
Translational Oncology 13 (2020) 100863

Contents lists available at ScienceDirect

Translational Oncology

j ourna l homepage: www.e lsev ie r .com/ locate / t ranon
Age-related copy number variations and expression levels of F-box protein
FBXL20 predict ovarian cancer prognosis
Shuhua Zheng a,⁎, Yuejun Fu b
a Nova Southeastern University, College of Osteopathic Medicine, Florida 33314, USA
b Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, People's Republic of China
⁎ Corresponding author.
E-mail address: sz227@mynsu.nova.edu. (S. Zheng).

http://dx.doi.org/10.1016/j.tranon.2020.100863
1936-5233/© 2020 The Authors. Published by Else
creativecommons.org/licenses/by-nc-nd/4.0/).
A B S T R A C T
A R T I C L E I N F O
Article history:
Received 13 May 2020
Received in revised form 13 August 2020
Accepted 21 August 2020
About 70% of ovarian cancer (OvCa) cases are diagnosed at advanced stages (stage III/IV) with only 20–40% of them
survive over 5 years after diagnosis. A reliably screeningmarker could enable a paradigm shift in OvCa early diagnosis
and risk stratification. Age is one of themost significant risk factors for OvCa. Older women havemuch higher rates of
OvCa diagnosis and poorer clinical outcomes. In this article, we studied the correlation between aging and genetic al-
terations in The Cancer Genome Atlas Ovarian Cancer dataset. We demonstrated that copy number variations (CNVs)
and expression levels of the F-Box and Leucine-Rich Repeat Protein 20 (FBXL20), a substrate recognizing protein in the
SKP1-Cullin1-F-box-protein E3 ligase, can predict OvCa overall survival, disease-free survival and progression-free sur-
vival. More importantly, FBXL20 copy number loss predicts the diagnosis of OvCa at a younger age, with over 60% of
patients in that subgroup have OvCa diagnosed at age less than 60 years. Clinicopathological studies further demon-
strated malignant histological and radiographical features associated with elevated FBXL20 expression levels. This
study has thus identified a potential biomarker for OvCa prognosis.
© 2020 The Authors. Published by Elsevier Inc. on behalf of Neoplasia Press, Inc. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Despite intensive treatment with surgical cytoreduction and platinum-
based chemotherapy, ovarian cancer (OvCa) remains the most lethal gyne-
cologic malignancy worldwide with relapses developed in the majority of
advanced-stage cases (stage III/IV) [1,2]. About 70% of cases are diagnosed
at advanced stages, with only 20–40% of them survive over 5 years after di-
agnosis [3]. A reliably screening and diagnostic marker can enable early
OvCa diagnosis, risk stratification, and treatment planning.

Studies of age-specific incidence rates identified that the mean ages at
OvCa diagnosis for BRCA1 and BRCA2 mutant patients were 51.3 and
61.4 years, respectively [4]. Therefore, prophylactic bilateral salpingo-
oophorectomy (BSO) before age 40 for BRCA1 mutated and age 45 for
BRCA2 mutated patients was recommended [4]. However, only about
10% of the general population carry germline BRCA mutations [5,6]. In-
deed, less than 21% of OvCa patients carry BRCA1 mutation and 8% have
BRCA2 mutation [5,6]. The mutation rates of other OvCa risk-conferring
genes such as RAD51C, RAD51D, BRIP1, FANCM, and the mismatch repair
genes MLH1, MSH2, MSH6, and PMS2 mutations are less than 1% in the
general population [7]. Therefore, mutations account for only a small frac-
tion of OvCa cases, and the majority of the population will not benefit from
the screening of these genetic alterations.
vier Inc. on behalf of Neoplasia P
Age is one of the biggest independent risk factors for the disease diagno-
sis. Older OvCa patients often have poorer clinical outcomes [8]. Aging is
associated with an increased prevalence of frailty, comorbidities, progres-
sive decrease of organ function, as well as adverse drug reactions due to de-
creasing therapeutic window and distribution volume [9]. However,
clinical studies identified that older patients (over 70 years) experienced
the same percentage of morbidity with no significant difference in survival
when compared with younger (under 70 years) women who were equally
debulked [10]. Further studies demonstrated that elderly (65–75 years)
and very elderly (>75 years) patients could tolerate radical surgery without
an increase of morbidity rates when comparedwith those reported in youn-
ger patients, indicating older age is not a risk factor for aggressive surgical
cytoreduction [11]. Clinical trials of chemotherapy with carboplatin/pacli-
taxel versus cisplatin/paclitaxel following cytoreductive surgery also dem-
onstrated that OvCa patients over the age of 70 could tolerate the
combinational treatment regimens [12]. Therefore, the alteration of treat-
ment plans is not solely responsible for the older-age OvCa patient's unfa-
vorable prognosis. Aging-related genetic changes, including accumulation
of mutations, epigenetic modifications, and copy number variations
(CNVs), may offer new clues in identifying OvCa prognostic and screening
biomarkers.

In this article, the correlation of aging with genetic alterations in The
Cancer Genome Atlas Ovarian Cancer (TCGA-OV) dataset was studied.
We found copy numbers loss of the F-Box protein FBXL20 predicts OvCa di-
agnosis at a younger age (<60 years). Moreover, decreased FBXL20
ress, Inc. This is an open access article under the CC BY-NC-ND license (http://
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expression as the result of copy number loss predicts favorable overall sur-
vival (OS), disease-free survival (DFS), and progression-free survival (PFS).

Methods and materials

Public datasets

The clinical and genetic information of OvCa samples were derived
from The Cancer Genome Atlas Ovarian Cancer (TCGA-OV) dataset. Analy-
sis of mutations was conducted based on the Genomic Data Commons
(GDC) Data Portal (https://portal.gdc.cancer.gov/). Specifically, 608
OvCa patients were included in TCGA-OV dataset. The Cancer Imaging Ar-
chive (TCIA) provides radiological data of 143 OvCa patients (https://
www.cancerimagingarchive.net/). Expression levels of genes in the normal
tissue were based on the Genotype-Tissue Expression (GTEx) project
(https://www.gtexportal.org/home/). The data regarding the ‘Longest Di-
mension’ of TCGA-OV cases was downloaded from the UCSC Xena
(https://xena.ucsc.edu/). All these clinical samples were collected with in-
formed consent.

Clinicopathological study

The immunohistochemistry (IHC) data was derived from The Human
Protein Atlas, in which staining for FBXL20 was conducted using anti-
FBXL20 antibody HPA050397 (Sigma-Aldrich, MO, USA) (https://www.
proteinatlas.org/) [13]. The samples with differential FBXL20 staining in-
tensity (‘weak’ and ‘moderate’) for serous, mucinous, and endometrioid
subtypes of OvCa were collected. The magnification scale is 50 μm. Hema-
toxylin and eosin (H&E) staining and computed tomography (CT) scan im-
ages of serous OvCa were derived from TCGA-OV dataset. Patients were
grouped into ‘FBXL20 Low’ and ‘FBXL20High’ cohorts based on themedian
FBXL20 copy numbers or expression levels.

Copy number variations (CNVs) of OvCa patients

OvCa patients in TCGA-OV dataset were grouped into different age
groups of 26–45, 46–59, 60–75, and 76–89 years based on the age at initial
OvCa diagnosis. Prevalence and frequency of each type of mutations and
CNVs were analyzed using the Firebrowse (http://firebrowse.org/). CNVs
of genes KSR1, TNFAIP1, TRAF4, SLC6A4, NF1, SUZ12 and RAD51D,
CCL5, FBXO47, FBXL20, ERBB2, MIEN1 located on chromosome bands
17q11.2 and 17q12, respectively, were identified. Those samples were
aligned with patients' age at initial OvCa diagnosis using the UCSC Xena
platform. These genes were selected to represent the CNVs of chromosome
bands 17q11.2 and 17q12. Their involvement in carcinogenesis is indicated
in the Atlas of Genetics and Cytogenetics in Oncology and Hematology.

Demographic analysis of OvCa patients with differential FBXL20 copy numbers

Patients from TCGA-OV dataset were grouped into higher-than-median
copy numbers of FBXL20 (‘FBXL20High’; n=227) and lower-than-median
copy numbers of FBXL20 (‘FBXL20 Low’; n = 227). The demographics of
the two groups, including ethnicity, race, and age at initial OvCa diagnosis,
were derived from TCGA-OV. Patients grouped into these groups were fur-
ther categorized based on age at initial OvCa diagnosis (≤49, 50–59, and
≥60 years).

FBXL20 expression levels and OvCa staging

Violin plot analysis for OvCa staging and FBXL20 expression levels was
carried out on GEPIA (http://gepia2.cancer-pku.cn/#index). Briefly,
FBXL20 expression levels were transformed with the equation of log2(Tran-
script Count Per Million (TPM) + 1). Ovarian serous cystadenocarcinoma
subtype derived from TCGA-OV dataset was used for the Violin plot analy-
sis. The method for differential gene expression analysis is one-way
ANOVA. Proteomic data used in this publication was generated by the
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National Cancer Institute Clinical Proteomic Tumor Analysis Consortium
(https://cptac-dataportal.georgetown.edu/) (n=95) [14]. Mass spectrom-
etry analysis was conducted using the 10-plexed isobaric tandemmass tags
(TMT-10). Protein abundance was presented as log2-ratio of the expression
of the sample to a normal control. Samples were aligned based on OvCa
stages. The protein levels of these aligned cases were then color-coded. Pro-
teins involved in CRL, including FBX20, cullin 1, 2, 3, 4A/B, 5, and 7, were
studied. Actin was used as a reference control.

Kaplan-Meier(K-M) survival analysis

K-M analyses of overall survival (OS), disease-free survival (DFS),
and progression-free survival (PFS) of OvCa patients were carried
out based on TCGA-OV dataset. The survival data was downloaded
from the UCSC Xena. Quartiles of genes' CNVs were used as cutoff
values in grouping patients into ‘Upper quartile’, ‘Second quartile’,
‘Third quartile’, and ‘Lower quartile’ cohorts. Survival analyses com-
paring ‘Upper quartile’ and ‘Lower quartile’ cohorts were presented.
The survival analysis of the cohorts of ‘Second quartile’ and ‘Third
quartile’ was not shown due to the lack of statistical significance (Sup-
plementary 1). The OS analyses of patients with mutated (MT) ERBB2,
TP53, BRCA1, and BRCA2 and wildtype (WT) cases were carried out
based on the GDC TCGA-OV dataset. The Log-rank test was used for
calculations of P-values.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 6.0 software.
All statistical tests were 2-sided, and P-values smaller than 0.05 were con-
sidered statistically significant.

Results

Copy number losses on 17q11.2-q12 and OvCa

To identify potential age-related genetic alterations, we grouped OvCa
patients from TCGA-OV dataset into different age groups: 26–45, 46–59,
60–75, and 76–89 years (Fig. 1A). We found even distribution for both
the prevalence and types of mutations across different age groups (Supple-
mentary 2). The mutation status of key genes, including TP53, NF1,
BRCA1/2, CDK12, RB1, EFEMP1, HNF1B, KRAS, PTEN, ERCC6, LARP1,
MTA2, and NRAS, was also not affected by patients' ages at initial OvCa di-
agnosis (Supplementary 1). Copy number variations (CNVs) represent a sig-
nificant source of genetic variation in the human genome [15]. Therefore,
we further investigated CNVs between different age groups with OvCa.

We found that most OvCa patients at 26–59 years old (y/o) age group
have copy number losses on chromosome band 17q11.2 (Fig. 1A, Supple-
mentary 2). Interestingly, 17q11.2 and its flanking region 17q12
(17q11.2-q12) have been proposed by the Ovarian Cancer Association Con-
sortium (OCAC) as susceptibility loci bearing common germline genetic
variations for polygenic risk prediction for OvCa [7]. CNVs of genes
KSR1, TNFAIP1, TRAF4, SLC6A4, NF1, SUZ12 and RAD51D, CCL5,
FBXO47, FBXL20, ERBB2, MIEN1 located on 17q11.2 and 17q12, respec-
tively, were selected and alignedwith patients' age at initial OvCa diagnosis
(Fig. 1B, C). These genes were selected based on their locations on the ge-
nome and their involvement in carcinogenesis. Consistent with Fig. 1A,
loss of copy numbers of individual genes on 17q11.2-q12 correlates with
OvCa diagnosis at a younger age (Fig. 1B, C).

CNVs of genes on 17q11.2-q12 and OvCa prognosis

CNVs of each oncology-related gene on 17q11.2-q12 were studied. We
found copy numbers of 4 genes, including F-box only protein 47 (FBXO47),
F-box/LRR-repeat protein 20 (FBXL20), erb-b2 receptor tyrosine kinase 2
(ERBB2), and migration and invasion enhancer 1 (MIEN1), can predict
OvCa survival rates. The P-values between ‘Upper quartile’ and ‘Lower
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Fig. 1. Genetic variations of OvCa patients diagnosed at different ages A) OvCa patients were grouped into different age groups based on the age at initial diagnosis of the
disease. Prevalence (top panel) and frequency of each types of mutations (middle panel) and copy number variations (CNVs) on chromosome band 17q11.2 were plotted
in accordance with patient's age B) CNVs of indicated genes on 17q11.2 were aligned with patients' age at initial OvCa diagnosis (n = 606). C) CNVs of indicated genes
on 17q12 were aligned with patients' age at initial OvCa diagnosis (n = 606).
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quartile’ cohorts of these four genes are 0.0024, 0.0076, 0.0012, and
0.0011, respectively (Fig. 2). FBXO47 and FBXL20 are F-box proteins that
function as substrate recognizing proteins in the SKP1-Cullin1-F-box
(SCF) E3 complex for ubiquitin (Ub) conjugations [16] (Fig. 7, Table 1).
ErbB2 (Neu/Her2) was proposed in numerous studies as a potential OvCa
prognostic marker, andMIEN1was involved in cancer progression andme-
tastasis [17]. Screening of CNVs based on patients' age groups has thus suc-
cessfully identified genes on 17q11.2-q12 that can potentially predict the
OvCa prognosis.

CNVs and gene expression of FBXL20 predict OvCa prognosis

CNVs regulate differential gene expression levels via gene dosage effects
[15]. We found expression levels of FBXO47, FBXL20, ERBB2, and MIEN1
are in accordance with their CNVs (Fig. 3A, B, Supplementary 3). However,
only FBXL20 expression levels can reliably predict the prognosis of OS,
disease-free survival (DFS), and progression-free survival (PFS) with P-
values of 0.0073, 0.0045, and 0.00475, respectively (Fig. 3B, from left to
right panels). ERBB2 is the most frequently studied putative molecular
prognostic factor in OvCa [18]. Therefore, we also studied the potential
prognostic value of ERBB2 expression level and mutation status to rule
out the possibility that the prognostic role of FBXL20 is due to its proximity
to ERBB2 in the chromosome. We found neither ERBB2 expression nor its
mutation status can predict OvCa prognosis (Fig. 3A). Furthermore, we
found FBXL20 outperformed other potential OvCa prognostic molecular
markers, including mutation status of BRAC1/2 [19] and TP53 [20], and
expression levels of WTAP (Wilms' tumor 1-associating protein) [21] and
EGFR [22] (Supplementary 4).We also found that FBXL20 expression levels
and cellular protein levels do not correlate with OvCa staging, indicating
FBXL20 can be an independent OvCa prognostic biomarker (Supplemen-
tary 5). The expression of FBXO47 also failed to predict OvCa prognosis
(Supplementary 3). All these data indicate FBXL20 CNVs and expression
3

levels can predict OvCa prognosis. The prognostic role ofMIEN1 expression
was not studied due to the lack of RNA-Seq data in TCGA-OV.

FBXL20 copy number loss predicts OvCa diagnosis at a younger age

To study other demographic features of patients with differential
FBXL20 expression, OvCa patients in TCGA-OV dataset were grouped into
‘FBXL20 High’ and ‘FBXL20 Low’ cohorts (n = 227 vs. n = 227) using
the median CNV value as the cutoff. No significant difference in ethnicity
and race exists between the cohorts (data not shown). In the cohort of
lower-than-median FBXL20 copy numbers, 26.87% (n = 61), 33.92% (n
= 77) and 36.56% (n = 83) of the patients were diagnosed with OvCa at
the age of≤49, 50–59 and≥60 years, respectively (Fig. 3C). In the cohort
with higher-than-median FBXL20 copy numbers, 11.77% (n=29), 28.63%
(n=65) and 54.19% (n=123) of the patients were diagnosed with OvCa
at the age of ≤49, and 50–59 and ≥60 years, respectively (P < 0.001)
(Fig. 3C).

Elevated FBXL20 protein levels correlate with malignant histological features of
OvCa

The function of FBXL20 in OvCa progression is barely studied.We further
studied the clinicopathological features ofOvCa subtypeswith different cellu-
lar levels of FBXL20. Three subtypes of OvCa, including serous, mucinous,
and endometrioid, were selected from the Human Protein Atlas. Patients
were grouped into ‘FBXL20 Low’ and ‘FBXL20 High’ cohorts based on
FBXL20 staining intensity. The serous subtype of OvCa with high FBXL20
staining intensity showed malignant histological phenotypes with
micropapillary, trabecular structures, detached tumor cells, and glandular
complexity (Fig. 4). The mucinous OvCa subtype with high FBXL20 expres-
sion showed malignant features of infiltrative patterns with small glands,
nests, and small clusters of floating cells (Fig. 4). The endometrioid OvCa



Fig. 2. Survival analysis based on copy number variations (CNVs) of individual genes. The upper and lower quartiles were used as cutoff values for classification of patients
into groupswith ‘high’ or ‘low’ copy numbers of the indicated genes. Hazard ratio for FBXO47, FBXL20, ERBB2, andMIEN1 is: 9.193, 7.115, 10.5, and 10.68, respectively. *: P
< 0.05; **: P < 0.01; ***: P < 0.001.
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subtype with high FBXL20 showed abundant proliferative cells and nuclear
atypia (Fig. 4, arrows).

Elevated FBXL20 expression correlates malignant histological features in serous
OvCa

Serous subtype is themost common and lethal form of OvCa. Therefore,
we further studied histological features of serous OvCa samples with
Table 1
The involvement of F-box proteins in ovarian cancer. The F-box proteins are categorized
including Leucine Rich Repeats, WD40motifs, and other domains, respectively [35]. Rel
FBXW1/11 [27,36–40], FBXW7 [41–46], FBXW8 [47–49], FBXL1 (SKP2) [50–52], FB
FBXO22 [62–64]. Abbreviations: AEBP2, AE binding protein 2; Cdc25A, cell division cy
taining MTOR interacting protein; FMRP, fragile X mental retardation protein; KDM4B,
molog; TLK1/2, tousled-like kinases 1/2; TRAF1/2, TNF receptor associated factor 1/2;

Class F-box protein Key substrate Pathway involved

FBXWs FBXW1/11
(β-TrCP1/2)

Mdm2, Cdc25A, Wee 1, DEPTOR,
β-catenin, IkB, AEBP2

DNA damage response; mTO
pathway; epigenetic modific

FBXW7 c-Myc, Cyclin E, Notch1, Mcl-1,
mTOR, HIFα, c-Jun

Cell cycle; Notch pathway, a
pathway

FBXW8 Cyclin D1, IRS1 Cell cycle; PI3K pathway
FBXLs FBXL1 (SKP2) P47, P21, P27, P16, FOXO3,

BRCA1, Akt
Cell cycle; apoptosis; FOXO p

FBXL3 c-Myc, TLK2 Cell cycle; DNA replication;
FBXL10 c-Fos c-Fos pathway;
FBXL20 Vps34 Phosphatidylinositol produc

FBXOs FBXO4 Cyclin D1, TRF1, FMRP Cell cycle; telomeres mainten
FBXO7 TRAF1/2, cIAP1, Gsk3β Apoptosis; Wnt pathway
FBXO22 Mdm2, LKB1, KDM4B P53 pathway; DNA damage r

methylation
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differential FBXL20 expression levels using hematoxylin and eosin (H&E)
staining. Serous subtype OvCa patients were grouped into ‘FBXL20 Low’
and ‘FBXL20 High’ cohorts based on expression levels of FBXL20. We
found samples with low FBXL20 expression levels (TCGA-23-1111, TCGA-
61-2003, TCGA-61-1910) generally have benign features such as
psammoma bodies (circles) and less frequent and less extensive necrosis
when compared with samples with higher expression levels of FBXL20
(TCGA-13-1511, TCGA-61-1743, TCGA-29-1691) (Fig. 5). These data
into sub-families, FBXL, FBXW, and FBXO based on their substrate-binding motifs,
atively well studied F-box proteins that are related with OvCa progression including
XL3 [53,54], FBXL10 [55,56], FBXL20 [26], FBXO4 [57,58], FBXO7 [59–61] and
cle 25 A; cIAP1, cellular inhibitor of apoptosis protein 1; DEPTOR, DEP domain con-
lysine demethylase 4B; LKB1, liver kinase B1; Mdm2, murine double minute 2 ho-
TRF1, telomeric repeat factor 1; Vps34, vacuolar protein sorting 34.

Ovarian cancer

R pathway; Wnt pathway; NFkB
ations

Cisplatin and Platinum resistance; metastasis;
invasion; EMT; cancer stem cell [20,29–33].

poptosis, mTOR pathway, HIFα PARPi resistance; cancer stem cell; chemo-resistance;
angiogenesis [34–39]
Tumorigenesis, progression [40–42]

athway, Akt pathway Cisplatin resistance; invasion; growth and
proliferation [43–45]

checkpoint signaling PARPi resistance; PARPi sensitization [46,47]
Early dissemination [48,49]

tion; autophagy Cisplatin resistance; metastasis [21]
ance; RNA binding Cell cycle; genomic instability; OvCa risk [50,51]

Chemo-resistance; proliferation [52–54]
esponse; LKB1-AMPK pathway; Chemo-resistance; metastasis; early dissemination

[55–57]



Fig. 3. The effect of FBXL20 expression levels on OvCa prognosis A) ERBB2 expression is aligned with its copy numbers using the UCSC Xena platform based on TCGA-OV dataset (n = 308). Overall survival (OS), disease-free
survival (DFS) and progression-free survival (PFS) with differential ERBB2 expression levels were compared (from the left to the right panel). The survival of patients with mutated ERBB2 was also plotted against those
wildtypes. Hazard ratio for OS, DFS, and PFS is: 1.67, 0.951, and 0.045, respectively. B) The expression of FBXL20 is aligned with its copy numbers (n = 308). OS, DFS and PFS were plotted with differential FBXL20 expression
levels as cutoffs. Hazard ratio for OS, DFS, and PFS is: 7.207, 8.09, and 3.929, respectively. C) Demographic of OvCa patients with differential FBXL20 CNVs diagnosed at indicated age groups. *: P<0.05; **: P<0.01; ***: P<
0.001.
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Fig. 4. Clinicopathological features related with different FBXL20 protein levels. Immunohistochemistry staining of different subtypes of OvCa with differential staining
intensities of FBXL20. Arrows indicate cells with active replication and/or nuclear atypia. Image credit: Human Protein Atlas. Images available from v19.proteinatlas.org.
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indicate that elevated FBXL20 expression level is associated withmalignant
histological phenotypes.

Radiogenomics of OvCa samples with differential FBXL20 expression

We further evaluated whether the histological features of clinical sam-
ples with FBXL20 differential expression correlated with radiographic phe-
notypes. Computerized tomography (CT) images from The Cancer Imaging
Archive (TCIA) were employed. Patients were grouped into ‘FBXL20 Low’
and ‘FBXL20 High’ cohorts based on the median expression level of
FBXL20. Samples with low FBXL20 expression levels (TCGA-13-0799,
TCGA-61-2003, TCGA-61-1910) generally have benign features such as
thick encapsulation (arrows) and calcification (red circles) (Fig. 6A). Sam-
ples with high FBXL20 expression levels (TCGA-13-1511, TCGA-10-0936,
TCGA-09-2044) frequently have features of invasive spreading and exten-
sive necrosis (Fig. 6A). Tumor volumetry is closely related with OvCa stag-
ing and prognosis [23]. To further investigate the correlation between
radiographical features with differential FBXL20 expression levels, we ana-
lyzed the tumor sizes of ‘FBXL20 Low’ and ‘FBXL20High’ cohorts.We found
patients with higher-than-median (n=191) FBXL20 expression levels have
Fig. 5.Histological study of serous subtype OvCa with differential FBXL20 expression le
of FBXL20. Psammoma bodies (circles) were indicated.

6

larger tumor size as reflected by the ‘Longest Dimension’ than those with
lower-than-median (n = 190) expression levels (P = 0.002) (Fig. 6B).
These data suggest that elevated FBXL20 expression is associated with
more malignant radiographical features and larger tumor sizes, highlight-
ing the potential of integrating FBXL20 expression levels in radiogenomic
studies for a more informative diagnostic workup of OvCa cases.

Discussion

The prognosis for advanced-stage OvCa remains dismal despite inten-
sive chemotherapy and cytoreduction [24]. Based on 2018 data, approxi-
mately 22,000 new OvCa cases were diagnosed with over 14,000 deaths
in the United States, making OvCa the most lethal and the second most
common gynecologic malignancy in western countries [24]. The early dis-
semination of OvCa cells complicated surgical debulking. Meanwhile,
chemoresistance develops with recurrent regimens, leading to frequent re-
lapses and high mortality rates [24]. Based on the study of age-specific ge-
netic information, we identified CNVs and expression levels of FBXL20 as
valuable markers in predicting OvCa patients' overall survival (OS),
disease-free survival (DFS), and progression-free survival (PFS). We
vels. Hematoxylin and eosin (H&E) staining of samples differential expression levels

http://v19.proteinatlas.org


Fig. 6. Computerized tomography (CT) scan of OvCa cases with differential FBXL20 expression levels. A) OvCa patients was grouped into ‘FBXL20 Low’ and ‘FBXL20 High’
cohorts based on the median expression level of FBXL20. CT images of OvCa patients with differential FBXL20 expression levels. Features of encapsulation (arrows) and
calcification (red circles) and necrosis (yellow circles) were indicated. B) The longest dimensions of OvCa cases in the ‘FBXL20 Low’ (n = 190) and ‘FBXL20 High’ (n =
191) cohorts were presented. The dimensions were measured in centimeters (cm). **: P < 0.01. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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identified a unique group of OvCa patients with FBXL20 copy number loss
who will have a much higher percentage of OvCa diagnosis at a younger
age (over 60% diagnosed at age >60 years) (Fig. 3C). These patients gener-
ally have better clinical outcomes than patients with FBXL20 copy number
amplification. Therefore, screening of FBXL20 copy numbers may help
identify patients who might benefit from clinical workup at a younger age
for the purpose of OvCa early detection.

The human genome contains 69 of F-box proteins that recognize sub-
strates for Ub conjugations via the Skp1-Cullin1-F-box (SCF) E3 ubiquitin
ligase [16]. Table 1 provides a non-exhaustive list of relatively well-
studied F-box proteins involved in OvCa progression. Pathways regulated
by those F-box proteins play pivotal roles in OvCa early dissemination, pro-
gression, chemoresistance, and metastasis (Table 1). One well-studied sub-
strate of FBXL20 is the vacuolar protein-sorting 34 (Vps34), also known as
phosphatidylinositol 3-kinase catalytic subunit type 3 (PI3KC3), which
Fig. 7. FBXL20 as a substrate recognizing protein in the Skp1-Cullin1-F-box (SCF) E3 liga
and thus regulate SCF-mediated degradation of substrates recognized by FBXL20.

7

mainly functions in the initiation of autophagy [25]. DNA damage response
(DDR) triggers Vps34 phosphorylation, and subsequent FBXL20-mediated
polyubiquitination and degradation can dampen the induction of autoph-
agy [26].

The exact roles of FBXL20 in OvCa progression remains unclear. Never-
theless, our data indicate that the downregulation of FBXL20 activities may
improve OvCa clinical outcomes. Besides Vps34, other key proteins in-
volved in DDR, including Wee1, checkpoint kinase 1 (CHK1), p21, and
cell division cycle 25 A (CDC25A), are SCF E3 ligase substrates [27–31]
(Fig. 7, Table 1). Fully activation of CRLs requires conjugation of an ubiqui-
tin (Ub)-like protein called neural precursor cell-expressed developmen-
tally downregulated 8 (NEDD8) to near the C-terminus of cullin1 in the
SCF complex [32]. Conjugation of NEDD8 to cullins is carried out in three
enzymatic steps involving NEDD8-activating enzyme (NAE; E1), UBC12
and Ube2F (E2s) and E3s (Fig. 7). The NEDD8 conjugation can be inhibited
se. Schematic overview of how Age-related CNVs of FBXL20 can affect its expression
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by its first-in-class inhibitor pevonedistat and, by doing so, shutting down
the Ub-conjugation activities of the SCF complex. Indeed, pre-clinical data
showed that pevonedistat treatment induced significant DDR activation in
OvCa, with no overlapping sensitivity profile with cisplatin/platinum
[33,34]. As such, the therapeutic eradication of FBXL20 activities via
pevonedistat-mediated inhibition of NEDD8 conjugation may offer similar
survival advantage as those with less FBXL20 expression.
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