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ABSTRACT

Congenital heart disease (CHD) encompasses a spectrum of cardiovascular structural abnormalities,
often requiring customized treatment plans for individual patients. Computational modeling and
analysis of these unique cardiac anatomies can improve diagnosis and treatment planning and may
ultimately lead to improved outcomes. Deep learning (DL) methods have demonstrated the potential
to enable efficient treatment planning by automating cardiac segmentation and mesh construction
for patients with normal cardiac anatomies. However, CHDs are often rare, making it challenging
to acquire sufficiently large patient cohorts for training such DL models. Generative modeling of
cardiac anatomies has the potential to fill this gap via the generation of virtual cohorts; however, prior
approaches were largely designed for normal anatomies and cannot readily capture the significant
topological variations seen in CHD patients. Therefore, we propose a type- and shape-disentangled
generative approach suitable to capture the wide spectrum of cardiac anatomies observed in different
CHD types and synthesize differently shaped cardiac anatomies that preserve the unique topology
for specific CHD types. Our DL approach represents generic whole heart anatomies with CHD type-
specific abnormalities implicitly using signed distance fields (SDF) based on CHD type diagnosis,
which conveniently captures divergent anatomical variations across different types and represents
meaningful intermediate CHD states. To capture the shape-specific variations, we then learn invertible
deformations to morph the learned CHD type-specific anatomies and reconstruct patient-specific
shapes. Our approach has the potential to augment the image-segmentation pairs for rarer CHD types
for cardiac segmentation and generate cohorts of CHD cardiac meshes for computational simulation.

Keywords Congenital Cardiac Defects · Generative Shape Modeling · Implicit Neural Representations

∗Code will be open-sourced on GitHub.
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Generative Modeling of Cardiac Anatomies with Congenital Heart Defects

1 Introduction

Congenital heart defects (CHDs) are the most common birth defects affecting 1 in 100 babies and are among the top
causes of infant mortality worldwide [1]. CHDs are structural abnormalities of the heart or great vessels occurring
during fetal development and span a wide array of anatomical characteristics[2, 3, 4]. These anatomical abnormalities
can dramatically disrupt patients’ cardiac function and circulation[4]. For instance, ventricular septal defects result
in abnormal shunting of blood flow between the left and the right ventricles, causing mixing of oxygenated and de-
oxygenated blood; d-transposition of the great arteries involves a reversal of the aorta and pulmonary artery connections
(i.e., arterioventricular discordance), causing oxygenated blood to be pumped to the body and de-oxygenated blood
to be circulated back to the lungs; and pulmonary atresia describes a missing pulmonary outflow tract from the right
ventricle, limiting blood flow to the lungs for oxygenation. CHDs form a spectrum of related diagnoses, shaped by
variations in the timing, nature, and severity of developmental abnormalities during fetal heart development. CHD
defects can appear in isolation or in combination, resulting in unique and complex cardiac malformations across the
spectrum. Approximately 25% of children born with severe CHD will require heart surgery or other interventions
to survive into adulthood [5]. Given the uniqueness of CHD patients, personalized treatment planning is essential to
address their specific needs.

Personalized modeling of the heart, which encompasses techniques such as 3D printing [6], shape analysis [7], and
computational simulations [8] holds potential for tailoring surgical and treatment plans to individual patients, ultimately
leading to improved outcomes. However, the development and validation of personalized modeling paradigms have
mostly been carried out on small patient cohorts, and larger patient cohorts are necessary to validate their clinical
advantages. Furthermore, data-driven approaches, such as deep learning methods for segmentation, diagnosis, and shape
quantification, are essential to improve the efficiency of personalized modeling, ensuring it can be completed within a
reasonable clinical timeframe. Data-driven methods hinge on the availability of large and diverse datasets for training
models. However, CHDs, particularly the more complex types (e.g. double outlet right ventricle and hypoplastic left
heart syndrome), are rare conditions. This rarity makes it extremely challenging to acquire sufficiently large patient
cohorts [9, 10] for validation of new surgical procedures in clinical trials and the development of data-driven approaches
for automated image-based computational modeling. Consequently, current developments of surgical treatments for
complex CHDs are usually conducted on a very small patient cohort, and there is a lack of consensus among healthcare
practitioners regarding the best approaches [11]. Generative modeling of cardiac anatomies capturing the spectrum
of patient variation can generate virtual cohorts that facilitate in silico clinical trials [12, 13] to evaluate new surgical
approaches. Namely, generating synthetic CHD models with bespoke abnormalities can significantly expand the
available virtual cohort, enabling systematic development and validation of image processing methods, computational
modeling approaches, and treatment strategies for any particular type-specific and shape-specific CHD.

While deep learning (DL) has shown potential in cardiac shape-specific generation [12, 14, 15, 16], prior approaches
primarily focused on modeling cardiac structures with normal topology and cannot generalize to CHDs with topologi-
cally unusual cardiac structure such as atrial and ventricular septal defects, hypoplastic ventricles, outflow tract atresia,
and transposition of the great arteries. Furthermore, prior generative models of cardiac shapes often assumed that the
cardiac anatomy distribution had been sufficiently covered in the training dataset. However, CHDs encompass a broad
spectrum of rare topological variations among different defect types, making it practically impossible to assemble a
comprehensive training cohort from clinical imaging data alone. To address this challenge, it is essential to incorporate
prior human knowledge of CHD anatomical abnormalities associated with each type and the relationships between
different types into the modeling process. This integration of domain expertise is crucial for enhancing the capacity of
these models to accurately represent the diversity of CHD-related cardiac anomalies.

We propose a novel solution, which we term SDF4CHD, to tackle the complex task of representing whole-heart cardiac
anatomies for a wide range of CHD types, whether they occur in isolation, in combination, or along a spectrum of
disease severity or developmental origin. Namely, our approach enables type-controlled generative modeling of cardiac
anatomies, allowing us to create synthetic cardiac anatomies tailored to specific CHD types and conditions. Our key
insight is to learn disentangled type and shape representations of CHD hearts. In essence, we represent the CHD
type-specific heart anatomies and the corresponding abnormalities implicitly using a smooth signed distance function
(SDF) learned by Lipschitz-regularized neural networks. This function takes in a CHD diagnosis vector as input and
outputs a signed distance field to capture the corresponding unique topologies of complex cardiac anatomies. We learn
diffeomorphic deformations to morph the anatomies to capture shape-specific anatomical variations in patient cardiac
models while preserving the structural anomalies associated with CHDs. A noteworthy advantage of learning smooth
SDFs lies in the ability to interpolate between different CHD types, yielding meaningful intermediate representations
that are developmentally reasonable, yet may not appear in a sparse dataset. Consequently, following training on a
limited CHD dataset, our approach can generate a spectrum of CHD anatomies (types and shapes) that realistically
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reflects varying degrees of disease severity and anatomy, but which are only represented sparsely in the training dataset.
Our key contributions are the following:

1. We introduce a cardiac shape representation approach to model the spectrum of CHD. Our innovative method
disentangles CHD type and shape using smooth SDFs in conjunction with diffeomorphic deformations. This
disentanglement allows us to independently model variations in cardiac topology and shape.

2. By disentangling type and shape representations, our method enables CHD-type-controlled synthesis of cardiac
anatomies and can be used for generating virtual cohorts for rarer CHD types. We demonstrate the applications
of our methods by generating both image-segmentation pairs and meshes for computational simulations.

3. From a highly heterogeneous CHD dataset, our method can automatically learn spatially-aligned implicit
anatomical templates for different types of CHD and represent anatomical abnormalities for both the common
and the rare types. It can seamlessly interpolate between binary CHD states and accurately model a spectrum
of anatomical changes.

4. We will openly share our trained CHD whole-heart anatomy generator and the associated virtual cohorts
representing various CHD conditions to benefit research in the medical imaging and cardiac computational
modeling communities.

2 Related Works

2.1 Generative Models for Cardiac Anatomies

Cardiac statistical shape analysis aims to understand how changes in cardiac anatomy relate to diseases, and to enhance
disease diagnosis, risk assessment, and treatment strategies. In earlier research on statistical shape models, principal
component analysis was commonly used to identify the primary modes of shape variation within a training dataset
of cardiac anatomies [17, 18, 19]. However, recent advances in deep learning have led to a shift towards employing
more expressive variational auto-encoders (VAEs) to model shape variations effectively. For example, Qiao et al.[15]
proposed a conditional generative model to capture the four-dimensional spatiotemporal anatomy of the biventricular
heart conditioned on non-imaging clinical factors. Biffi et al.[20] combined VAE and a classification neural network
to model the shape variations of the left ventricle among both healthy individuals and patients with hypertrophic
cardiomyopathy. Beetz et al.[14] proposed a mesh VAE to model left ventricle shapes among patients with acute
myocardial infarction, and leveraged the latent space of the VAE for predicting major adverse cardiac events. Generative
models have also been applied to cardiac image data, enabling the synthesis of new cardiac cine magnetic resonance
(MR) images [21] and MR images depicting specific pathological conditions [22]. Additionally, Campello et al.[23]
proposed an age-conditioned generative adversarial network to generate MR images of aging hearts. However, the
above studies were all limited to cases in which the heart was topologically normal. Namely, all pathological cases they
considered could be modeled by morphing a healthy heart template. As a result, these approaches may not readily extend
to CHD patients, whose cardiac anatomy can vary significantly from normal topology (e.g. atrophied chambers, holes,
or vascular switches). Furthermore, prior studies mostly focused on the ventricles, yet CHDs encompass anomalies in
the atrium and great vessels as well.

2.2 Patient Image-Based Anatomical Modeling for CHDs

To the best of our knowledge, no prior study has attempted to automatically model changes in cardiac anatomy across
a spectrum of CHDs. Nevertheless, a few studies have concentrated on constructing CHD anatomical models from
images for computational simulations [24, 25], shape analysis [26, 7], and 3D printing [27, 28, 29] for specific CHD
types. For instance, Govil et al.[30] and Tang et al.[31] developed mesh templates for specific congenital heart defects,
namely tetralogy of Fallot (ToF) and hypoplastic left heart syndrome (HLHS), respectively. These templates were
employed to reconstruct patient-specific cardiac meshes from images through template deformation. However, the
templates were manually constructed for each specific CHD type and thus may not easily extend to accommodate the
multitude of existing CHD types and combinations. Mauger et al.[26] and Govil et al.[7] utilized principal component
analysis (PCA) to analyze biventricular shapes in ToF cases, identifying associations between shape features and factors
such as pulmonary regurgitation and the need for pulmonary valve replacements. Similarly, the use of a single ToF
mesh template in these studies limits the extension of these methods to other CHD types. In contrast, our approach is
designed to represent a wide range of CHD topologies using a single neural function, thus enabling shape analysis for
all CHD types. Loke et al.[28] and Ryan et al.[29] reported the beneficial impact of using 3D-printed congenital heart
disease models on the learning experiences of clinical residents. However, the 3D-printed anatomies were derived from
manually segmenting patient image data, which relies on the availability of patient data and significant user intervention,
especially for rare CHD cases. Our method aims to model an augmented range of CHD anatomies by interpolating
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between various CHD topologies and incorporating shape variations from the training data, resulting in a more diverse
set of CHD cardiac anatomies for clinical education.

2.3 Deep Implicit Template Using SDFs

An SDF implicitly represents shapes using its zero-level set. DeepSDF introduced an auto-decoder method to
approximate a continuous SDF to model shapes with arbitrary topology[32]. A few studies have since explored this
approach for modeling shapes of cells [33], and livers[34]. However, prior methods did not differentiate between type
(topology) and shape changes, which can pose challenges when attempting to generate anatomies specific to particular
CHDs. In contrast, our study focuses on creating disentangled representations that separate the spectrum of CHD into
type-specific and shape-specific dimensions. Our disentangled representation is important for clinical applications, such
as generating type-specific generation of synthetic datasets for rare CHD types by varying shapes of the heart while
keeping the type fixed, and visualizing treatment scenarios and transition from diseased to healthy states for individual
patients by varying the CHD types while keeping the patient-specific shape fixed.

A few studies have proposed to separately model type-specific changes and shape-specific variations by learning
implicit templates that model the topology (e.g. type) and another network to deform (e.g. shape) the learned template
[35, 36, 37, 38]. Particularly, Yang et al.[35] proposed to deform an implicit organ template extracted from an SDF to
achieve consistent topology in shape reconstruction. Sun et al.[36] proposed to reconstruct meshes of organ anatomies
by deforming the meshes extracted from a learned implicit template using Neural Ordinary Differential Equations
(NODEs), thereby preventing non-manifold artifacts, including folded faces and self-intersections. However, these
approaches either focused on a single template [35, 36], or necessitated training distinct networks for different object
categories to handle substantial topological changes [38, 39]. Consequently, the above methods are not readily adaptable
to the complexity of CHD anatomies with their diverse and varying topological configurations.

Hui et al.[37] suggested a method for learning topology-aware neural templates that are constructed with a set of
learned convex shapes to capture topological changes. However, this method only considered general objects (e.g.
chairs, tables, airplanes) that can be described by arbitrary composition of basic shape primitives, whereas CHD cardiac
anatomies involve both abnormal configurations of multiple cardiac structures and topological variations within a single
structure. The modeled topological anomalies should also correspond to meaningful disease states. Our method was
thus designed to model the intricate topological variations in multi-structural geometries seen in realistic CHDs. We
use CHD diagnosis as an input vector of true or false values corresponding to whether a patient had the specific CHD
defects that we chose to include in this study. The inclusion of diagnostic information allows us to reconstruct cardiac
geometries that represent the unique cardiac abnormalities associated with each CHD type.

3 Methods

Figure 1: Overview of SDF4CHD. It consists of a type representation module that leverages CHD-type information
to predict type-specific cardiac geometries, and a deformation module that changes the shape of the type-specific
geometries. Additionally, we used a correction module that captures minor topological variations of patient-specific
anatomical features that are not described by their CHD types.
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Fig. 1 shows our proposed pipeline, SDF4CHD, for CHD type and shape disentanglement. It consists of a type
representation module that leverages CHD-type information to predict type-specific cardiac geometries, a deformation
module that changes the shape of the type-specific geometries, and a correction module that captures additional
topological variations of patient-specific anatomical features.

3.1 Type Representation Module

We modeled the topology changes among and within a total of seven cardiac structures including the myocardium
(Myo), blood pools of the right atrium (RA), left atrium (LA), right ventricle (RV) left ventricle (LV), aorta (Ao), and
pulmonary arteries (PA).

3.1.1 Implicit representations for cardiac anatomies

Implicit representations use SDFs to represent 3D geometries of arbitrary topology. An SDF maps a point p ∈ R3 to a
scalar value s ∈ R, indicating the distance from p to the surfaces of cardiac structures, with the sign denoting whether p
is inside or outside the geometry. However, considering that a heart comprises multiple structures, we opt for modeling
a signed distance vector field denoted as s = SDF(p). In this context, s is a vector that represents the signed distances
from the domain boundaries of each cardiac structure. Specifically, for a cardiac structure indexed as i ∈ 1, . . . , n, if we
let Di represent its domain, ∂Di represent its boundary, D̄i represent the closure of Di, D′

i represent the complement
of D̄i, and d denote the distance function from p to ∂D, we can express the SDF as follows:

si = SDF(p)i =

{
d(p, ∂Di), if p ∈ D̄i

−d(p, ∂Di), if p ∈ D′
i

. (1)

The representation of cardiac anatomies is determined by the zero-level set, SDF(·) = 0.

3.1.2 Learning type-specific CHD geometries

We can parameterize the SDF with an additional input, denoted as zT , which controls the shape boundaries. In our
context, zT represents the types of CHDs. This allows the SDF to generate different anatomies corresponding to
different types of CHDs. Specifically, we can express it as follows:

si = SDF(p, zT )i =

{
d(p, ∂Di(zT )), if p ∈ D̄i(zT )

−d(p, ∂Di(zT )), if p ∈ Di(zT )
′ , i ∈ 1, . . . , 7. (2)

Herein, we approximated the above SDFs using Multilayer Perceptrons (MLPs) following [32]. Namely,

s = Tdec(p, zT ). (3)

Since the ReLU activation functions commonly used in MLPs are biased towards low-frequency features, we used
Fourier positional encoding to augment the point coordinates p before using them as inputs [40]. The final input to Tdec
is the product between the point coordinates after the positional encoding and the CHD-type latent code zT .

To obtain the CHD-type latent code zT from the diagnostic information, we first use another MLP (Tenc) to encode the
CHD diagnostic information:

zT = Tenc(tchd) (4)

where the input diagnostic information tchdis a vector containing true or false values, corresponding to whether the
patient modeled had the CHD-types found in the training dataset. The CHD-type representation module can thus be
expressed as,

s = T (p, tchd) = Tdec (p, Tenc (tchd)) . (5)

The dimension of tchd is the number of CHD-types modeled. Both Tenc and Tdec consist of six fully connected layers
(512 neurons per layer) with leaky ReLU activation functions (α = 0.02).
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3.2 Diffeomorphic Shape Representation Module

3.2.1 Coupling with CHD type representations

Modeling the shape changes while preserving the cardiac anatomies and topologies specific to CHD types can enable
the controlled generation of cardiac shapes for desired CHD types. To preserve the cardiac anatomies learned by the
type-specific network, we coupled the type representation module with a conditional shape deformation module D. A
shape code Zj

S controls how D deforms the type-specific anatomies to match with each patient-specific anatomy Xj in
the training dataset,

sj = T
(
D
(
p, zjS

)
, tchd

)
. (6)

Furthermore, we adopted the idea of position-aware shape encoding [41] where the latent shape code for shape Xj

is a latent grid Zj
S . We linearly interpolated (i.e. Lerp) the latent grid at specified points to obtain the point-specific

shape code, thus zjS = Lerp(p,Zj
S), where Lerp(·, ·) denotes the linear interpolation function. Our spatial latent

code Zj
S ∈ R4×4×4×27 had a spatial dimension of four and a latent dimension of 27. We also used Fourier positional

encoding [40] to augment the point coordinates and multiply them with zjS .

3.2.2 Diffeomorphic flow

We leveraged the neural ordinary differential equation (NODE) approach [42, 37, 36] to learn an invertible deformation
between the learned type-specific geometries (type space) and patient-specific cardiac geometries (shape space). Namely,
the diffeomorphic flow ϕ(p, zjS , t) of patient anatomy Xj is the solution to the initial value problem of an ODE and
describes the trajectory of points moving from their locations pS ∈ R3 on the signed distance field of patient anatomy
Xj at t = 0 to their corresponding locations pT ∈ R3 on the signed distance field of the CHD type-specific template at
t = T , so that

∂ϕ(p, zjS , t)

∂t
= v(ϕ(p, zjS , t), z

j
S , t) s.t. ϕ(p, zjS , 0) = pj

S and ϕ(p, zjS , T ) = pT . (7)

The unique solution of Equation 7 exists if v(·, ·, ·) is Lipschitz continuous. Namely, there exists L ∈ R+ such that, for
any x,y ∈ R3,

||v(x)− v(y)||p ≤ L||x− y||p, (8)

where || · ||p is the p−norm for p ≥ 1. Our deformation module approximates v(·, ·, ·) using six fully connected layers
with leaky ReLU activation functions (α = 0.02), and is thus differentiable and Lipschitz continuous [43]. Therefore,
the trajectories of different points will, in theory, not intersect with each other. This ensures that flowing mesh points
from the type space to the shape space will not generate intersecting mesh surfaces. This ODE can be integrated to
progressively map point locations from the shape space to the type space. The diffeomorphic deformation conditioned
on the deformation code is thus given by,

pT = D(p, zjS) = ϕ(p, zjS , T ) = pj
S +

∫ T

0

v(zjS , ϕ(p, z
j
S , t), t)dt. (9)

By the existence and uniqueness properties of ODEs, the NODE nets are invertible. Therefore, we can readily obtain
the inverse deformation by integrating the ODE backward in time:

pj
S = −D(p, zjS) = ψ(p, zjS , T ) = pT +

∫ T

0

−v(zjS , ϕ(p, z
j
S , t), t)dt, (10)

where ψ : R3 × [0, T ] → R3 is the inverse of the diffeomorphic flow ϕ. We used the forward Euler method to solve the
ODE in Equations 9 and 10, with a fixed step size of 0.2 over a time interval of t ∈ [0, 1].
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3.3 Correction Module

CHD cardiac geometries are primarily described by deformations from CHD type-specific templates. However,
additional topological variations may exist among patients with the same CHD type (e.g. different great vessel
connections). We thus use an additional MLP (C) to output a correction vector c ∈ R7 at each point pS in the shape
space:

cj = C(p, zjC). (11)

Similar to the deformation module, we use positional-aware shape encoding by sampling the correction code from
a latent grid Zj

c ∈ R4×4×4×27, using trilinear interpolation zjC = Lerp(p,Zj
c). This correction describes the minor

variations of cardiac anatomies at the point locations that cannot be modeled by simply deforming type-specific cardiac
shapes. Therefore, the final SDF prediction sjf , for a point pj

S in the shape space of patient anatomy Xj is,

sjf = T
(
D
(
pj
S , z

j
S

)
, tchd

)
+ C(pj

S , z
j
C), where, zjC = Lerp(p,Zj

c), zjS = Lerp(p,Zj
S). (12)

The correction network contains six fully connected layers with 512 neurons per layer, connected with leaky ReLU
activation function (α = 0.02). Similar to the type and the shape representation modules, we also used Fourier positional
encoding [40] to augment the point coordinates and multiplied them with zC .

3.4 Optimization

Leveraging the ground truth anatomies obtained from expert annotations and the corresponding diagnosis information,
we can jointly learn the generic CHD type representations and the posterior probability distribution of the shape and
correction codes that best represent the patient-specific anatomies. Assuming a prior distribution of the shape codes, we
can then sample a shape code from this prior distribution to construct synthetic cardiac anatomies for a specific CHD
type beyond those included in the training dataset. We followed the DeepSDF auto-decoder approach described by
Park et al.[32], where we jointly optimized the network parameter, the shape, and the correction codes to maximize the
joint log posterior over all training shapes. Namely, given a training dataset of CHD patient anatomies {Xj}Nj=1, we
optimize the network and latent codes over a set of point coordinates and their ground truth signed distance values so
that:

Xj = {(pj
S , s

j
gt) : s

j
gt = SDFj(pj

S)}. (13)

If we assume that the deformation needed to model patient-specific geometries and the need for additional corrections
are independent events, the posterior probability of shape and correction codes given the training data pairs can be
expressed as:

pθ(Z
j
S ,Z

j
C |X

j) = p(Zj
S)p(Z

j
C)

∏
(pj

S ,sjf )∈Xj

pθ(s
j
f |Z

j
S ,Z

j
C , X

j). (14)

We assumed the prior distribution over the shape codes and the correction codes to be zero-mean multivariate-Gaussian
distributions, N (0, σ2I). The likelihood pθ(s

j
f |Z

j
S ,Z

j
C , X

j) is assumed to be

pθ(s
j
f |Z

j
S ,Z

j
C , X

j) = exp
(
−Lgeo(s

j
f , s

j
gt)− Lgeo(s

j , sjgt)
)
, (15)

where Lgeo is the loss function responsible for the accuracy of the predicted signed distance values both after the shape
deformation module and after the correction module. In practice, we found that training with occupancy values (i.e.
0 if the signed distance value is negative and 1 if otherwise) resulted in faster convergence than training with signed
distance values. We used the L2 norm as the reconstruction loss function, namely, Lgeo(s

j
f , s

j
gt) = ||sjf − sjgt||22, and

Lgeo(s
j , sjgt) = ||sj − sjgt||22. Therefore, during training, we first sample points near the surfaces of the heart. At

these points, we optimize both the network parameters θ, the individual shape codes {Zj
S}Nj=1 , and correction codes

{Zj
C}Nj=1 to maximize the joint log posterior in Equation 14. The objective function is as follows,
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argmin
θ,{Zj

S}N
j=1,{Z

j
C}N

j=1

N∑
j=1

(
Lgeo(s

j
f , s

j
gt) + Lgeo(s

j , sjgt) +
1

σ2
||ZS ||F +

1

σ2
||Zc||F

)
. (16)

To further encourage smooth latent spaces learned by the type representation module, we applied Lipschitz regularization
[44] on Tdec by penalizing the upper bound of its Lipschitz constant. The regularization loss is Llip =

∏L
k softplus(lk),

where lk = ||Wk||p is the norm of the weight matrix Wk at layer k, and softplus(lk) = ln(1 + elk) to ensure positive
Lipschitz bounds. We normalized the weight matrix Wk with lk, and added Llip to the objective function to bound the
Lipschitz constant of Tdec, namely,

argmin
θ,{Zj

S}N
j=1,{Z

j
C}N

j=1

N∑
j=1

(
Lgeo(s

j
f , s

j
gt) + Lgeo(s

j , sjgt) +
1

σ2
||ZS ||F +

1

σ2
||Zc||F + λlipLlip

)
. (17)

We note that the shape representation module requires learned CHD type-specific implicit templates to reconstruct
shapes in the dataset. However, during the early stages of training, the type representation module has yet to learn
accurate representations of CHD type-specific anatomies. Consequently, it is unable to provide reliable initial templates
for the shape representation module to deform. Therefore, we initialize the type representation module by pre-training
it to reconstruct healthy cardiac anatomy regardless of the input diagnosis vector tchd for 500 iterations of gradient
descent updates. Furthermore, at the start of training, jointly optimizing the type and the shape representation modules
may interfere with the training of both. Therefore, we alternatively train and freeze the type representation module and
other parts of the networks every five epochs for the first 1000 epochs and jointly optimize all network parameters for
the remaining 1000 epochs.

During inference, we fix the optimized network parameters θ and estimate the shape and the correction codes via
Maximum-a-Posterior:

ẐS , ẐC = argmin
ZS ,ZC

∑
(pj ,sjgt)

(
Lgeo(s

j
f , s

j
gt) + Lgeo(s

j , sjgt) +
1

σ2
||ZS ||F +

1

σ2
||ZC ||F

)
. (18)

We initialize the shape and correction codes randomly from N (0, 0.012I), and optimize the above objective function
for 200 iterations using the Adam optimizer to reconstruct unseen anatomies.

4 Experiments and Results

4.1 Datasets

In our study, we considered several CHD types that cause abnormal anatomical configurations of the heart chambers and
great vessels: ventricular septal defects (VSD), atrial septal defects (ASD), Tetralogy of Fallot (ToF), d-transposition
of the great arteries (TGA), double outlet right ventricle (DORV), and pulmonary atresia (PuA). VSDs were defined
as isolated defects of the ventricular septum, without further subcategorization. ToF was defined as the classic
constellation of four associated defects: anterior maligned VSD, right ventricular outflow tract obstruction, right
ventricular hypertrophy, and overriding aorta. TGA was defined as anterior-ventricular discordance in the absence of
atrioventricular discordance and lack of a subpulmonary conus. DORV was defined as any defect with the presence of a
VSD and both subpulmonary and subaortic conus. PuA was defined as discontinuity of the pulmonary artery, regardless
of other lesions present. The training and testing data comes from the public “imageCHD” dataset[9] that includes
110 CT images, the corresponding diagnosis (CHD type) and ground truth segmentations of seven cardiac structures.
Since the “imageCHD” dataset was initially designed for classification, the provided ground truth segmentations were
extremely noisy, posing a significant challenge in accurately differentiating the true defects from noise. Therefore,
we manually processed the segmentations under the supervision of a radiology expert to remove noise and improve
consistency with diagnostic information (Please see Supplementary Materials for a visual comparison).

4.2 Baselines

The key insights of our SDF4CHD approach include: 1) disentangling the CHD-type and CHD-shape representation,
and 2) leveraging the CHD diagnostic information and neural SDFs to represent topological variations across CHD
types. We then verify the advantages of our approach by comparing it with the following baselines. First, we adapted
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Figure 2: Example ground truth whole heart anatomies for various CHD types.

DeepSDF [32], an auto-decoder approach to represent single-category objects, to represent multiple cardiac structures
by predicting a signed distance vector field. Then, to verify the advantage of using a disentangled representation
between CHD-type and CHD-shape, we implemented a conditional DeepSDF (CDeepSDF) that directly predicts the
SDF point values based on the point coordinates concatenated with the CHD-type and CHD-shape latent codes. We
also compared with Neural Diffeomorphic Flow (NDF) [36], a prior approach that applied implicit templates to medical
applications but only considered a single implicit template with consistent topology. We compare our SDF4CHD
method with this approach to verify the necessity of allowing topological variations in modeling CHD anatomies. In all
these baselines, the latent codes are obtained in the same manner as our method, ensuring a fair comparison. Namely,
the same dimension, regularization, and trilinear sampling method were applied for all baselines. We also used the
same point sampling method during both training and testing to construct the signed distance field predictions for all
methods. Please see Supplementary Materials for further implementation details of baselines.

4.3 Learning the generic cardiac anatomies for various CHDs

We first examined the learned type-specific anatomical templates. As shown in Figure 3, our method successfully
learned type-specific geometries that represent the typical abnormalities associated with each CHD type. For instance,
it learned to represent a hole in the interventricular septum for VSD, the discontinuation of the pulmonary artery in
PuA, the transposition of the aorta and pulmonary positions in TGA, the presence of VSD and both subpulmonary and
subaortic conus in DORV, and the existence of VSD, overriding aorta, right ventricular hypertrophy, and stenosis in the
pulmonary outflow tract for ToF. We note that our method captured both the topological differences in CHD anatomies
and the characteristic shape abnormalities specific to each CHD type when compared to healthy anatomy. For example,
features such as right ventricle hypertrophy and a narrowed pulmonary outflow tract represent shape abnormalities
rather than changes in topology. Therefore, the learned implicit type templates encompass both the topology and shape
abnormalities unique to each CHD type.

4.4 Modeling the intermediate CHD states.

During our training process, we used a vector to represent CHD diagnosis information, indicating whether a patient had
specific CHD types through binary values. However, CHDs form a spectrum of related diagnoses shaped by variations
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Figure 3: Cardiac geometries extracted from the learned type-specific SDFs for different CHDs.

in the timing, nature, and severity of developmental abnormalities during fetal heart development. We show that our
learned type latent space has demonstrated the ability to encompass intermediate states between different CHD types,
effectively representing a spectrum of CHDs.

For instance, CHD conditions of DORV, ToF, and d-TGA all fall under the category of conotruncal defects. These defects
can be thought of as existing along a spectrum of conal septum distribution. In simpler terms, DORV, characterized by
the presence of both a subaortic and subpulmonic conus, can be seen as occupying a position between two endpoints:
ToF (where there is a subpulmonary conus and no subaortic conus) and d-TGA (where there is a subaortic conus and no
subpulmonic conus). The variation in conal distribution is responsible for the differences in the rotational positions of
the great arteries across these three defects. Indeed, it is this spectrum of conal septum distribution that makes these
diagnoses (ToF, DORV, and d-TGA) an ideal template for testing our method’s capability to represent intermediate
states along a spectrum. Figure 4 (top) illustrates the intermediate CHD anatomies from a ToF diagnosis to a DORV
diagnosis, and from the DORV diagnosis to a dTGA diagnosis, showing rotating positions of the aorta and pulmonary
arteries. We note that our method did not require the intermediate diagnosis DORV vector to represent this spectrum.
Namely, interpolating directly between a ToF diagnosis vector and a TGA diagnosis vector can represent a similar
transition in cardiac anatomies. This shows that our method can readily represent meaningful intermediate states that
correspond to intermediate diagnosis.

Similarly, our method can also encompass intermediate states along a spectrum of disease severity. For instance, the
symptoms of ToF can vary significantly from one individual to another. The severity of these symptoms, which can
range from mild to severe, is linked to the extent of blood flow obstruction originating from the right ventricle to
the lungs. Pulmonary atresia with VSD is often classified as a severe form of ToF, characterized by the complete
constriction of the pulmonary outflow tract. Figure 5 (top) illustrates the intermediate CHD anatomies from normal to a
ToF diagnosis and from the ToF diagnosis to a PuA (with VSD) diagnosis. Along this spectrum, our method captured
the forming of a large VSD, increasingly overriding aorta, thickening of RV myocardium, and the gradual narrowing
and ultimate detachment of the pulmonary artery from the right ventricle.

4.5 Disentangled representation of CHD types and shapes

A major advantage of disentangling the learned shape and type representations is that we can then manipulate the
learned shape and type independently. Figure 6 the results of linearly interpolating the shape latent space or type
latent space between a patient with normal heart chambers and a ToF patient. When fixing the shape latent code and
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Figure 4: Interpolated cardiac anatomies between ToF and TGA (with VSD) to illustrate that our learned latent space
can cover a spectrum of CHD diseases. Top: interpolating the diagnosis vectors from ToF to DORV and from DORV to
TGA. Bottom: interpolating the diagnosis vectors directly from ToF to TGA

Figure 5: Interpolated cardiac anatomies between normal, ToF and PuA (with VSD) to illustrate that our learned latent
space can continuously describe different severities of CHD disease.

interpolating type code from normal to ToF, the VSD and narrowed PA featured in ToF gradually appear, whereas the
overall shape of the heart remains roughly fixed. When fixing the type latent code and interpolating the shape code, our
reconstruction preserved the type-specific anatomies while only deforming the shape. In contrast, the baseline method,
conditional DeepSDF, lacked the ability to separately manipulate learned type and shape anatomies. Specifically,
during shape interpolation with a fixed type latent code, the topology of the resulting anatomies underwent alterations.
Likewise, when interpolating the type code while maintaining a fixed shape code, the resulting anatomical structures
did not accurately reflect the expected topology changes from ToF to normal anatomies.

We can thus apply our method to generate synthetic anatomies for rare CHD types, augmenting the amount of available
training data for these specific CHDs. For example, PuA with VSD is a rare condition with an incidence of 7 per
100,000 live births [45]. Both acquiring sufficient data for this CHD type and manually segmenting these data would
be challenging. To generate new anatomies with this specific CHD type, we fixed the input type diagnosis vector and
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Figure 6: Reconstruction results when interpolating the latent type or shape code. The top panels compare the anatomical
changes achieved by our approach and conditional DeepSDF when keeping the CHD type code fixed and interpolating
the shape codes from a normal patient to a ToF patient. In the bottom panels, we compare the anatomical changes when
keeping the shape codes fixed and interpolating the CHD type codes from normal to ToF. The orange arrows highlight
that our method produced the expected anatomical changes from normal to ToF, whereas the white arrows highlight
that conditional DeepSDF resulted in undesired type changes when the type code was fixed and failed to capture type
changes when changing the type code.

varied the input shape code to the learned PuA (with VSD) type template. Namely, the shape code was obtained by
randomly sampling from the Gaussian prior distribution. We applied the same treatments to the conditional DeepSDF for
comparison. The left panel of figure 7 shows that the example cardiac anatomies generated by our method successfully
preserve the correct cardiac anatomy of PuA (with VSD), whereas the right panel shows that the anatomies generated
by the conditional DeepSDF failed to preserve the topology.

Figure 7: Our approach (left) readily enables type-controlled generation for pulmonary atresia with VSD (PuA+VSD).
In contrast, conditional DeepSDF struggled to learn the correct cardiac topology when conditioned on the CHD
diagnosis, resulting in numerous topological errors, as highlighted by the white arrows.
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Table 1: Dice scores for whole heart (WH) and individual cardiac structures in the represented seen geometries compared
to different baselines.(* denotes significance differences in mean values when compared with “SDF4CHD”; denotes
significance differences in mean values when compared with “SDF4CHD+Corr”; we assume p-Values< 0.0125 =
0.05/4, based on a Bonferroni Correction for 4 comparisons.)

WH LV RV LA RA Myo Ao PA

SDF4CHD 89.7±1.5 94.3±2.2 92.5±2.2 86.3±3.9 90.4±2.8 90.7±3.1 84.4±7.4 75.5±14.3
SDF4CHD+Corr 91.8±1.0* 94.3±2.1 92.6±2.2* 90.2±2.4* 93.5±1.7* 91.5±2.6* 89.2±4.1* 82.7±8.5*
NDF 90.1±1.5*! 94.2±2.4 92.4±2.0 87.9±3.9*! 90.8±2.8! 91.0±2.7 84.6±7.2! 77.1±13.7*!
CDeepSDF 92.1±0.7*! 95.5±1.2*! 94.5±1.3*! 89.9±2.5* 93.3±1.3* 92.3±1.9*! 88.7±3.6* 80.9±10.8*!
DeepSDF 91.8±0.8* 95.5±1.2*! 94.3±1.3*! 89.1±2.8*! 93.3±1.5* 92.1±2.0*! 88.3±4.6*! 80.0±11.2*!

4.6 Quality of CHD Shape Representation and Reconstruction

After examining the learned CHD type representation, we evaluated the ability of our method to represent existing CHD
anatomies in the training dataset and to reconstruct previously unseen CHD anatomies in the testing dataset. Table 1
displays the Dice scores for the whole heart and the individual cardiac structures represented by different methods for
the shapes seen in the training dataset. Adding correction significantly improved the accuracy of shape representation for
our method, especially for the pulmonary artery, aorta, and atrium, which included the pulmonary veins and vena cavae.
Indeed, the anatomies of blood vessels possess significant variations even within the same CHD types. Addressing
these additional topological variations presented a challenge for the deformation network, necessitating the use of
correction fields. Our method, with the correction network, achieved similar accuracy to CDeepSDF and DeepSDF.
Without correction, our method achieved similar accuracy with NDF, which also represented shapes by deforming an
implicit template.

Table 2: Dice scores for whole heart (WH) and individual cardiac structures in reconstructed geometries compared
to different baselines for unseen cases.(* denotes significance differences in mean values when compared with
“SDF4CHD”; denotes significance differences in mean values when compared with “SDF4CHD+Corr”; we assume
p-Values< 0.0125 = 0.05/4, based on a Bonferroni correction for four comparisons.)

WH LV RV LA RA Myo Ao PA

SDF4CHD 85.9±2.9 91.1±2.5 87.7±8.8 82.1±6.7 88.9±3.2 89.0±4.9 74.4±13.6 70.2±17.1
SDF4CHD+Corr 88.5±2.2* 91.1±2.6 87.9±8.1 85.5±5.8* 92.0±2.5* 90.4±3.6* 80.4±10.3* 73.6±18.2*
NDF 86.8±2.7! 91.7±2.1 88.1±8.3 83.6±6.5! 89.7±3.5! 89.7±4.2! 74.8±15.6! 71.7±17.3
CDeepSDF 88.5±2.2* 92.0±1.9 91.1±3.4*! 84.4±6.1* 91.0±2.8*! 90.4±3.7* 82.7±7.7* 71.4±19.1!
DeepSDF 88.5±2.3* 92.1±1.9 91.0±3.6*! 84.3±6.0* 91.1±2.7*! 90.3±3.9* 83.0±7.5* 72.0±18.3

To reconstruct unseen shapes, we utilized Maximum-a-Posterior (MAP) estimations of the shape code Zs. Namely, for
all methods, the unseen shapes were obtained by optimizing the shape code (and the correction code for our method) to
minimize the objection function described by Equation 18 while freezing the parameters of the trained network. We
initialized the shape code for each unseen shape as a 4× 4× 4 tensor with random numbers sampled from Gaussian
distribution, N (0, 0.01), and optimized the shape code for 200 iterations using the Adam optimizer[46] with a learning
rate of 0.01. Table 2 compares the Dice scores for cardiac anatomies reconstructed for unseen shapes in the testing
dataset among different methods. Similarly to representing seen shapes, our method, with correction, achieved a similar
shape reconstruction performance compared to CDeepSDF and DeepSDF. Without correction, our method achieved
similar reconstruction performance with NDF.

Table 3: Dice scores for whole heart (WH) and individual cardiac structures in reconstructed geometries compared to
different baselines for unseen cases when increasing the latent shape code dimension from 4× 4× 4 to 8× 8× 8(*
denotes significance differences in mean values when compared with “SDF4CHD”; denotes significance differences in
mean values when compared with “SDF4CHD+Corr”; we assume p-Values< 0.0125 = 0.05/4, based on a Bonferroni
Correction for 4 comparisons.).

WH LV RV LA RA Myo Ao PA

SDF4CHD 92.9±1.3 95.5±0.8 94.1±3.2 90.4±3.9 95.1±1.2 93.9±2.2 88.1±7.0 81.6±15.0
SDF4CHD+Corr 94.2±1.0* 95.5±0.8 94.3±2.3 92.7±3.2* 96.5±0.8* 94.3±1.9* 91.2±5.0* 85.5±12.3*
NDF 93.1±1.5! 95.6±1.0 94.5±2.4 91.1±3.8*! 95.4±1.4! 94.1±2.0*! 87.6±8.0! 82.2±16.6!
CDeepSDF 93.1±1.2! 95.2±0.8*! 94.4±1.3 90.6±4.0! 95.4±1.0! 93.5±2.0*! 91.5±2.1* 82.1±13.6!
DeepSDF 93.0±1.1! 95.1±0.9*! 91.4±17.0 90.5±3.8! 95.5±0.8*! 93.4±2.1*! 91.5±2.1* 82.9±12.1!
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We observed that increasing the dimension of latent shape code when reconstructing unseen shapes effectively improved
the reconstruction accuracy for all methods. Table 3 presents the Dice scores for various methods when reconstructing
unseen shapes, following the increase in latent code dimensions from 4× 4× 4 to 8× 8× 8. This increase in spatial
dimensionality expanded the shape representation capacity since the input shape code was tri-linearly sampled at spatial
point locations to predict deformations (for our SDF4CHD method and NDF) or signed distance field values (for
CDeepSDF and DeepSDF). In fact, when using an 8× 8× 8 shape code size during inference, our method and others
achieved higher average Dice scores on unseen shapes compared to using a 4× 4× 4 shape code size on training shapes.

In addition to demonstrating similar accuracy compared to previous approaches, our method offers a distinct advantage
in producing cardiac anatomies that align with CHD diagnoses, as illustrated in Figure 8, which compares example
reconstruction results for unseen cases. The limitation of the NDF approach lies in its inability to handle topological
changes due to its reliance on a single implicit template. Given that a majority of its training cases feature VSDs,
the implicit template learned by NDF consistently includes a VSD, rendering it unsuitable for reconstructing cardiac
anatomies without VSDs. DeepSDF and CDeepSDF, can both model arbitrary topologies, but sometimes produce
inconsistent topology. For example, these methods incorrectly predicted a pulmonary outflow tract in PuA where the
pulmonary artery was supposed to disconnect from the right ventricle. They also did not correctly reconstruct smaller
VSDs. In contrast, our method, by deforming a learned CHD type-specific implicit template that corresponded to
the disease diagnosis, consistently reconstructed CHD anatomies that matched the diagnosis. Our use of a correction
network was able to correct inaccuracies, mostly in the reconstruction of blood vessels. However, we observed that it
sometimes removed half of the aorta if the deformation network failed to capture the correct location of the aorta.

We further compared the ability of our SDF4CHD method and the baseline methods to reconstruct local VSDs. VSDs
were identified in the reconstructed cardiac anatomies as regions where the RV blood pool connected with the LV blood
pool. To achieve this, we converted the predicted signed distance fields into segmentations and identified regions where
the RV blood pool segmentation could be expanded to match the LV blood pool segmentation, and vice versa. Figure 9
(left) presents a comparison of the Dice scores for VSDs in a total of 20 reconstructed cardiac anatomies with a VSD
diagnosis from the unseen test dataset. Our method, with or without corrections, effectively reconstructed anatomies
with VSDs. In contrast, CDeepSDF and DeepSDF failed to reconstruct any VSDs in four and six cases, respectively.
Since NDF deformed a learned implicit template with a VSD, its reconstructed cardiac anatomies all contained a VSD.
The zero Dice score for NDF resulted from its inability to accurately deform the VSD in the template to match the
correct location for the unseen anatomy. Figure 9 (right) presents three example cases, including one with a large
VSD, another with a small VSD, and a case with two VSDs. In the case of the large VSD, all methods successfully
produced reconstructions that included the VSD. However, when dealing with the small VSD, both CDeepSDF and
DeepSDF failed to detect this defect. We note that accurately reconstructing small VSDs when training on global
cardiac anatomies poses a considerable challenge. Our method, leveraging diagnosis priors and CHD type-specific
templates, demonstrated more robust performance in capturing these local defects. Nevertheless, our learned VSD
template anatomies only contained a subaortic VSD, which led to our method’s failure in reconstructing the apical VSD
in the case with both VSDs present. Notably, the correction network didn’t capture the apical VSD, and the baseline
methods also failed in this regard. This specific defect was only present in this single test case, while all training shapes
featured subaortic VSDs, causing all trained methods to struggle with this out-of-distribution defect.

4.7 Dataset Generation

Our method can be applied to generate a spectrum of CHD datasets for segmentation and computational simulations. For
example, we can employ a conditional Generative Adversarial Network (cGAN) [47] to synthesize paired CT images
from the generated anatomies. The synthesized images match with the segmentations created from our generative
anatomies, and can thus expand our dataset on underrepresented and uncommon CHD types. Such an expanded
dataset can be used for training a neural network to improve CHD segmentation performance. Figure 10 illustrates
the synthesized image-segmentation pairs representing intermediate states between ToF and PuA for patient-specific
anatomies. It also showcases deformations between two patient-specific shapes, with the CHD type held constant.
Specifically, we followed the implementation of Amirrajab et al.[48], which leverages specially designed normalization,
known as Spatially Adaptive DEnormalisation (SPADE) [49]. Using this approach, we successfully preserved tissue
boundaries described in the input conditional segmentation and synthesized stacks of 2D CT images with an appearance
similar to a reference CT image.

Furthermore, our method can generate deformed meshes of specific CHDs for simulations or 3D printing (Figure 11. A
template mesh can be created from the type-specific SDF and then deformed in a diffeomorphic manner, thanks to our
use of NODE. The generated meshes within a CHD type have semantic correspondence, as indicated by the texture map
that is created based on global vertex IDs, and which shares the same connectivity as the type-specific template mesh.
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Figure 8: Example reconstruction results for unseen cases. The first and the second columns show the whole heart
(WH) and myocardium (Myo) reconstruction, respectively. The white arrows indicate topological errors produced by
NDF, Conditional DeepSDF, and DeepSDF. The orange arrows highlight that NDF sometimes failed to reconstruct
accurate VSD sizes and geometries. The black arrow indicates an example where our correction module removed part
of the aorta when the deformation module placed the aorta at inaccurate locations.

4.8 Analysis of Design Choices

We conducted ablation analyses to understand the effects of several design choices on our model’s performance. Namely,
we considered the effect of alternatively training type and shape networks, using Lipschitz regularization on the type
network, using latent codes of different dimensions, and using NODE rather than direct displacement prediction to
deform the learned CHD type anatomies.

Alternatively training the type and shape network helped our method learn the CHD type representations faster and
more robustly. While joint training was able to correctly learn the CHD type-specific anatomies for ToF, PuA, VSD,
and normal cases, it failed to correctly represent the position changes between the aorta and the pulmonary arteries for
DORV and TGA, as demonstrated in Figure 12 (left). Furthermore, alternative training was able to learn the large VSD
and the discontinued pulmonary artery in PuA before Epoch 200, whereas joint training took longer to capture these
anatomical abnormalities. Furthermore, we observed that applying Lipschitz regularization to the type network and
initializing the type network by pre-training it to reconstruct healthy cardiac anatomy, regardless of the input diagnosis
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Figure 9: Left: Box plots showing Dice scores for VSDs (n=20) in the test dataset. The white circle shows the mean
Dice score for each method, and the colored circles show the Dice scores of all data points. Right: example VSD
reconstructions from different methods. The red regions represent the locations of VSDs where the RV blood pool and
the LV blood pool meet.

Figure 10: Example synthetic CT image and segmentation pairs. The top row displays the synthetic data when
simulating a CHD-type change from the disease state of PuA and VSD to a healthy state. The bottom row displays the
synthetic data for a CHD-shape change, that is, deforming a patient-specific geometry to the shape of a healthy patient
while preserving the CHD type (PuA and VSD). The red arrows highlight the gradual shrinking of VSD from disease to
a healthy state, whereas the blue arrows highlight the preservation of VSD during shape changes.

vector, can reduce the presence of noisy isolated islands in the learned CHD type-specific anatomies, as demonstrated
in Figure 13. However, such artifacts can be easily corrected by a post-processing step where we only kept the largest
connected component of a cardiac structure. We did not observe any notable effects of Lipschitz regularization and
initialization when interpolating among different CHD type-specific templates.

We observed that the spatial resolution (i.e. dimension) of latent shape codes significantly affects the reconstruction
accuracy. Specifically, higher-dimensional or spatially-resolved shape codes exhibit greater precision in reconstructing
previously unseen geometries. This is because, when we perform linear interpolation on cubical shape codes, a higher
spatial resolution results in more distinct values among the shape latent vectors at closely located points. Consequently,
this encourages the deformation network D to capture finer details. We noticed that the spatial resolution of the
latent shape code during training had minimal impact on reconstruction accuracy. Specifically, training with a low-
resolution shape code of 23 produced similar accuracy as training with a high-resolution shape code of 83. However, a
high-resolution shape code would require a larger dataset to effectively learn a latent space exclusively comprising
physiological shapes. Notably, when generating synthetic cardiac anatomies, an 83 high-resolution shape code resulted
in non-physiological distortions. Therefore, we chose a latent dimension of four for our shape codes to achieve a
balance between reconstruction and generation performance.
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Figure 11: Cardiac meshes generated by deforming a DORV-type-specific mesh template. Textures were mapped based
on mesh vertex IDs showing semantic correspondence among generated meshes.

Figure 12: The resulting learned CHD type-specific templates obtained from joint training and from alternative training
the shape and type networks, respectively. Left: The final templates for DORV and TGA. Right: The templates for
DORV and PuA after various epochs during training. Orange arrows highlight CHD abnormalities that were better
captured by using alternative training.

Figure 15 compares two methods of deforming cardiac anatomies. The first one is our currently adopted approach of
using NODE to learn an invertible flow field, whereas the second one is directly predicting displacements on mesh
vertices, as adopted in our patient-specific mesh-reconstruction approach[50]. As Figure 15 shows, since the networks
were trained to deform from shape to type space, learning an invertible flow enabled our method to readily invert
the deformation and deform the mesh from type to shape space during test time to generate patient-specific meshes,
whereas directly predicting displacements generated inaccurate results. Furthermore, deformation under an invertible
flow prevents intersections of point trajectories, thereby preventing inverted mesh elements. We used TetGen [51]
to detect surface intersections on synthetic whole-heart meshes, each of which contained about 20K mesh vertices.
Table 4 shows that predicting the displacements produced surface self-intersections, whereas using NODE produced 0
intersections.
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Figure 13: A comparison among the resulting CHD type-specific templates learned from training the type network with
Lipschitz regularization (λlip = 1e−8, λlip = 1e−10), without Lipschitz regularization, without Lipschitz regularization
or type initialization. The top row shows the original learned template, and the bottom row shows the corresponding
template after post-processing (i.e. extracting the largest connected components.)

Figure 14: Left: Effect of latent shape code dimension on cardiac shape reconstruction. The top panel shows box plots
of whole heart Dice scores evaluated on the test set when testing with latent shape code of various dimensions for a
model trained on a latent shape code dimension of 43, and when testing with the same latent shape code dimension
of 83 after being trained with latent shape codes of various dimensions. The bottom left panel shows a qualitative
comparison between reconstructing shapes using shape code dimensions of 83 and 43 (with or without the correction
module), respectively. Right: Effect of latent shape code dimension on cardiac shape generation where random shape
codes of different dimensions (23, 43, 83) were sampled from Gaussian prior distributions of N (0, 0.012I) to generate
synthetic cardiac anatomies.

5 Discussions

CHDs are uncommon conditions that can significantly impact a patient’s cardiac function, often necessitating specialized
expertise for diagnosis, treatment planning, and surgical interventions. Computer-assisted methods, such as 3D printing,
visualization, image analysis, and, computational simulations, hold promise in improving CHD patient care. Nonetheless,
due to the rarity of CHDs, there exists a significant challenge in assembling adequate patient cohorts and associated
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Figure 15: Comparison between predicting an invertible flow field (bottom) and predicting displacements directly (top)
to deform shapes. From left to right shows the patient-specific meshes extracted from the signed-distance field at the
shape space, the CHD type-specific meshes obtained by deforming the patient-specific mesh to the type space, and
the reconstructed patient-specific meshes obtained by deforming the CHD type-specific mesh back to the shape space.
The zoomed-in panels highlight that by using a NODE, we prevented the mesh intersections resulting from directly
predicting the displacements.

Table 4: Percentage of intersected mesh elements for synthetic meshes. The meshes were generated by deforming
CHD type-specific template meshes, either using predicted invertible flow fields (NODE) or using directly predicted
displacements (Displacement) on mesh vertices.

LV RV LA RA Myo Ao PA

NODE 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Displacement 0.22±0.37 0.28±0.37 0.2±0.24 0.18±0.23 0.16±0.24 0.47±0.59 0.26±0.23

ground truth data to fully harness the potential and validate these techniques. Generative DL methods can model
the distribution of cardiac anatomies from a training dataset. They can thus create an unlimited number of synthetic
anatomies by drawing from the learned distribution. However, prior generative DL methods are only suitable for
normal cardiac anatomies and cannot model the diverse anatomical abnormalities seen in CHDs. We thus develop a
novel generative DL approach that represents CHD cardiac anatomies in a CHD-type and CHD-shape disentangled
manner. Leveraging readily available CHD diagnosis information, our approach uses an SDF-based type-representation
module to model the corresponding type-specific cardiac abnormalities and uses deformation and correction modules to
represent patient-specific variations of cardiac shapes. Our method uniquely enables type-controlled representation,
generation, and reconstruction of cardiac anatomies for a range of complex CHDs.

Our method introduces topological variations in the representation of cardiac anatomies, an important and previously
unaddressed consideration for modeling CHD. Previous studies have largely focused on cardiac diseases such as
hypertrophic cardiomyopathy [20], myocardial infarction [14], and dilated cardiomyopathy [52], where the topology
and arrangement of cardiac structures typically remain conventional, with abnormalities primarily confined to changes
in shape. Furthermore, our CHD-type and CHD-shape disentangled representation uniquely supports CHD type-
controlled generation of cardiac anatomies for downstream applications, such as image segmentation and computational
simulations tailored to specific CHD cases. Our method achieves this using a single trained network, which automatically
learns generic anatomical templates corresponding to different CHDs. In contrast, previous methodologies, such as
NDF [36] and HeartDeformNet [50], assume a single topology, which may require separate dataset training or manual
design of distinct mesh templates for different CHDs, respectively. By deforming the learned generic templates, our
method also exhibited advantages in reconstructing patient cardiac anatomies with improved consistency with the CHD
diagnosis.

We demonstrate the effectiveness of implicit SDF-based anatomy representation in modeling CHD hearts. Specifically,
it empowers us to model the diverse topologies and arrangements of cardiac structures in CHDs while representing
intermediate CHD states beyond the scope of binary diagnoses. Although CHD diagnoses are typically viewed
as categorical, it’s important to acknowledge that CHD anatomies encompass a wide and continuous spectrum of
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topological variations across different defect types originating from abnormal fetal heart development. A Lipchitz-
regularized SDF can effectively capture gradual and smooth changes in anatomical abnormalities. We have shown that
when linearly interpolating the input CHD-type vector, our method can accurately represent the anatomical changes
that align with intermediate diagnoses. The ability to handle potential CHD topological variations, even with limited
training data, is valuable in addressing the challenge of acquiring diverse CHD types for training data due to their
extreme rarity.

We note that our method captures both the topological abnormality and the shape abnormality in its type representation
module. For example, our type representation for ToF captured the thickening of the right ventricular myocardium and
the narrowing of the pulmonary outflow tract. Here, the shape variations captured in the type representation module
are responsible for characteristic shape features of the particular disease types, whereas the shape variations captured
in the shape latent codes and the deformation network are (assumed to be) independent of diseases. Our ability to
capture both the CHD-shape and the CHD-type abnormalities for specific cardiac diseases originates from, perhaps
counterintuitively, the CHD-type and CHD-shape disentangled design. Namely, our deformation network morphs the
generic CHD-type templates to match the cardiac anatomies for different diseases in the training dataset. Since the
prior distribution of the shape codes is assumed to follow the Gaussian distribution independent of CHD types, the
deformation network is biased towards only modeling the patient-specific shape variations that are not due to CHDs.
Therefore, our CHD-type representation module is forced to capture the typical shape and type abnormalities for each
disease type in the training dataset.

An immediate advantage of the CHD-type and shape disentangled design is that the represented generic CHD-type
anatomies for different CHD types are aligned in space, and the differences in their anatomies are primarily attributed
to the corresponding abnormalities for the different CHDs. Therefore, by applying the same patient-specific shape
code and changing the type code, we can readily visualize the anatomical changes corresponding to various degrees of
defects in the same patient-specific cardiac geometries. This could also benefit clinical education, since the current
education is mostly based on visualizations of 3D patient-specific geometries, confounding the CHD type-specific
variations with the patient-specific shape variations. Furthermore, our type encoding module can potentially represent
anatomy changes before and after surgical repairs, for example, the insertion of intracardiac patches to close VSD or
septate the heart in DORV [53], and the arterial switch operation to swap the pulmonary artery and aorta positions in
TGA [54]. Therefore, our method can potentially be applied to visualize and examine the cardiac anatomies following
surgical operations for specific patients, thereby facilitating surgical planning.

We generated the whole heart cardiac meshes by extracting the zero-level-set surface mesh of the learned generic
type-specific SDF and deforming the mesh differently using shape codes randomly sampled from a Gaussian prior
distribution. However, since the deformation network acts on any points in the space, one can also readily deform a
different mesh adapted from the zero-level-set surface mesh for various computational applications. For example, one
could edit the template mesh to create simulation-ready mesh templates so that following deformation, the resulting
meshes can readily be used for computational simulations of electrophysiology, active contraction, and fluid dynamics
within the heart. Compared with our prior approach that deforms a template mesh by directly predicting displacements,
we demonstrated that using a NODE approach to deform a mesh in a diffeomorphic manner can effectively reduce
mesh artifacts such as surface intersections. However, the predicted diffeomorphic mapping does not guarantee that
the deformed mesh elements will have strictly positive Jacobian values, since the learned diffeomorphism can contain
sinks, making the points nearby converge to the same location. This can be addressed by including a regularization loss
developed by [55], which penalizes vanishing volumes during training and test-time optimization.

We assumed that the shape codes follow the same Gaussian prior distribution for all CHD types. This is a simplifying
assumption considering the limited training dataset that we currently have. Indeed, although the CHD type-representation
module can capture typical CHD-related shape abnormalities, the patient-specific shape distributions of cardiac
anatomies may still differ for different CHD types. For example, the pulmonary arteries of patients with PuA pose a
much wider range of variations compared with normal patients in terms of the numbers, locations, and orientations
of major branches. However, it is challenging to fully capture such variations in shape distributions using only a few
training samples for each CHD type. Nevertheless, if a larger dataset for CHD patients such as [56] can be made
available, our method can easily be adapted to learn CHD type-conditioned shape distributions. Namely, Biffi et
al.[20] learned the shape latent distribution differences between HCM and healthy cases by training another network
to discriminate HCM shape codes from healthy shape codes. We can adapt this approach to perform CHD-type
classification tasks in the latent shape code space. This will result in a well-separated latent shape code distribution for
different CHD types. Our method can thus be extended for analyzing shape variation differences among various CHD
types in the future.
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6 Conclusions

We have introduced a novel deep-learning approach that learns a CHD-type and CHD-shape disentangled representation
of cardiac geometry for major CHD types. Our approach implicitly represents type-specific anatomies of the heart
using neural SDFs and learns an invertible deformation for representing patient-specific shapes. In contrast to prior
generative modeling approaches designed for normal cardiac topology, our approach accurately captures the unique
cardiac anatomical abnormalities corresponding to various CHDs and provides meaningful intermediate CHD states
to represent a wide CHD spectrum. When provided with a CHD-type diagnosis, our approach can create synthetic
cardiac anatomies with shape variations, all while retaining the specific abnormalities associated with that CHD type.
We demonstrated the ability to augment image-segmentation pairs for rarer CHD types and generate cardiac meshes
with consistent vertex connectivity. In the future, we plan to explore applying this approach to facilitate virtual surgery
planning, image segmentation, classification, and computational simulations of cardiac function for CHD patients.

Acknowledgments

This work was supported by NSF 1663671, NIH R01EB029362, NIH R01LM013120, and NIH R38HL143615. We
thank Allyson Weiss for her assistance with creating ground truth segmentation.

21



Generative Modeling of Cardiac Anatomies with Congenital Heart Defects

Supplemental Materials

A Processing of “imageCHD” Dataset

The ground truth segmentation provided by the “imageCHD” dataset [9] had a few limitations. First, the images and
segmentations provided did not contain slice spacing information, which caused some hearts in the original dataset
to be un-physiologically flat along a certain axis. We assigned spacing values to the segmentation volumes so that
a heart spans the same length when measured along axial, sagittal, and coronal axes for each volume. Moreover,
the segmentations included numerous small vessel branches that were outside the scope of modeling cardiac defects.
Therefore, we applied Gaussian smoothing with a standard deviation of 2 mm to eliminate these smaller vessel branches.
Additionally, the myocardium segmentations in the dataset exhibited noise, with the presence of trabeculae structures
and undesired holes and gaps near the atrium and great vessel openings, which were unrelated to CHDs. We manually
corrected these artifacts, removing noise to ensure that the resulting myocardium segmentations aligned with the
provided diagnosis and image data. We used the “Segmentation Editor” tool in 3D Slicer to process the segmentation.

Figure A.1: Comparison of ground truth segmentations provided by the “ImageCHD" dataset and after manual
processing.

B Implementation and Optimization Details

All neural networks in SDF4CHD were implemented using six fully connected layers with leaky ReLU activation
functions (α = 0.02). Each layer contains 512 neurons. We used six encoding functions[40] for Tdec and four encoding
functions for D and C to augment the input coordinate values.

For DeepSDF, we utilized the default implementation and training configuration [32], employing eight fully connected
layers, each consisting of 512 neurons. We also used a residual connection from the input to the fourth layer. In the
case of conditional DeepSDF, we adopted the same Tenc implementation as in SDF4CHD for encoding the diagnosis
information, which was subsequently concatenated with the shape code. For NDF, we employed the same Tdec
implementation as in SDF4CHD to predict the template SDF, which was then deformed using a deformation network
implemented in the same manner as D. Using the same network implementation ensured a fair comparison between the
baselines and our method to verify the advantages of our CHD-type and shape disentangled design. Furthermore, we
applied the same number of encoding functions, latent code dimensions, and training procedures for all methods to
maintain a fair comparison.

The network parameters, shape codes, and correction codes were computed by minimizing the total loss function using
the Adam stochastic gradient descent algorithm [46]. The initial learning rate was set to be 0.0001, while β1 and β2 for
the Adam algorithm were set to 0.5 and 0.999, respectively. We sampled 16384 points during each gradient descent
update. The points were sampled from a probability distribution based on their distance from the boundaries of the
cardiac structure, with the points located on the cardiac boundaries assigned the highest probability. Figure B.1 shows
an example point cloud sampled during a training step. We adopted a learning rate schedule where the learning rate was
reduced by 30% if the validation point losses had not improved for 20 epochs. The minimum learning rate was 1e−6.
The network was implemented in PyTorch and the training was conducted on a Nvidia A40 graphics processing unit
(GPU).
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Figure B.1: Example point cloud sampled during training. On the left, the point cloud is overlaid with ground truth
whole heart surfaces. On the right, a cross-sectional view shows the point cloud and surfaces sliced at a plane. The blue
points are outside the heart, while the orange points are inside the heart.
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