
MINI-REVIEW

Endo-xylanases as tools for production of substituted
xylooligosaccharides with prebiotic properties

Eva Nordberg Karlsson1
& Eva Schmitz1 & Javier A. Linares-Pastén1

& Patrick Adlercreutz1

Received: 19 June 2018 /Revised: 16 August 2018 /Accepted: 19 August 2018 /Published online: 8 September 2018
# The Author(s) 2018

Abstract
Xylan has a main chain consisting of β-1,4-linked xylose residues with diverse substituents. Endoxylanases cleave the xylan
chain at cleavage sites determined by the substitution pattern and thus give different oligosaccharide product patterns. Most
known endoxylanases belong to glycoside hydrolase (GH) families 10 and 11. These enzymes work well on unsubstituted xylan
but accept substituents in certain subsites. The GH11 enzymes are more restricted by substituents, but on the other hand, they are
normally more active than the GH10 enzymes on insoluble substrates, because of their smaller size. GH5 endoxylanases accept
arabinose substituents in several subsites and require it in the − 1 subsite. This specificity makes the GH5 endoxylanases very
useful for degradation of highly arabinose-substituted xylans and for the selective production of arabinoxylooligosaccharides,
without formation of unsubstituted xylooligosaccharides. The GH30 endoxylanases have a related type of specificity in that they
require a uronic acid substituent in the − 2 subsite, which makes them very useful for the production of uronic acid substituted
oligosaccharides. The ability of dietary xylooligosaccharides to function as prebiotics in humans is governed by their substitution
patterns. Endoxylanases are thus excellent tools to tailor prebiotic oligosaccharides to stimulate various types of intestinal
bacteria and to cause fermentation in different parts of the gastrointestinal tract. Continuously increasing knowledge on the
function of the gut microbiota and discoveries of novel endoxylanases increase the possibilities to achieve health-promoting
effects.
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Introduction

Xylan is the most abundant hemicellulose on Earth, account-
ing for approximately one third of the renewable organic car-
bon, and its hydrolysis is performed by different types of
xylanases (Collins et al. 2005). These enzymes are produced
by a range of different microorganisms, and most of the main-
chain acting endoxylanases known to date have evolved from
two main scaffolds: the TIM-barrel (α/β)8 (found in three
different glycoside hydrolase (GH) families of xylanases:
GH5, GH10, and GH30) and the β-jelly roll (GH11), which
are all retaining enzymes with a double-displacement mecha-
nism. Dependent on the enzyme family, xylans with different

substituents and with different degrees of substitution can be
hydrolyzed.

Xylan is built from a backbone ofβ-1,4-linked xylose units
with diverse substituent decorations that are dependent on
both the source and the tissue in the plant where they occur
(Stephen 1983; Saha 2003). The substituents include different
side chain carbohydrates (Fig. 1) and acids, including uronic
acids (Fig. 1), phenolic acids and acetyl groups (Stephen
1983; Biely et al. 2016). Xylans are components of many
types of complex biomass, and in most cases, they are
underutilized industrially. There is thus considerable potential
in obtaining xylans from industrial side streams and upgrade
them to valuable products, like prebiotics. Examples of suit-
able side streams include those from processing of cereals in
the food and bio-energy industries.

There has been a tremendous increase in our knowledge on
the complete enzymatic degradation of different types of xy-
lans during the last 20 years (Biely et al. 2016). Together with
the increased knowledge on how to degrade these polymers,
there has however also been an increased interest to preserve
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some of the features embedded in the polymers, and hence,
limited degradation to keep some of the substituents in the
polymer is being more and more desirable. An area of interest
in this field is enzymatic production of prebiotic oligosaccha-
rides (Linares-Pastén et al. 2018). For this purpose, selective
use of main chain-acting endoxylanases is desirable. Produced
oligosaccharides can be of interest for ingredient use and will
after ingestion be further degraded by the human gut micro-
biota, resulting in positive health effects (Falck et al.
2013; Berger et al. 2014).

In this mini-review, recent development in the use of
endoxylanases to produce substituted xylooligosaccharides
(XOSs) will be described. The focus will be on production
of oligosaccharides which can be used to promote the
growth of beneficial microorganisms in the gut microbiota.
The oligosaccharides should thus not be degraded by hu-
man digestive enzymes, but fermented in the gastrointesti-
nal tract. It has been shown that the human genome does not
c on t a i n g en e s f o r x y l a n a s e s , xy l o s i d a s e s , o r
arabinofuranosidases and experimental studies have con-
firmed that XOSs and arabinoxylooligosaccharides
(AXOSs) are not degraded by human saliva, artificial gas-
tric juice, pancreatin, or intestinal mucosa homogenate
(Broekaert et al. 2011). On the other hand, many microor-
ganisms are able to grow on unsubstituted XOS. More se-
lective stimulation of smaller groups of microorganisms can
be achieved by the use of substituted XOS. Important prog-
ress has recently been made concerning XOS substituted
with arabinose or uronic acid substituents and production
of those using endo-xylanases will be the main focus of this
mini-review.

GH10 and GH11 endoxylanases

Current research on enzymatic production of various (A)XOS
mainly involves the use of bacterial and fungal enzymes from
the glycoside hydrolase families 10 (GH10) and 11 (GH11).
These families consist predominantly of endo-1,4-β-
xylanases (EC 3.2.1.8), which hydrolyze the β-1,4-linked
bonds in the backbone of xylan polymers. As the hydrolysis
occurs via the double displacement mechanism, they are fur-
thermore classified as retaining enzymes (Linares-Pastén et al.
2018).

Xylanases belonging to the GH10 family that exhibit the
TIM barrel (α/β)8 fold typical for clan A enzymes (Fig. 2a).
Their active sites consist of well-conserved glycone subsites
with strong binding affinity to the substrates and less con-
served aglycone subsites with weaker binding affinities.
Glycone subsites − 2 to − 1 and − 3 to − 1 strongly bind to
xylobiose and xylotriose, respectively. All substrates exceed-
ing these sizes are hydrolyzed at the non-reducing end after
three xylose monomers (Biely et al. 1997; Schmidt et al.
1999). Two consecutive unsubstituted xylose monomers
are necessary for the GH10 xylanases to cleave the xylan
main chain (Table 1). Branched XOS products often have
two unsubstituted xylose residues at the reducing end and
the side groups at the non-reducing end (Mathew et al.
2018). While their ability to act on insoluble xylan is rather
low, substitutions at the xylose backbone do not interfere
greatly. Due to the low sequence conservation in the agly-
cone subsites, different hydrolysis products are generated
by different members of the family (Pell et al. 2004;
Linares-Pastén et al. 2018).

Fig. 1 Overview on the structures
of the main xylans. Acetyl,
methyl, and feruloyl groups are
not shown in the structures. Some
xyloses of the main chain can be
acetylated, 4-O-methylations are
common in the glucuronic acid,
and some arabinoses can be
feruloylated (Based on Edwards
et al. 2003; Rogowski et al. 2015)
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All enzymes belonging to the GH11 family are xylanases
with a conserved structure exhibiting theβ-jelly roll fold char-
acteristic for clan C enzymes (Fig. 2b). Their active sites can
comprise up to seven subsites; however, five (− 2 to + 3) are
most common. Three consecutive unsubstituted xylose mono-
mers are required for attack of the xylan main chain by GH11
xylanases. The enzymes cleave the main chain on glycosidic
linkage prior to the xylose monomer carrying a substitution
and leave the following two linkages unaffected. Therefore,
branched XOS products generated by GH11 xylanases typi-
cally have two unsubstituted xylose monomers at the reducing
end (Mathew et al. 2018). Side groups at the xylan backbone
are generally less tolerated than in GH10 enzymes due to the

narrow binding cleft with no acceptance in the − 1 and + 1
subsites (Biely et al. 1997; Paes et al. 2012; Wan et al. 2014).

The production of specific substituted XOS cleavage prod-
ucts, including AXOS and uronic acid xylooligosaccharides
(UXOSs), has successfully been performed with members of
both GH10 and GH11 families (Falck et al. 2014; Tian et al.
2015). However, xylanases belonging to family 10 are pre-
ferred due to their open substrate-binding cleft which can, for
example, take in arabinose side groups at the − 2 and + 1
subsites and 4-O-methyl-D-glucuronic acid side groups at the
− 3 and + 1 subsites (Mathew et al. 2017) (Table 1). However,
if the production of AXOS or UXOS with a larger DP from
low substituted xylan is desired, the use of GH11 enzymes

Fig. 2 Co-crystallographic
structures (enzyme/ligand) of
representative xylanases. aGH10,
SoXynA10/β-D-Xylp-(1-4)-β-D-
Xylp (PDB: 1V6U). b GH11,
TrXyn11A/β-D-Xylp-(1-4)-β-D-
Xylp-(1-4)-β-D-Xylp-(1-4)-β-D-
Xylp-(1-4)-β-D-Xylp-(1–4)-β-D-
Xylp (PDB: 4HK8). c GH5_34,
CtXyl5A/Xylp-β-1,4-Xylp-β-
1,4-Xylp-[α-1,3-Araf]-β-1,4-
Xylp-β-1,4-Xylp-β-1,4-Xylp
(the aglycone moiety of the ligand
was modeled (Falck et al. 2018)
based on the co-crystallized
structure PDB: 5LA2). d GH30_
8, BsXyn30C/α-D-GlcpA4Me-
(1-2)-β-D-Xylp-(1-4)-β-D-Xylp
(PDB: 3KL5). The
hydrophobicity surfaces of the
active sites are represented
according to the Kyte-Doolittle
scale (Kyte and Doolittle 1982),
from dodger blue for the most
hydrophilic, to white, to orange
red for the most hydrophobic. The
pictures were made using the
software UCSF Chimera v 1.11.2
(Pettersen et al. 2004)
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might be more relevant. Those can accommodate arabinose
side groups at the − 3, − 2, and + 2 subsites and 4-O-methyl-D-
glucuronic acid side groups at the − 3 and + 2 subsites
(Table 1) (Linares-Pastén et al. 2018; Pollet et al. 2010).
Insoluble arabinoxylan (AX) is more efficiently cleaved by
members of the GH11 family due to their smaller size (<
30 kDa), which enables them to penetrate the cell wall matrix
faster (Falck et al. 2014; Linares-Pastén et al. 2018). In order
for GH10 xylanases to act equally efficiently on insoluble AX,
a pretreatment step is required (Falck et al. 2014).

The specific activity of commercially available
endoxylanases varies within a wide range and is of course
dependent on the substrate type and reaction conditions. The
activity on wheat arabinoxylan is generally somewhat higher
for the GH11 enzymes than for the GH10 enzymes, with
1500 U/mg for the GH11 enzyme from Neocallimastix
patriciarum as the most efficient one of those available from
Megazyme. This high specific activity indicates a potential for
industrial applications.

GH5 arabinoxylanases

Glycoside hydrolase family 5 includes enzymes active on a
large variety of β-linked substrates. Concerning production of
substituted XOS, subfamily 34 is of special interest, since it
involves xylanases requiring arabinose substitution, therefore
called arabinoxylanases (EC. 3.2.1.-). The first characterized
enzyme in GH5_34 is the one fromClostridium thermocellum
(CtXyl5A) (Correia et al. 2011). CtXyl5A has no activity on
birch and beech xylan or on glucuronoxylan. However, it is
highly active on wheat and rye arabinoxylan, although the Km

values are high. When CtXyl5A is hydrolyzed rye AX, it
formed a variety of AXOS but no unsubstituted XOS (Falck
et al. 2018). Debranching of the hydrolysis products with
weak acid produced xylose and XOS with DP2–10. More

detailed analysis of AXOS produced from the hydrolysis of
rye AX showed that they all (> 99%) have an α-1-Araf side
chain on O3 of the reducing end Xylp residue, and some of
them had additionalα-1-Araf side chains (Correia et al. 2011).

Structural studies have shown that the xylan binding site of
CtXyl5A has an open cleft, thereby allowing for arabinose
substitution in all subsites − 2 to + 2 (Correia et al. 2011)
(Fig. 2c). Interestingly, arabinose substitution in subsite − 1
is required (Table 1) or else the substrate will not be hydro-
lyzed. The critical side chain arabinose binds in a separate
subsite − 2*, which has conserved Glu, Tyr, and Asn residues.
Computational studies have shown that the substrate is strong-
ly bound only in the − 1 and − 2* subsites (Falck et al. 2018).

CtXyl5A is a multidomain protein. In addition to its cata-
lytic module, it contains three carbohydrate binding modules
(CBM6, CBM13, and CBM62): one fibronectin type 3 do-
main and two dockerin domains (Labourel et al. 2016). The
dockerin domains can connect the enzyme to the cellulosomes
on the cell surface and are thus assumed to take part in the
plant cell wall degrading machinery of the organism. The
CBMs stabilize the enzymes and CBM62 binds to D-
galactopyranose and L-arabinopyranose. This indicates that
the enzyme might be involved in the breakdown of complex
xylans containing D-galactose in their side chains.

In addition to CtXyl5A, three additional GH5_34 enzymes
have been studied and they are all active on arabinose-
substituted xylans but not Birchwood xylan (Labourel et al.
2016). The ones originating from Acetivibrio cellulolyticus
(AcGH5) and Verrucomicrobiae bacterium (VbGH5) are
multidomain proteins having 2–3 CBMs and in the case of
VbGH5, an additional catalytic GHmodule (GH43_10), where-
as AcGH5 has a catalytic carbohydrate esterase module. On the
other hand, the enzyme from the fungus Gonapodya prolifera
(GpGH5) just contains the catalytic module, indicating that it
targets simpler substrates than the other enzymes from the sub-
family. When acting on arabinoxylans from wheat, rye, and
corn, VbGH5 produced much less low-molecular-weight prod-
ucts than the other enzymes, indicating that it is more restricted
concerning cleavage sites in AX substrates.

The specificity of GH5_34 xylanases makes them useful
for the degradation of highly arabinose substituted xylans,
which are resistant to degradation by GH10 and GH11
xylanases. Furthermore, these enzymes are promising tools
for the preparation of AXOS, without significant formation
of unsubstituted XOS.

GH30 glucuronoarabinoxylan endoxylanases

Currently, all enzymes termed glucuronoarabinoxylan
endo-β-1,4-xylanases (EC3.2.1.136) are classified under
GH30, but are like GH 5 and 10, members of clan A, sharing
the TIM-barrel (α/β)8 fold (Linares-Pastén et al. 2018). The

Table 1 Substituents allowed in subsites of xylanases (Based on
Linares-Pastén et al. 2018)

Family Substituent Glycone subsites Aglycone subsites

− 3 − 2 − 1 + 1 + 2 + 3

GH5_34 Araf P N P P

GH10 Araf P B P/B P/B P/B

MeGlcA P B B P/B

GH11 Araf P P/B B B P

MeGlcA P/B P/B B B P

GH30_8a MeGlcA N B

P permitted, B banned, N necessary, P/B not conserved, permitted in
some, banned in others
a Only typical GH30_8 xylanases with glucuronoxylanase activity are
considered
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first isolated candidates were initially members of GH5 but
were reclassified as phylogenetic analysis showed higher sim-
ilarity to GH30 (St John et al. 2010). To date (6 June, 2018),
subfamily 8 in GH30 (GH30_8) holds 16 characterized can-
didates (15 bacterial and 1 eukaryotic), and 6 bacterial en-
zymes have been structure determined (www.cazy.org).
They generally differ from the endoxylanases in family 10
by having high selectivity for glucuronoxylan and XOS
substituted with glucuronic acid (GlcA) or methylglucuronic
acid (MeGlcA) via an α-1,2 linkage. This is combined with
lower selectivity for unsubstituted xylan, AX, and XOS,
which may be structurally reflected by more open-binding
clefts (Sainz-Polo et al. 2014). (At least one exception from
this rule is however known as the enzyme from C.
papyrosolvens (St John et al. 2014) is active on non-
substituted xylan).

Typical for the overall fold of GH30 enzymes is the 9-
stranded β-sandwich structure that connects to the N- and C-
terminal of the TIM-barrel catalytic module (Fig. 2d). The
arrangement of this structure divides GH30 into 9 subfamilies,
where the glucuronoarabinoxylan endo-β-1,4-xylanases are
classified under subfamily 8 (GH30_8). In some cases, the
β-structure is shown to be involved in binding of
glucuronoxylan, but this is not a general feature. Other en-
zymes are shown to be connected to a CBM, e.g. CBM35 of
Xyn30D from Paenibacillus barcinonensis (Sainz-Polo et al.
2014) that is reported to be glucuronoxylan binding. Overall,
GH30_8 candidates differ in modularity, some enzymes being
single module, while others are connected to binding modules
or parts of cellulosomes.

The active site in GH30_8 has been reported to hold five
subsites, with the three aglycone subsites (− 3, − 2, − 1) being
most conserved and with strong interactions to the substituent
in subsite − 2 (Fig. 2d) shown for the enzymes from Bacillus
subtilis (St John et al. 2011) and Erwinia chrysanthemi
xylanase A (Urbanikova et al. 2011) (Table 1). Suchova
et al. (Suchova et al. 2018) also recently published a study
on the importance of interaction with residue Arg293 and
the glucuronic acid for the specific cleavage in the
E. chrysanthemi enzyme.

Despite the increasing structural knowledge on GH30_8,
there are thus far relatively few reports focusing on production
of acidic (glucuronosylated) xylooligosaccharides (UXOSs).
Rhee et al. (2014) andWei et al. (2016) have published studies
on UXOS produced from sweet gum wood and sorghum,
respectively, using a combination of enzymes from
B. subtilis, including GH30. A recent study also shows the
potential of UXOS as oligosaccharides with antioxidant activ-
ity, where UXOS produced by Xyn30D from P. barcinonensis
form birch and beechwood showed higher antioxidizing ac-
tivity and produced longer oligosaccharides than XOS pro-
duced from the same material using a GH10 enzyme (Valls
et al. 2018).

How are XOS, AXOS, and UXOS metabolized
in the gut?

The microbiota of the human gastrointestinal (GI) tract is a
complex system consisting of more than 2000 identified spe-
cies, classified into 12 different phyla, of which more than
90% belong to Proteobacteria, Firmicutes, Actinobacteria,
and Bacteroidetes (Flint et al. 2012; Thursby and Juge
2017). Food components which are not degraded by the hu-
man enzymes can be fermented by the gut microbiota. XOS
and AXOS have been more studied than UXOS and shown to
selectively stimulate the growth of probiotic gut bacteria con-
ferring positive effects to the host health (Broekaert et al.
2011). The most well-known probiotic strains belong to the
Bifidobacterium (Actinobacteria) and Lactobacillus
(Firmicutes) genera. These bacteria have quite different
(A)XOS utilization systems. Bifidobacterium adolescentis
has been shown to consume AXOS and undecorated XOS,
while Lactobacillus brevis utilized only XOS (Falck et al.
2013). Likewise, Weissella confusa/cibaria (Firmicutes),
which are putative probiotics, showed ability to use XOS
but not AXOS (Patel et al. 2013). Transcriptomics and struc-
tural studies on B. animalis support a mechanism of XOS and
AXOS uptake based on their capture and transport through
ABC transporters (Ejby et al. 2013). The depolymerization
of XOS and AXOS then takes place inside the cell where
the arabinosyl and acetyl substituents are removed by GH43
arabinofuranosidases and acetyl esterases respectively, while
the main chain is degraded by GH43 xylosidases.

In the gut microbiota, cross feeding is an important mech-
anism for the degradation of complex substrates. Strains pro-
ducing arabinofuranosidases can thus utilize the arabinose
substituents of AXOS, while other strains can consume the
unsubstituted XOS formed. Likewise, Bacteroides strains pro-
ducing α-glucuronidases have been shown to remove glucu-
ronic acid substituents leaving XOS for Bifidobacteria and
other bacteria (Ohbuchi et al. 2009).

The most important effects of xylooligosaccharides in the
human diet are as follows: (1) they modulate the composition
of the gut microbiota; (2) their fermentation produces benefi-
cial metabolites, such as short chain fatty acids; and (3) they
can be designed to be fermented with different rates, thereby
inducing beneficial fermentation in the whole colon.

Modulation of the gut microbiota

Relatively many intestinal bacteria can grow on XOS
(Crittenden et al. 2002). However, human studies have shown
that consumption of XOS products causes an increase in fecal
Bifidobacteria (Lecerf et al. 2012), which indicates that these
are selectively promoted by the products and most probably
are responsible for a substantial part of their degradation.
Since AXOS and UXOS can be utilized by fewer strains than
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XOS, they are more selective in their modulation of the gut
microbiota. It has been demonstrated that UXOS can be uti-
lized by only few of the human fecal Bifidobacteria, while
many of them grew on XOS (Ohbuchi et al. 2009).
Furthermore, using human gut models, it was shown that
long-chain AX promoted the growth of B. longum strains,
while the established prebiotic inulin stimulated other
Bifidobacteria (Van den Abbeele et al. 2013).

Fermentation products

XOS with different substitutions fermented by the gut micro-
biota produce mainly short-chain fatty acids (acetate, propio-
nate, and butyrate), lactate, CO2, and H2. Relative amounts of
these products vary depending of the type of substituent(s) in
the oligosaccharide. In vitro fermentations using human fecal
inocula have shown production of mainly acetate and lactate
when linear XOS and AXOS of low molecular weight (DP 2–
11) were used (Kabel et al. 2002). The same study showed
increased production of propionate and butyrate and lower
lactate when acetyl and 4-O-methyl-glucuronyl groups were
the substituents (i.e. UXOS).

Fermentation rate

Rapid fermentation in the colon can produce discomfort and
poor tolerability, and thus it is beneficial if at least a part of the
fibers in the diet is fermented slowly. It was suggested (Pollet
et al. 2012) that the lower fermentability of complex AXOS
could make them persist longer in the colon, and their fermen-
tation takes place partially in the distal parts of the colon, sup-
pressing the protein fermentation. Protein fermentation in the
colon produces potentially toxic compounds, such as ammonia,
phenols, and thiols, and therefore, its reduction is desirable.

Treatment of arabinoxylan extracted from Brewer’s spent
grain with a GH11 xylanase did not speed up its fermentation
by fecal bacteria, thus indicating that cleavage of the main
xylan chain was not a rate-limiting step (Sajib et al. 2018). It
has been shown that linear XOS and AXOS are fermented
more rapidly than oligosaccharides containing acetyl groups
and glucuronic acid (Kabel et al. 2002). Other indications of
the importance of substituents were found in a recent study of
structural features of soluble cereal fibers associated with a
slow fermentation by human fecal microbiota in vitro. Such
features included terminal xylose in branches and arabinose
containing trisaccharides as substituents on the main chain
(Rumpagaporn et al. 2015).

Concluding remarks

In order to create ideal prebiotic products, there is a need for
research on the following topics:

& Which is the ideal composition of the gut microbiota?
& Which prebiotic products can induce the ideal gut

microbiota?
& How can these prebiotic products be produced?

There are still knowledge gaps in these fields, but signifi-
cant progress is being made. Xylans seem to be very attractive
raw materials to produce prebiotic products, and
endoxylanases are very useful tools to tailor the xylans to
become effective prebiotics. The rapid progress in the field
of carbohydrate active enzymes makes it likely that many
xylanases with novel specificities will be discovered in the
coming years, which will further increase the scientific impor-
tance of this group of enzymes. Finding native enzymes with
high enough catalytic activity or developing enzymes to
achieve this will be important for industrial applications.
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