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Abstract
Neutrophils play a pivotal role in innate immunity and in the inflammatory response. 
Neutrophils are very motile cells that are rapidly recruited to the inflammatory site 
as the body first line of defense. Their bactericidal activity is due to the release into 
the phagocytic vacuole, called phagosome, of several toxic molecules directed against 
microbes. Neutrophil stimulation induces release of this arsenal into the phagosome 
and induces the assembly at the membrane of subunits of the NAPDH oxidase, the 
enzyme responsible for the production of superoxide anion that gives rise to other 
reactive oxygen species (ROS), a process called respiratory burst. Altogether, they 
are responsible for the bactericidal activity of the neutrophils. Excessive activation of 
neutrophils can lead to extensive release of these toxic agents, inducing tissue injury 
and the inflammatory reaction. Envenomation, caused by different animal species (bees, 
wasps, scorpions, snakes etc.), is well known to induce a local and acute inflammatory 
reaction, characterized by recruitment and activation of leukocytes and the release 
of several inflammatory mediators, including prostaglandins and cytokines. Venoms 
contain several molecules such as enzymes (phospholipase A2, L-amino acid oxidase 
and proteases, among others) and peptides (disintegrins, mastoporan, parabutoporin 
etc.). These molecules are able to stimulate or inhibit ROS production by neutrophils. 
The present review article gives a general overview of the main neutrophil functions 
focusing on ROS production and summarizes how venoms and venom molecules can 
affect this function. 
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Background
Polymorphonuclear neutrophils (PMN) are the most abundant 
circulating leukocytes as they normally constitute 60 to 70% of 
white blood cells [1]. PMN have a key role in host defense against 
microbes as they are the first cells to migrate out of the circulation 
by a process called chemotaxis and are massively recruited at 
the infection site [2–5]. Once at the infection site, neutrophils 
recognize the pathogen via different receptors expressed at their 
cell surface, followed by engulfment of the microbe into a vacuole 
called the phagosome or phagolysosome [6–9]. Microbes are 
then killed by PMN through the release into the phagosome of 
highly toxic agents such as reactive oxygen species (ROS) and 
granule contents such as myeloperoxidase (MPO), glucosidases, 
proteases and anti-bacterial peptides [10,11]. Once the microbe 
is killed, neutrophils die by apoptosis, after which they are 
phagocytized and eliminated by the local macrophages through 
a process called efferocytosis, thereby cleaning the infection site. 
Thus, PMN are anti-inflammatory components of the innate 
immune system as their physiological role is to resolve the 
infection and the inflammation. Nevertheless, when PMN are 
excessively activated, the “cleaning task” cannot be completed 
and they become harmful to the surrounding tissues as they 
can induce cell injury and modification of cell homeostasis, 
metabolism and signaling [12–14]. 

Envenomation is a process by which a venom is inoculated into 
an organism by the bite or sting of different animal species (bees, 
wasps, scorpions, snakes etc.), inducing a localized inflammatory 
reaction characterized by the usual symptoms or redness, pain, 
heat and swelling, and in some cases, triggering an allergic 
response that can lead to death [15–17]. Venoms consist of a 
mixture of toxic agents with different properties and actions [18–
20]. A large number of toxic venom agents has been characterized, 
and consists of peptides and proteins that can modify host cells. 
They include phospholipase A2 (PLA2) that cleaves plasma 
membrane phospholipids to release arachidonic acid; L-amino 
acid oxidase (LAAO) that catalyzes the deamination of L-amino 
acids to the corresponding a-ketoacids and production of 
hydrogen peroxide and ammonia; metalloproteinases that 
degrade membrane proteins; a family of peptides called 
disintegrins that bind to various cellular integrins; mastoparan 
that stimulates heterotrimeric G-proteins (Gi) and upregulate 
cellular functions; and parabutoporin thyat has antimicrobial 
properties and can modulate cell functions. These molecules 
are known to induce a variety of immune responses, including 
mastocyte degranulation, T cell activation, inflammasome 
activation in macrophages, and neutrophil activation [21–24]. 
In this review, after an overview of neutrophil ROS production, 
a key inflammatory function, we will summarize the most 
characterized effects of venom components on this neutrophil 
function and the known mechanism of action.

Recruitment of neutrophils to the infection site and 
their activation
Upon infection, keratinocytes, epithelial cells, tissue resident 
macrophages, and dendritic cells produce several soluble 
agents such as lipid mediators (platelet-activating factor (PAF), 
leukotriene B4 (LTB4), etc.), and several cytokines (IL-1, IL-8, 
IL-17, TNFα, etc.), which along with agents released by the 
pathogen (LPS, toxins, etc.), induce endothelial cell stimulation 
[6–8]. These agents promote the expression of E- and P-Selectins 
on the surface of endothelial cells. Resting circulating PMN 
detect these selectins via their respective ligands (L-selectin; 
CD62L) and start rolling onto the endothelial cells. Stimulated 
endothelial cells then express intercellular adhesion molecule-1 
(ICAM-1), molecules that are recognized by neutrophil integrins 
(CD11b/CD18) and induce firm adhesion of the neutrophils 
to the endothelial cells. PMN then transmigrate through the 
endothelial cell junctions and move into the tissues towards the 
infection site, attracted by several chemoattractants such as PAF, 
LTB4, IL-8, the C5a fraction of the complement and the bacterial 
peptide fMLP (N-formyl-methionyl-leucyl-phenylalanine) 
(Figure 1). These chemoattractants induce signaling pathways 
that result in polarization of PMN and actin polymerization at 
the cell leading edge, positioning them towards the gradient 
of chemoattractants [6]. Chemotaxis is mainly controlled by 
the PI3Kinase and p38MAPKinase pathways, and by small G 
proteins such as Rac1 and Rac2 [6].

Once at the infectious site, PMN recognize microbe motifs 
via receptors of the Toll family [Toll-like receptors (TLR)] 
[25, 26]. Human neutrophils express several TLR receptors 
that recognize various ligands, including TLR1 (recognizes 
lipoproteins), TLR2 (recognizes peptidoglycans from bacteria 
and fungi), TLR4 (recognizes LPS), TLR5 (recognizes flagellin), 
TLR6 (recognizes mycoplasma lipoprotein), TLR7 and TLR8 
(recognize single strand virus RNA), and TLR9 (recognizes CpG 
bacterial DNA) [25, 26]. These TLR agonists along with pro-
inflammatory cytokines and agents found at the inflammatory 
site induce pre-activation of the neutrophils, a process called 
priming, which accelerates the phagocytosis of the microbe 
and its killing [12, 27, 28]. The binding of PMN to the microbe 
occurs through various opsonins such as the immunoglobulins 
G (IgG), which bind to FcgRIIA/CD32 and FcgRIIIB/CD16b, 
and the C3b and C3bi proteins produced by activation of the 
complement, which bind to CR1/CD35 and CR3/CD18+CD11b, 
respectively [3, 11]. The recognition is generally followed by 
engulfment of the microbe, which becomes surrounded by 
the membrane envelope, ultimately forming a vacuole called 
the phagosome or phagolysosome. Engulfment of the microbe 
triggers the PMN killing process that engages proteases, ROS 
and other toxic agents, leading to the death and destruction of 
the pathogen [3, 10, 11]. 
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Figure 1. Migration of neutrophils from blood to the inflammatory site. Circulating neutrophils are in a resting state, also known as the dormant state. Upon 
inflammation, neutrophils start rolling, adhere and migrate to the inflammatory site, attracted by a multitude of chemoattractants such as IL-8, C5a, LTB4, PAF 
and fMLP. 

Neutrophil arsenal of toxic agents
In resting cells, PMN toxic agents are stored in different granules 
that have different composition and density [29, 30]. The most 
dense granules are called azurophil or primary granules as 
determined by Percoll-gradient ultracentrifugation, the specific 
granules or secondary granules are less dense than the former. 
Followed by the tertiary granules, also called gelatinase granules 
for their large content in gelatinase, and finally, the highly 
mobilizable secretory vesicles contain mainly plasma proteins. 
The detailed content of these granules is described in Table 1. 
The release of these granule contents upon cell activation is 
called degranulation and is an important neutrophil function 
for host defense against pathogens and inflammation [9, 11]. 
Degranulation is induced upon phagocytosis but also by soluble 
agonists such as fMLP, phorbol myristate acetate (PMA), or 
calcium ionophores. Degranulation also allows expression of 
different receptors and the NADPH oxidase NOX2 at the cell 
membrane. It is controlled mainly by intracellular calcium, 
protein kinases such as PI3Kinase, p38MAPKinase and PKC 
and small G proteins such as Rac1 [31, 32].

ROS production by neutrophils
Phagocytosis of a microbe stimulates PMN to produce ROS 
inside the phagosome (Figure 2). ROS include superoxide anion 
(O2

-.), hydrogen peroxide (H2O2), hydroxyl radical (OH°) and 
hypochlorous acid (HOCl) [10, 12, 33]. They are produced by 
phagocytes in a powerful process called “oxidative burst or 
respiratory burst”, characterized by a rapid increase in oxygen 
and glucose consumption, and an abrupt ROS production. 
The first ROS molecule produced by PMN is superoxide anion 
(O2

-.), which is produced by the phagocyte NADPH oxidase 
through monovalent reduction of oxygen in the presence of 
an electron donor: 

(2 O2 + NADPH  2 O2
-. + NADP+ + H+)

While superoxide is not the most reactive, it is essential for 
the production of other ROS and bacterial killing. O2

-. is then 
transformed into H2O2 by dismutation in the presence of protons 
H+ (at acidic pH in the phagosome): 

(2O2
-. + 2H+  H2O2 + O2)

a reaction that can be catalyzed by superoxide dismutase 
(SOD) in other locations.
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Table 1. Different human neutrophil granules and their contents [29, 30].

Azurophil granules  
or primary granules

(very dense: +++)*

Specific granules  
or secondary granules

(less dense: ++)*

Gelatinase granules  
or tertiary granules

(light: +)*

Secretory vesicles
(very light: -/+)*

Matrix
Myeloperoxidase (MPO)**

Lysozyme
Elastase

Cathepsins
Proteinase-3 glucuronidase

defensins
BPI

Azurocidin/CAP37
α-mannosidase
β-glucuronidase

β-glycerophosphatase
N-acetyl-β-gucosaminidase

Membrane
CD63
CD68

V-type H+-ATPase

Matrix
Lactoferrin**

Lipocalin/NGAL**
Lysozyme Collagenase Gelatinase 

Histaminase 
hCAP-18

Heparanase
Sialidase

VitaminB12-Binding protein
β2-microglobulin

Membrane
CD11b/CD18

CD177
CD15
CD66
CD67

Gp91phox/p22phox
FPR (fMLP-R)

TNF-R
Fibronectin-R
Vitronectin-R

VAMP-2
Laminin-R

Urokinase-type plasminogen 
activator-R

Matrix
Gelatinase**

Acetyltransferase Lysozyme 
β2-microglobulin
Acetyltransferase

Membrane
CD11b/CD18

CD177
Gp91phox/p22phox

FPR (fMLP-R)
Fibronectin

VAMP2
V-type H+-ATPase

Urokinase-type plasminogen 
activator-R

Matrix
Plasma proteins** 

Membrane
CD11b/CD18

CD14
CD16
CD45

Gp91phox/p22phox
FPR (fMLP-R)

SCAMP
Alkaline phosphatase

CR1
V-type H+-ATPase

VAMP2
C1q-R

Urokinase-type plasminogen 
activator-R

DAF

*Density as obtained by Percoll gradient technique [29,30]
**The specific granule marker(s)

Figure 2. Activation of neutrophils. At the inflammatory site, neutrophils engulf the invading agent. Phagocytosis, in turn, induces a physiologically controlled 
activation of neutrophils, leading to the release of ROS and proteins inside the phagosome. However, excessive activation of neutrophils results in excessive 
release of ROS and granule contents in the extracellular space, contributing to tissue damage and inflammation.
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H2O2 and O2 
-. can react together through the Haber-Weiss 

reaction in the presence of a transition metal (or the Fenton 
reaction in the presence of iron) to generate hydroxyl radical (OH°): 

(O2
-. + H2O2 (or Fe++ or Cu++) OH° + OH- + O2),

Myeloperoxidase (MPO), released from azurophilic granules, 
catalyzes the transformation of H2O2 in the presence of a halogen 
(Cl-, Br-, I-) into very toxic molecules: 

(H2O2+ H+Cl-  HOCl + HO).
The hypochlorous acid (HOCl) produced by this reaction 

reacts with amines resulting in chloramines:
(H+ + OCl- + R-NH2  R-NHCl + HO).

Structure and activation of the phagocyte NADPH 
oxidase
The enzyme responsible for the first step leading to ROS 
production is called the respiratory burst oxidase or the 
phagocyte NADPH oxidase (NOX2) [12, 33] which consists 
of several components, including the membrane cytochrome 
b558, a heterodimer composed of gp91phox/NOX2 and p22phox 
(phox: phagocyte oxidase), and the cytosolic p47phox, p67phox, 
p40phox and either Rac1 (in monocytes) or Rac2 (in neutrophils) 
(Figure 3). While dormant and spatially restricted in resting cells, 
the enzyme assembles at the membrane and becomes active 
to produce O2

-. when the cells are stimulated. In intact cells, 
NADPH oxidase activation is accompanied by phosphorylation 
of almost all of its components (p47phox, p67phox, p40phox, 
gp91phox and p22phox) [34], which facilitates new protein-
protein interactions and the assembly of the complex at the 
membrane of the phagosome. The vital importance of this 
enzyme is illustrated by a human genetic disorder called chronic 
granulomatous disease (CGD), which is due to gene mutation of 
one of the oxidase components (most frequently gp91phox and 
p47phox), and is associated with life-threatening bacterial and 
fungal infections [33]. However, excessive ROS release can also 
damage bystander host tissues (Figure 2), thereby amplifying 
inflammatory reactions [12–14]. 

NADPH oxidase activation in phagocytes can be induced 
by a large number of soluble and particulate factors such as 
opsonized bacteria, opsonized zymosan, formylated peptides 
such as (FMLP, C5a, PAF, calcium ionophores (ionomycin, 
A23187), and PKC activators like PMA [12]. The most studied 
agonists are FMLP and PMA. FMLP binds to its receptor, called 
FPR (formyl peptide receptor), which is a G-protein coupled 
receptor (GPCR) with seven trans-membrane domains [6, 35, 
36]. The receptor activates heterotrimeric G proteins (proteins 
binding guanosine triphosphate, GTP) and protein tyrosine 
kinases (PTK). The G proteins then activate membrane enzymes 
such as phospholipase C (PLC), PLA2, and phospholipase D 
(PLD), leading to the release of intracellular messengers [6, 
35, 36]. PLC cleaves a membrane lipid, phosphatidylinositol 
4,5-biphosphate (PIP2) into diacylglycerol (DAG) and inositol 
trisphosphate (IP3). IP3 is involved in the release of calcium 
from intracellular pools, while DAG activates protein kinase 
C (PKC) [6, 35]. Activation of PLD results in phosphatidic acid 
production from phosphatidylcholine. Activation of PLA2 
leads to the cleavage of phospholipids to produce arachidonic 
acid, which can then be used as a substrate for leukotrienes and 
prostaglandins synthesis. Neutrophil activation is accompanied 
by the activation of many protein kinases such as PTK, PKA, 
PKC, AKT and MAPKinase, which in turn phosphorylate 
many proteins with important cellular functions, including the 
NADPH oxidase components (Figure 4). In human neutrophils, 
various protein kinases have been implicated in the regulation 
of the NADPH oxidase activity, among them, the PKC family 
appears to play a major role after FMLF or PMA activation [34]. 
LPS and pro-inflammatory cytokines such as GM-CSF and 
TNFα, which alone do not activate NADPH oxidase but prime 
its activation by a secondary stimulus such as FMLP and C5a, 
induce partial phosphorylation of p47phox within a specific 
peptide sequence and upregulate NADPH oxidase assembly  
[12, 27, 28, 37]. Upon subsequent stimulation with FMLP or 
others, the phosphorylation of p47phox on multiple serines 

Figure 3. The NADPH oxidase complex. The active NADPH oxidase (NOX2) is composed of several cytosolic proteins (p67phox, p47phox, p40phox, rac2) 
and membrane-bound proteins (gp91phox and p22phox), initially referred to as cytochrome b558. The activated NADPH oxidase transfers an electron from the 
cytosolic NADPH to oxygen to form the radical, superoxide anion. 
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induces conformational changes and interaction of the SH3 
domains of p47phox with the proline-rich region of p22phox, 
resulting in assembly of the active enzyme [12, 38]. 

Effects of crude venoms on neutrophil ROS 
production
Venoms from different sources (bees, wasps, scorpions, snakes…) 
are a complex mixture of several agents such as enzymes 
(phospholipase A2, L-amino acid oxidase, proteases, cysteine-
rich secretory proteins), peptides (mastoporan, parabutoporin, 
disintegrins, etc.) and other toxins [18–20]. Envenomation can cause 
local and systemic effects characterized by an acute inflammatory 
reaction with leukocyte recruitment and activation and release 
of several mediators and cytokines [39–42]. Envenomation is 
known to be accompanied by egress of neutrophils from the 
bone marrow into the blood, increasing the number of circulating 
neutrophils [22, 41]. This phenomenon has also been observed in 
animal models, as injection of a variety of venoms to mice or rats 
resulted in an increase of neutrophil population and a massive 
recruitment to the inoculation site [24, 41, 43]. 

Envenomation is also known to be accompanied by a persistent 
oxidative stress in bite victims and animal envenomation models 
[44]. This was evidenced by the presence of lipid peroxidation by 
measuring the peroxidation product malondialdehyde (MDA) 
[45–47]. These data suggest a stimulation of ROS production 
from various sources such as neutrophils. Regarding the effect 
of envenomation on neutrophil ROS production in vivo, data 
are mainly obtained from the use of animal models. Indeed 
i.p. injection of Bothrops asper (BaV) and Bothrops jararaca 
(BjV) venoms in mice increased phagocytosis and production 
of hydrogen peroxide (H2O2) in the presence of PMA by 
polymorphonuclear and mononuclear peritoneal leukocytes 
[48]. In agreement with this finding, de Souza et al. [49] showed 
that Bothrops atrox snake venom injection in mice induced 
superoxide production by migrated neutrophils as assessed 
by nitroblue tetrazolium (NBT) reduction assay. Bothrops 
bilineata snaque venom was able to induce hydrogen peroxide 
production by human neutrophils [50]. Echis carinatus and 
Naja naja snake venoms induced NADPH oxidase activation 
and NETosis in human neutrophils [51]. It was also shown that 

Figure 4. Molecular events underlying neutrophil activation and the effects of venom components. The fMLP peptide binds to its receptor called FPR (formyl 
peptide receptor), which activates heterotrimeric Gi proteins (proteins binding guanosine triphosphate, GTP) and tyrosine kinases. The G proteins then activate 
enzymes such as phospholipase C (PLC), phospholipase A2 (PLA2), phospholipase D (PLD), leading to the release of intracellular messengers, i.e., PLC catalyzes 
the formation of diacylglycerol (DAG) and inositol-triphosphate (IP3) from phosphatidylinositol 4,5-biphosphate (PIP2). IP3 is involved in the release of calcium from 
intracellular pools, while DAG activates protein kinase C (PKC). Activation of PLD results in phosphatidic acid production from phosphatidylcholine. Activation 
of PLA2 leads to the cleavage of membrane phospholipids to produce arachidonic acid, which can then be used as a substrate for leukotrienes and prostaglandins 
synthesis. FMLP induces activation of protein tyrosine kinases (PTK), which are upstream of the MAPKinase pathways (ERK1/2 and p38MAPKinase). All these 
kinases control neutrophil functions such as chemotaxis, degranulation, NADPH oxidase activation and apoptosis. The effect of venom components (PLA2, LAAO, 
disintegrin, mastoparan and parabutoparan) is shown in red.
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Tityus zulianus and Tityus discrepans scorpion venoms induced 
hydrogen peroxide production by human neutrophils in vitro 
[52]. Scorpion venom induced ROS production is mediated by 
TLR4 as administration of a selective inhibitor (TAK-242 or 
Resatorvid) protected from inflammatory reaction and oxidative 
stress [53]. Indeed, TLR2, TL4 and CD14 of macrophages were 
shown to recognize scorpion venom [54].

Effect of venom constituents on neutrophil ROS 
production

Effect of venom PLA2 

PLA2 cleaves membrane phospholipids at the sn-2-acyl ester 
bond, releasing arachidonic acid, a powerful inflammatory 
mediator [55]. Human cells express mainly an 85 kDa cytosolic 
PLA2 and a 14 kDa secretory PLA2. The cytosolic PLA2 is a 
key enzyme in neutrophil degranulation and ROS production. 
Interestingly, PLA2 interacts directly with the phagocyte 
NADPH oxidase and arachidonic acid itself is able to induce 
NADPH oxidase activation [56–59]. Several venoms (snake, 
bee, wasp and scorpion) contain different types of PLA2 [18, 20, 
60]. These venom PLA2 are responsible for the inflammatory 
response induced by the venom [61–64], probably because of 
the degradation of the plasma membrane and the release of fatty 
acids such as arachidonic acid. Indeed, venom Asp49 PLA2 from 
Bothrops atrox venom induced degranulation and ROS production 
in neutrophils but also cytokine production in monocytes and 
macrophages, and degranulation in mast cells, thus inducing a 
strong inflammatory reaction [65, 66]. The Lys49-PLA2 from the 
crude venom of Crotalus atrox was reported to induce intracellular 
calcium increase in human neutrophils [67], a process involved 
in the stimulation of several functions such as ROS production. 

Effect of venom L-amino acid oxidase 

L-amino acid oxidase (LAAO) is an enzyme that catalyzes the 
oxidative deamination of L-amino acids to the corresponding 
alpha-ketoacids with production of H2O2 and ammonia [68–70]. 
LAAO is expressed in the venoms of many organisms, including in 
snakes [71–73]. LAAO has been shown to induce several biological 
effects such as hemolysis, edema, and activation of inflammatory 
leukocyte functions [74,75]. In neutrophils, LAAO isolated from 
snake venom induces chemotaxis, stimulates phagocytosis and 
release of several mediators [76–78], increasing integrin expression 
in human neutrophils and activation of other neutrophil functions 
(ROS production, MPO degranulation, cytokine production and 
NETs release) [76–78]. Interestingly, Paloschi et al. [79] showed 
that LAAO from Calloselasma rhodostoma snake venom activated 
NADPH oxidase in neutrophils. 

Effect of venom mastoporan 

Mastoparan is a tetradecapeptide toxin found in wasp venoms 
[80–82]. It was initially characterized as a good inducer of mast 
cell degranulation [80], and later was found to increase cytosolic 

calcium concentration and to stimulate IP3 production in human 
neutrophils [83]. These latter effects could be explained by the 
direct interaction of mastoparan with Gi proteins and stimulation 
of the GTPase activity, resulting in PLC activation, IP3 release 
and cytosolic calcium elevation [84,85]. Mastoporan induces 
neutrophil chemotaxis, degranulation, CR3 expression and 
superoxide production [85,86]. In a cell-free system, mastoporan 
was found to inhibit NADPH oxidase activation by binding to 
p67phox [87, 88]; however, this inhibitory effect was not observed 
with intact neutrophils [85, 86]. In vivo, mastoporan was able to 
induce inflammation by increasing TNFα and IL-1β levels and 
by recruiting neutrophils and macrophages [89]. 

Effect of venom parabutoporin 

Parabutoporin is a peptide produced by Parabuthus schlechteri, 
a South African scorpion species [90]. It was initially known 
for its antibacterial and antifungal properties [90]. However, it 
was then shown to also stimulate neutrophil chemotaxis [91,92], 
degranulation, and to inhibit apoptosis [93,94]. It also inhibits 
neutrophil superoxide production [91,92], probably through its 
ability to serve as a PKC substrate, competing with the neutrophil 
p47phox, thereby inhibiting NADPH oxidase activation [95]. In 
summary, parabutoporin stimulates some neutrophil functions 
but inhibits NADPH oxidase activation. Thus, parabutoporin 
has both pro-inflammatory and anti-inflammatory effects.

Effect of venom disintegrins 

Disintegrins are a family of small peptides, most of them 
containing an RGD (Arg-Gly-Asp) sequence, and are found in 
snake and other venoms [96,97]. Disintegrins selectively bind 
to different integrins, such as platelet integrins (alpha IIb, beta 
3) to inhibit platelet aggregation, and to neutrophil integrins. 
Most disintegrins interact with integrins through the RGD 
sequence loop, resulting in an active site that modulates the 
integrin activity. It was shown that jarastatin and ocellatusin 
(two RGD-containing disintegrins) and alternagin-C (a non-
RGD-disintegrin), two different disintegrins induced neutrophil 
migration via integrin activation, but inhibited fMLP- and 
IL-8-induced neutrophil chemotaxis [98–100]. Jarastatin was 
also shown to activate ERK1/2 and induce IL-8 expression in 
neutrophils, while inhibiting apoptosis [99,100]. In contrast to 
the effects of Jarastatin, Rhodostomin, a different disintegrin, 
inhibits neutrophil adhesion to fibronectin and ROS production, 
suggesting an anti-inflammatory effect [101]. VLO5, a disintegrin 
isolated from Vipera lebetina obtusa venom, was found to 
activate the A9b1 integrin and to inhibit neutrophil apoptosis 
by increasing the expression of the proapoptotic protein Bcl2 
[102]. Thus, disintegrins have opposite effects on neutrophils, 
having either a pro-inflammatory or an anti-inflammatory effect.

Conclusion
Neutrophils are key cells of the innate immunity, modulating 
the inflammatory reaction. Although they are required for 
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host defense, their excessive activation can lead to excessive 
release of toxic agents such as ROS that can induce tissue injury 
and inflammation. Envenomation caused by different animal 
species (bees, wasps, scorpions, snakes…) is well known to 
induce a local and acute inflammatory reaction characterized 
by leukocytes recruitment and activation and the release of 
several mediators and cytokines. Venom components such 
as phospholipase A2, L-amino acid oxidase, disintegrins, 
mastoporan and parabutoporin are able to affect neutrophil 
ROS production. In this review, we attempted to describe the best 
characterized effects of the most studied venom components on 
neutrophil ROS production and the NADPH oxidase activation. 
Figure 4 summarizes the mechanisms of action of these different 
molecules on neutrophil pathways. Most venom components 
have a pro-inflammatory effect, but some can in addition inhibit 
specific neutrophil functions, exerting both a pro- and anti-
inflammatory effects. A multitude of other venom components 
are known and should be tested on neutrophil functions and 
pathways and on inflammatory reactions. The venom agents can 
be used as a powerful tool to modulate neutrophil functions for 
research or pharmacological purposes.
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