sition [8, 29, 30]. Consistent with the presence of ORF1p
and ORF2p in the nucleus, retrotransposition occurs in
LNCaP cells, 22Rv1, LAPC4, and PC3 cells. We observed
that the highest retrotransposition frequency occurs in
LNCaP cells (8.92%) and the lowest in LAPC4 cells
(0.038%) (Table 1). The retrotransposition ability of the
cells did not correlate to the endogenous expression level
of ORF1p or ORF2p. It has been previously shown that in-
creased transcription and expression of LINE-1 proteins

Fig. 2 Immunofluorescence of endogenous ORF1p in a panel of
prostate cancer cell lines. 22RV1, LNCaP, LNCaP-95, LNCaP-abl, and
E006AA-hT cells were probed for endogenous ORF1p (green) and
counterstained with DAPI (blue) to visualize nuclei. Representative
epifluorescent images were taken under 20× magnification

Fig. 3 Immunofluorescence of endogenous ORF2p in a panel of
prostate cancer cell lines. Cell lines, as described in Fig. 2, were
probed for endogenous ORF2p (red) and counterstained with DAPI
(blue) to visualize nuclei. Images were taken on a Nikon TI Eclipse
confocal microscope under 20× magnification and a representative
maximum-intensity projection is shown
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using retrotransposition constructs do not necessarily cor-
relate to retrotransposition frequency or endogenous
levels of ORF1p and ORF2p [30, 41, 42].

ORF2 co-localizes with PCNA and γH2AX in a subset of
prostate cancer cells
A recent study showed that ORF2 interacts with PCNA,
a DNA processivity factor for DNA polymerases during
DNA damage and repair [8]. ORF2 interacts with PCNA
via a PCNA-interacting protein (PIP) box located be-
tween the ORF2 endonuclease and reverse transcriptase
domains. Mutation of the PIP box disrupts ORF2:PCNA
interaction and inhibits retrotransposition in reporter
gene assays [8]. Mita et al. recently showed ORF2p and
PCNA co-localization with exogenous LINE-1 expres-
sion [43]. Since these experiments were performed with
overexpressed LINE-1 proteins, we wanted to determine
if endogenous ORF2p and PCNA co-localized. We also
examined subcellular localization of ORF2p with the
marker of DNA damage, γH2AX since it has been
shown that γH2AX and DNA damage increased upon
LINE-1 upregulation [44, 45]. Double immunofluores-
cence was performed in LNCaP cells: ORF2p, and PCNA
or γH2AX. We observed nuclear foci with detectable
ORF2p, PCNA, or γH2AX (Fig. 6). Although not all
ORF2p co-localizes with PCNA or γH2AX, 33.6 ± 4.3%
of nuclei showed at least one foci of ORF2/PCNA co-

a b

Fig. 4 Endogenous LINE-1 expression in LNCaP-abl xenografts. Immunohistochemistry on LNCaP-abl xenograft tissue was performed.
Sections were incubated with ORF2 (a) or ORF1 (b) antibody with positive reactivity indicated by brown staining (DAB). Sections were
counterstained with hematoxylin (blue) to visualize nuclei. The secondary only, negative control is also shown. Representative pictures
at 20× and 40× magnification are shown

Fig. 5 Retrotransposition Assay. The retrotransposition plasmid
(pPM016) was transfected into cells. LINE-1 mRNA is expressed and
processed, removing the γ globin intron from GFP during RNA splicing.
ORF1p and ORF2p are translated and bind to LINE-1 mRNA, forming
ribonucleoprotein (RNP) particles. The RNP enters the nucleus, where
LINE-1 mRNA is reverse transcribed into host DNA by Target Primed
Reverse Transcription (TPRT). After retrotransposition, cells expressing
functional GFP are quantified by flow cytometry

Table 1 Retrotransposition frequency in prostate cell lines

Cell line Retrotransposition frequencya

LNCaP 8.92 ± 0.04

22RV1 2.87 ± 0.16

LAPC4 0.38 ± 0.06

PC3 5.85 ± 0.61
aPercentage of EGFP positives cells. pCEP-CMV-ORFeus-Hs-Puro-GFPai
(pPM016) was transfected into the above cell lines and EGFP expression
quantified. The frequency is the mean of three independent experiments and
error is represented by standard deviation
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localization, and 16.0 ± 5.8% of nuclei had at least one
foci of ORF2/γH2AX co-localization (Fig. 6, arrow-
heads). The significance of ORF2p co-localization with
γH2AX or PCNA and whether this can be altered by the
phase of the cell cycle or by a variety of cell stresses is
an important question for future investigation.

Discussion
The de-repression of LINE-1 in cancer cells evokes many
questions on the role of LINE-1 protein expression and
retrotransposition in cancer progression. Many studies de-
signed to investigate the mechanism of LINE-1 retrotran-
sposition have relied on exogenous expression due to
LINE-1 being normally repressed and the difficulty in de-
tecting endogenous ORF2p. In this study, we utilized a
newly developed ORF2p antibody and a well-established
ORF1p antibody to investigate endogenous LINE-1 ex-
pression and localization in prostate cancer [14, 17].
Examination of ORF1p and ORF2p expression by western
blot reveals a diverse range of expression patterns among
prostate cancer cell lines. The variety of ORF1:ORF2 ex-
pression patterns suggest that there may be different
mechanisms of LINE-1 regulation in different cell lines
such as altered translation or degradation of LINE-1 pro-
teins. In addition, LINE-1 is subject to transcriptional re-
pression by epigenetic mechanisms including DNA
methylation and histone modification, and these processes
may also differ among the cell lines [46]. Previous studies
have also demonstrated regulation of LINE-1 mRNA by
MOV10, a RNA helicase, and RNA interference [47–51].
Thus, prostate cancer cell lines express a range of en-
dogenous LINE-1 proteins that can be used to further elu-
cidate the mechanism of LINE-1 regulation, as well as
their possible role in cancer progression.
Exogenous expression of ORF1p is predominantly cyto-

plasmic and is also present in stress granules [52, 53].
Consistent with these findings, our results show diffuse
cytoplasmic expression of ORF1p, with low levels in the
nucleus. There are also some small punctate spots of
ORF1p expression in the cytoplasm, which may be small

stress granule formation but appear smaller than typical
stress granules. We speculate that the robust expression
of ORF1p in prostate cells will enable investigation into
the impact of ORF1p on cancer progression.
ORF2p needs to be transported into the nucleus in

order for retrotransposition to occur. While translocation
of exogenous ORF2p to the nucleus has been observed,
localization of endogenous ORF2p has not been demon-
strated in prostate cancer cells. We found subcellular
fractionation optimal for detecting low levels of ORF2p
expression compared to total protein lysates, where we
observed prominent full length bands in the soluble nu-
clear and chromatin bound fractions across multiple cell
lines. Furthermore, our results show multiple clear punc-
tate foci of ORF2p in the nuclei. In addition, immuno-
fluorescence also revealed a population of ORF2p co-
localized with PCNA or γH2AX and we speculate that
these may be cells permissive to active retrotransposition.
We also speculate that co-localization of ORF2p and
γH2AX may indicate endonuclease independent retro-
transposition, as previously observed [54]. Interestingly,
while we observe ORF2 expression in most LNCaP cells,
retrotransposition only occurs in approximately 9% of
the cells. Retrotransposition frequency was also low in
prostate tumors, where new LINE-1 insertions were
identified though sequencing [22]. The localization pat-
terns of ORF1p and ORF2p in the prostate cancer cells
suggest that many prostate cancer cell lines are retrotran-
sposition competent, a finding confirmed using retro-
transposition assays. Further, we observed differential
retrotransposition capability between cell lines. Such dif-
ferences may reflect altered expression of viral host re-
striction pathway proteins that have been shown to
inhibit retrotransposition [10, 55, 56]. Interestingly,
whole exome sequencing data from LNCaP, 22RV1, and
PC3 cells, available on cBioPortal (hosted by Center for
Molecular Oncology at Memorial Sloan Kettering Cancer
Center), have shown putative homozygous deletions of
APOBEC3A and APOBEC3B in 22RV1 cells. APOBEC3C
mRNA is also downregulated compared to reference

b

a

Fig. 6 Co-localization of ORF2p and γH2AX (a) or PCNA (b) in LNCaP cells. Double immunofluorescence was performed using antibodies against
ORF2 (red) and γH2AX (green) or PCNA (green). Cells were counterstained with DAPI. Images were taken on a Nikon TI Eclipse confocal
microscope under 20× magnification and a representative maximum-intensity projection is shown. Arrowheads point to overlap of γH2AX and
ORF2 (a) or PCNA and ORF2 (b) in the merged images
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populations in 22RV1 and LNCaP (z-scores −2.05 and
−1.95, respectively) [57, 58].
The range of LINE-1 expression and retrotransposition

in prostate cancer cell lines makes them an optimal
model for investigating LINE-1 activity and repression in
cancer, as well as a valuable tool to study the function of
LINE-1 in cancer progression.

Conclusions
In summary, we characterized endogenous LINE-1 ex-
pression and localization of 10 commonly used pros-
tate cancer cell lines. We found varying levels of
ORF1 and ORF2 expression levels between cell lines,
representing a diverse set of prostate cancers. Cell
lines with endogenous LINE-1 protein exhibited sig-
nificant differences in retrotransposition activity. We
also showed that expression patterns of endogenous
LINE-1 proteins confirmed previous LINE-1 behavior,
such as ORF2 co-localization either with PCNA and
γH2AX. Our investigations have revealed a functional
model for investigating endogenous LINE-1 activity in
prostate cancer.

Additional files

Additional file 1: Figure S1. Androgen receptor expression and full
length of blots shown in Fig. 1a (.pdf) A) Western blot analysis of
the androgen receptor (AR) in prostate cancer cell lines. Antibody
against the AR recognized both full length (FL) and the V7 spliced
variant. Tubulin was used as a loading control. B) High and low
molecular weight regions surrounding ORF2 and ORF1.
Overexposed images are from the same blot as shown in Fig. 1a.
(PDF 2780 kb)

Additional file 2: Table S1. Molecular characteristics and origins of
prostate cancer cell lines. (DOCX 43 kb)
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