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ABSTRACT

Single-cell RNA sequencing (scRNA-seq) allows re-
searchers to study cell heterogeneity at the cellu-
lar level. A crucial step in analyzing scRNA-seq data
is to cluster cells into subpopulations to facilitate
subsequent downstream analysis. However, frequent
dropout events and increasing size of scRNA-seq
data make clustering such high-dimensional, sparse
and massive transcriptional expression profiles chal-
lenging. Although some existing deep learning-
based clustering algorithms for single cells com-
bine dimensionality reduction with clustering, they
either ignore the distance and affinity constraints be-
tween similar cells or make some additional latent
space assumptions like mixture Gaussian distribu-
tion, failing to learn cluster-friendly low-dimensional
space. Therefore, in this paper, we combine the deep
learning technique with the use of a denoising au-
toencoder to characterize scRNA-seq data while pro-
pose a soft self-training K-means algorithm to clus-
ter the cell population in the learned latent space.
The self-training procedure can effectively aggregate
the similar cells and pursue more cluster-friendly la-
tent space. Our method, called ‘scziDesk’, alternately
performs data compression, data reconstruction and
soft clustering iteratively, and the results exhibit ex-
cellent compatibility and robustness in both simu-
lated and real data. Moreover, our proposed method
has perfect scalability in line with cell size on large-
scale datasets.

INTRODUCTION

Cells are the basic units of growth and development of or-
ganisms, and each cell has its own unique biological func-
tion (1). The heterogeneity of genetic information, such as
transcriptome, leads to heterogeneity among cells. Tradi-

tional bulk cell RNA sequencing is performed at a multi-
cell level. This means that the resultant sequencing data are
the average expression of multiple cells, thus missing infor-
mation on individual heterogeneity (2). In recent years, the
rapid development of single-cell RNA sequencing (scRNA-
seq) technology has made it possible to obtain the transcrip-
tional expression of each cell, thereby extracting the hetero-
geneity of cells at the RNA level (3–5). However, due to the
technical difficulties such as the inefficiency of RNA cap-
ture during sequencing, the bias of PCR amplification and
the depth of sequencing, single-cell transcriptional expres-
sion profiles usually have substantial zero elements (6,7).
These kinds of high-dimensional and sparse noisy data have
a highly non-linear complex structure, which makes fur-
ther subsequent statistical analysis challenging. Further-
more, droplet-based sequencing technologies have been able
to effectively profile tens of thousands of cells in a single
experiment, which undoubtedly places higher requirements
on the development of new analytical methods (8,9).

Analysis of scRNA-seq data can conduct cell identifica-
tion and enable more accurate determination of cell types
and relationships (10). An essential procedure in study-
ing the structure of cell subsets is cell clustering, since
the subsequent analysis, such as identifying marker genes
(11,12), studying different stages of cell cycle (13,14), eluci-
dating cell–cell communication between different cell types
(15,16) and constructing gene expression regulation net-
work (17,18), depends on specific cell populations. In the
past few years, a great deal of clustering methods for single-
cell transcriptional expression profiles have been developed.
CIDR is a method of combining dropout events’ imputa-
tion and clustering, which uses hierarchical clustering on
the top coordinates through PCoA on the dissimilarity ma-
trix (19). SIMLR learns the cell similarity measure by multi-
kernel learning and graph diffusion technique. Then, the
learned latent representation can be used for spectral clus-
tering (20). Phenograph and Seurat are based on the shared
nearest neighbor graph and they use the Louvain algorithm
to detect cell community (21,22). RaceID, which is cus-
tomized for identifying rare cell types, proposes that replac-
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ing K-means with K-medoids can improve cluster perfor-
mance (23). SC3 is a consensus ensemble clustering method
that first uses PCA and Laplacian transformation to reduce
gene dimension, and then measures pairwise cell distances
like Euclidean, Pearson and Spearman distances (24). The
consensus matrix is constructed by applying K-means clus-
tering to these six projections and finally taken as the input
of hierarchical clustering. SAFE is another consensus clus-
tering method that integrates clustering results from t-SNE,
CIDR, Seurat and SC3 (25). One common characteristic of
the above-mentioned methods is that they usually directly
learn a similarity or distance representation based on the
original noisy data matrix or reduced matrix through simple
linear dimension reduction techniques, and then apply the
hard clustering methods. However, on the one hand, dimen-
sion disaster and high noise make distance measurement
no longer accurate and linear dimension reduction methods
cannot capture non-linear structures hidden in scRNA-seq
data. On the other hand, separating dimension reduction
from clustering often leads to spurious clustering results.

Recently, the deep learning technologies have been ap-
plied to computational biology and they exhibit superior
performance over traditional machine learning algorithms
in most supervised and unsupervised learning scenarios
(26,27). Autoencoder is a neural network that can learn an
efficient compression of data through encoder and decoder
in an unsupervised fashion (28). The reconstruction error is
generally defined as loss function to train the autoencoder.
It is most remarkable that autoencoder can realize non-
linear dimension reduction of high-dimensional data in the
essential latent space and reconstruct the denoised data in
the meantime. Ding et al. (29) proposed an interpretable di-
mensionality reduction method for scRNA-seq data using
the deep generalized model, which assumes that the gene ex-
pression vector follows a Student’s t-distribution given the
low-dimensional latent feature vector with the multivari-
ate Gaussian distribution as prior. Considering the sparsity
characteristic of scRNA-seq data, Eraslan et al. (30) pro-
posed a deep count autoencoder network called DCA to
denoise the original single-cell data. They take the count
distribution, overdispersion and sparsity of the data into ac-
count using a zero-inflated negative binomial (ZINB) model
that can capture the non-linear gene–gene dependencies.
This modeling idea inspired several related works report-
ing on scRNA-seq data analysis. Grønbech et al. (31) pro-
posed a variational autoencoder framework called scVAE
for single-cell gene expression count data clustering. They
assume that the data points in latent space follow the Gaus-
sian or mixture Gaussian distribution, and then derive the
corresponding variation lower bound as part of loss func-
tion. On the one hand, the complex latent space actually
falls on inenarrable manifold but not mixture Gaussian dis-
tribution. On the other hand, variational inference model
is often tricky and hard to optimize since the approximate
lower bound is often trapped in the local minimum. Tian
et al. (32) developed a single-cell model-based deep embed-
ded clustering method called scDeepCluster that combines
DCA modeling with DEC clustering algorithm (33,34) and
achieves clustering while reducing dimensions. However,
scDeepCluster ignores the pairwise distance between cells
and does not consider the affinity constraint of similar cells.

Moreover, scDeepCluster does not preselect some informa-
tive genes as input features, which not only loses a part
of the clustering accuracy but also leads to high time con-
sumption and memory requirements. Li et al. (35) proposed
a deep embedding clustering algorithm called DESC simi-
lar to scDeepCluster, but they just utilize the deep autoen-
coder to pretrain the data construction and actually sepa-
rate the clustering procedure and data denoising, which can-
not learn more cluster-friendly latent space. Besides, DESC
uses the traditional MSE loss as data reconstruction error
and also ignores the distance between similar cells, which
cannot preserve the global and local structure of data well.

To the best of our knowledge, although some existing
deep learning-based clustering methods combine dimen-
sion reduction and clustering, like scDeepCluster, they usu-
ally neglect the pairwise distance of similar cells, resulting in
failure to learn more cluster-friendly latent space with high
confidence. Therefore, in this paper, we first combine the
modeling idea of DCA (30) and assume that the scRNA-seq
data denoised by autoencoder can be depicted by NB mod-
els with or without zero inflation (NB and ZINB). We uti-
lize the negative log-likelihood function as the data recon-
struction loss instead of traditional MSE (36) to capture the
global probabilistic structure of data. Meanwhile, we pro-
pose a weighted soft K-means clustering algorithm with in-
flation operation for data points in the latent space, which
aims to realize the soft clustering process instead of hard
clustering. Moreover, we introduce a new constraint for the
data representation, which combines the idea of t-SNE and
self-training strategy in DEC, to enhance the association be-
tween similar cells. Our method aggregates data modeling,
dimensionality reduction and cell clustering by alternately
updating data denoising and clustering processes. We apply
our method on both simulation datasets and real datasets
and the results show that our proposed method outper-
forms other state-of-the-art scRNA-seq data clustering al-
gorithms considering accuracy, robustness and scalability.

MATERIALS AND METHODS

Data pre-processing

We collect the scRNA-seq count data matrix by means of
the quality control process. Suppose the single-cell expres-
sion count matrix is Y, where Yij (1 ≤ i ≤ n, 1 ≤ j ≤ p) rep-
resents the expression of jth gene in the ith cell. We next dis-
card the genes that have expression values in less than one
cell and then filter the cells without gene expression. Con-
sidering neural network numerical optimization stability,
we need to transform discrete data into continuous smooth
data. Concretely, we first normalize the count matrix Yn×p
through dividing each row by its row sum and multiplying
it by the median of total expression values of all cells, and
then we take a natural log transformation on data. Since
most genes have little information to identify and describe
cell types, we pick top m highly variable genes according to
their normalized dispersion values’ ranking calculated by
scanpy package (37). Finally, we transform the logarithm
data into z-score data, which implies that each selected gene
has zero mean and unit variance. This normalized data ma-
trix, recorded as X′

n×m, is used for the neural network in-
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put and its corresponding original count matrix, recorded
as Xn×m, is used for data modeling.

Zero-inflated negative binomial autoencoder model

Since the variance of gene expression in samples is often
larger than its corresponding mean, we assume Xij follows
NB distribution with mean parameter μij and dispersion pa-
rameter θ ij instead of the Poisson distribution, namely

PNB(Xi j |μi j , θi j ) = �(Xi j + θi j )
�(Xi j + 1)�(θi j )

×
(

θi j

θi j + μi j

)θi j

×
(

μi j

θi j + μi j

)Xi j

. (1)

The frequent dropout events resulting from RNA capture
inefficiency cause the count matrix to contain amounts of
zero elements; thus, we model the data distribution as a mix-
ture of zero component and NB distribution, namely ZINB,
which can be written as

PZINB(Xi j |πi j , μi j , θi j ) = πi jδ0(Xi j ) + (1 − πi j )

× PNB(Xi j |μi j , θi j ), (2)

where π ij is the weight coefficient of the point mass at
zero. Now (π ij, μij, θ ij) makes up the parameters to be es-
timated. With the complex gene–gene interactions among
genes, these parameters are not independent from the sta-
tistical aspect, and they are more likely to fall on a low-
dimensional manifold, which cannot be captured by a sim-
ple linear model. So, we utilize a neural network like au-
toencoder to approximate the underlying parameter space.

In this paper, we use the denoising autoencoder to train
the corrupted scRNA-seq data and recover the underly-
ing undistorted transcriptional profiles. Unlike the tradi-
tional autoencoder setting that has one output layer, we
have three output layers to estimate the three sets of pa-
rameters, dropout rate, mean value and dispersion of ZINB
model separately. Assume latent representation is Z and the
decoder output is D; then the architecture of our autoen-
coder model can be written as

Z = φw(X′), (3)

D = ϕw(Z), (4)

π = sigmoid(DWπ ), (5)

μ = exp(DWμ), (6)

θ = exp(DWθ ), (7)

where φw and ϕw represent the encoder function and de-
coder function, respectively, and these W represent network
weight parameter matrices. Besides, π uses the sigmoid acti-
vation function because we need to limit the dropout prob-
ability to the range from 0 to 1. Since the mean and disper-
sion parameters are non-negative, we chose the exponential
function as their corresponding activation function. As we
all know, the library size is critical in studying scRNA-seq

count data; thus, we normalize the sum of output μ to origi-
nal total count size for each cell to avoid overfitting. For the
reconstruction loss function, we naturally take the negative
log-likelihood of ZINB distribution as loss function, which
is given by

L1(π,μ, θ |X) = −log(PZINB(X|π,μ, θ )), (8)

L1(π,μ, θ |X) = −
n∑

i=1

m∑
j=1

log(PZINB(Xi j |πi j , μi j , θi j )). (9)

Based on statistical theory, we should minimize L1 to obtain
parameter estimation.

Self-training weighted K-means clustering

In the last subsection, we note that parameters of the ZINB
model distribute on the low-dimensional manifold consist-
ing of latent variable Z. Therefore, instead of performing
clustering on the denoised data space, we can implement the
clustering algorithm in the learned embedding space. Sup-
pose there are K clusters with centers υr (1 ≤ r ≤ K) in the la-
tent space. Then, a direct approach would involve applying
the K-means algorithm to cluster the latent representation
Z. Here, we use a weighted soft K-means model to realize
the clustering in the latent space with objective function

L2(υ, Z) =
n∑

i=1

K∑
r=1

wir ||Zi − υr ||2. (10)

This continuous clustering loss function can benefit from
the efficiency of stochastic gradient descent. In fact, when
latent space representation Zi (1 ≤ i ≤ n) and weights wir (1
≤ i ≤ n, 1 ≤ r ≤ K) are known, cluster center � r (1 ≤ r ≤ K)
has an explicit closed-form solution for minimizing L2 loss,
which is

υr =
∑n

i=1 wir Zi∑n
i=1 wir

. (11)

We can see that the cluster centers are weighted sum of
those low-dimensional representations of data points. We
naturally want to increase the weight of those data points
closer to the cluster center, while reducing the contribution
of other data points farther away from the cluster center.
Therefore, the weights wir should be a decreasing function
with the distance between the data point and the cluster
center. To a certain extent, we transform the hard cluster
label allocation to assign labels according to affinity proba-
bility. In this paper, we consider utilizing the Gaussian ker-
nel function as weight measure since the exponential func-
tion can smooth the gradient descent optimization process.
Specifically,

w̃ir = exp(−||Zi − υr ||2)∑K
k=1 exp(−||Zi − υk||2)

. (12)

In order to speed up the algorithm convergence, we take the
inflation operation on the weights, inspired by the idea of
Markov clustering algorithm (38),

wir = w̃α
ir∑K

j=1(w̃α
i j )

, (13)
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where α is a hyperparameter that is >1. Its default value
in our codes is 2. Obviously, this soft K-means clustering
approach forces the data point to move closer to its closest
cluster center. However, this procedure neglects the pairwise
distance and movement of similar cells. We naturally pur-
sue similar points to be clustered to the same cluster. Thus,
we design a specific KL divergence loss function to pre-
serve and strengthen the association between similar cells.
First, we use the t-distribution kernel function to describe
the pairwise similarity among data points in latent space
like in t-SNE (39), because the tail of this distribution is
heavier than Gaussian distribution and it allows moderate
distances in the high-dimensional space to be modeled by
much larger distance in the low-dimensional space, which
can prevent squeezing different clusters together in the la-
tent space, as

p j |i = (1 + ||Zi − Zj ||2/t)−(t+1)/2∑
k�=i (1 + ||Zi − Zk||2/t)−(t+1)/2

, (14)

where pi|i = 0 (1 ≤ i ≤ n). Inspired by DEC (33), we propose
to alternately refine the pairwise data points by learning
from their high similarity with the help of an auxiliary target
distribution. This target distribution should strengthen the
affinity between similar data points and put less emphasis
on those pairwise data points with low similarity. Specifi-
cally, we take the auxiliary distribution below, as

q j |i = p2
j |i/

∑
i �= j p j |i∑

k�=i (p2
j |i/

∑
i �= j p j |i )

. (15)

With these two similarity distribution functions, we define
another loss function as follows:

L3(Z) = K L(q||p) =
∑

i

∑
j

q j |i log
q j |i
p j |i

. (16)

We utilize this self-training strategy to learn a more cluster-
friendly latent space. Having finished model construction,
we now summarize the three main components: denoising
autoencoder based on ZINB likelihood, weighted soft K-
means clustering and the self-training strategy for pairwise
points in latent space. We can see that the latent space repre-
sentation Zi (1 ≤ i ≤ n) is contained in both L2 and L3; that
is, Zi (1 ≤ i ≤ n) and � r (1 ≤ r ≤ K) depend on each other.
In the process of algorithm implementation, we found that
training L2 and L3 separately poses a risk of collapse of dif-
ferent clusters. Therefore, we integrate them together and
the total objective loss function is given as

L(π,μ, θ, υ, Z|X) = L1 + γ L2 + λL3, (17)

where the hyperparameters γ and λ are the coefficients that
control the relative importance of L2 and L3. In this pa-
per, our method is implemented in Python3 using Tensor-
flow, which can perform automatic differentiation and up-
date of variables. The default values of γ and � are both
taken as 0.001 during the following experiments. We select
top 500 (i.e. m = 500) highly variable genes as network in-
put by default. The hidden layer size of encoder network is
256 and 32, and the decoder network has the reverse set-
ting of encoder. The bottleneck layer (namely latent space)

Figure 1. The neural network schematic diagram of scziDesk. The en-
coder and decoder are symmetrical structures, and the outputs are three
sets of parameters, dropout rate, mean value and dispersion value, in
ZINB modeling. In latent space, embedded points are clustered using a
weighted soft K-means clustering algorithm with self-training procedure.
The self-training strategy aims to aggregate the similar cells and pursue
more cluster-friendly latent space.

has a size of 32 and the minibatch size is set to 256 dur-
ing the training process. We utilize the Adam optimizer
with a learning rate of 0.0001 to update the neural network
parameters and cluster centers by a back-propagation al-
gorithm. As for the model training strategy, we first pre-
train the L1 loss for 1000 (default) epochs and then ini-
tialize the cluster centers by standard K-means algorithm
in the latent space; finally, we train the whole model L un-
til the cluster membership assignment no longer changes.
We have summarized the whole clustering algorithm in Sup-
plementary Algorithm S1 and the general workflow of our
method is displayed in Figure 1. For convenience, we call
our model scziDesk (single-cell zero-inflated deep soft K-
means). When we replace ZINB distribution with NB dis-
tribution, we name it as scDesk. In the ‘Results’ section, we
will show the superior clustering performance of our meth-
ods through simulation study and real dataset analysis.

RESULTS

In this section, we test scDesk and scziDesk in both sim-
ulation and real datasets. For simulation datasets, we as-
signed cells into different cell types before generating gene
expression. For real datasets, we used the cell type infor-
mation provided by authors. They determined cell types by
experiments or other biological methods. All of this can
be regarded as the reference gold standard of clustering.
Then, we apply our method to get a clustering result and
compare its similarity with the true label using two crite-
ria: adjusted Rand index (ARI) (40) and normalized mu-
tual information (NMI) (41) (see the Supplementary Data
for details). The higher the ARI and NMI values, the bet-
ter the clustering effect. Moreover, we compare the cluster-
ing performance with existing customized scRNA-seq data
clustering algorithms, including CIDR (19), SIMLR (20),
RaceID3 (23,42), SOUP (43) and a deep learning-based
method called scDeepCluster (32). Other methods, such as
Seurat (22), SC3 (24) and so on, are not in consideration
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of comparison. Seurat is a useful and efficient package for
biologists to analyze single-cell data. However, due to a lot
of parameters, especially ‘resolution’ parameter, being elab-
orately selected by users, Seurat usually tends to overesti-
mate the cluster number that cannot perform well under de-
fault parameters. For the sake of fairness, we do not show
the clustering performance of Seurat here. SC3 is a consen-
sus method that may achieve perfect performance in small
datasets, but it is extremely time consuming and does not
scale to large-scale datasets with >5000 cells. We will show
the additional comparison with Seurat and SC3 in the ‘Dis-
cussion and Conclusion’ section. Besides, in order to show
the advantages of ZINB or NB modeling, we additionally
regard the traditional MSE autoencoder with our soft self-
training K-means clustering algorithm as a comparison.

Simulation study

In simulation analysis, we first used an R package called
‘splatter’ (44) to generate simulation datasets. Our experi-
ments can be divided into two parts, one involves cell clus-
ters with the same size and the other involves cell clusters
with different sizes. We call them ‘balanced experiments’
and ‘imbalanced experiments’, respectively. In the first part,
we generate datasets with three, four, five, six and seven clus-
ters, and each cluster with 500 cells. In the second part,
we generate datasets fixed at five clusters and total 2500
cells, but the cluster group size gives an equal ratio sequence
where ratio ranges from 0.6 to 1.0, and smaller ratio means
larger difference in cluster size. For both, we set the dropout
rate ranging from 5% to 25% (dropout.type = ‘experiment’,
dropout.shape = −1, de.facScale = 0.2 and dropout.mid
ranges from −1.5 to 0.5; the other parameters are set to de-
fault values) to simulate the ‘dropout’ event, and the gene
number is fixed at 2500 for the convenience of calculating.
For every scenario, we generate 10 datasets to inspect the av-
erage performance among different methods by calculating
their median ARI and NMI values.

First, we investigated total performance of the eight
methods by the box plot for balanced experiments and im-
balanced experiments (Figure 2A). From the box plot, the
median values of ARI for scDesk and scziDesk are 0.76 and
0.85 in the balanced experiment, respectively, which are ob-
viously higher than those for CIDR (0.21), SOUP (0.55),
SIMLR (0.20), RaceID (0.19), scDeepCluster (0.16) and
MSE (0.44). We found that the ARI value of scziDesk is
concentrated at the top of the box and >0.75. Only a few
results decrease below 0.5 as a consequence of the difficulty
of clustering from the increase of dropout rate. Meanwhile,
other methods like SIMLR and RaceID3 never achieved an
ARI value >0.5 for all parameters. Although SOUP per-
forms well in some datasets, its ARI value is still a bit lower
than that of scziDesk, and it also has a large variance with-
out the ability to handle dropout events. We can get the
same conclusion from comparing NMI values (Supplemen-
tary Figure S1) and from the imbalanced experiment results.

We then applied line graph to find the performance
change through different parameters. Every subfigure in
Figure 2B shows a change in ARI value with increasing
dropout events. ScziDesk performs quite well (ARI > 0.9)
when the dropout rate is small. Although the performance

Figure 2. Simulation dataset analysis. (A) Box plot of ARI values in bal-
anced and imbalanced experiments. (B) Change of ARI values with the
increasing dropout rate in a balanced experiment.

Figure 3. Simulation dataset analysis. (A) Change of ARI values with the
increasing cluster number in a balanced experiment. (B) Change of ARI
values with the increasing geometric ratio in an imbalanced experiment.

of scziDesk decreases in relation to the dropout percentage
of simulation data, those of all other methods also decrease
and it still performs better than other methods in most sce-
narios. Figure 3A fixes the dropout rate in every subfigure
and illustrates the change in ARI value with increasing clus-
ter numbers. When the dropout rate is low, our two methods
perform extremely well and are nearly unaffected by clus-
ter number, while the performances of CIDR, SOUP and
RaceID drop significantly when cluster number increases.
When the dropout rate increases, scziDesk can handle a
small number of clusters well and still always remains su-
perior to the other methods. By comparison, scDesk per-
forms very poorly with a high dropout rate, because it does
not deliberately model the zero-inflation phenomenon. The
line graph for imbalanced experiments can be seen in Fig-
ure 3B. When we fix the dropout rate and decrease the ge-
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ometric ratio, scziDesk gives the highest ARI value among
eight methods, fully demonstrating that scziDesk can better
detect rare clusters. The NMI values (Supplementary Fig-
ures S1 and S2) also support our conclusion, whether in bal-
anced or imbalanced dataset.

From these two groups of simulation datasets, our meth-
ods always outperform the other six in different conditions
(cluster number, dropout percentage, cluster size). More-
over, scziDesk is a little better than scDesk because its per-
formance still exceeds that of others at high dropout rate
and large cluster numbers. This is in line with our expecta-
tions because the scziDesk considers the zero inflation and
adds the corresponding zero-inflated probability in likeli-
hood function.

Analysis of real data

For real data analysis, we select 20 real datasets from re-
cently published papers of scRNA-seq experiments. It is
worth pointing out that a team from Stanford University
generated mouse scRNA-seq data for 20 organs by Smart-
seq2 sequencing and 12 organs by 10x Genomics sequenc-
ing (45). We selected nine datasets from it, five from Smart-
seq2 (beginning with Quake Smart-seq2, hereinafter ‘QS’
in this paper) and four from 10x Genomics (beginning with
from Quake 10x, hereinafter ‘Qx’ in this paper). All 20
datasets originate from different species, including plant,
mouse and human, and different organs, e.g. brain, kid-
ney or lung. Moreover, these datasets were acquired by dif-
ferent sequencing platforms (CEL-seq2, Drop-seq, inDrop,
10x Genomics and Smart-seq2). Their basic information in-
cluding cell number, cell type number and reference paper
can be found in Supplementary Table S1. In the next several
comparison experiments, we assumed to know the true cell
type number before running all methods.

In order to ensure the reliability of results for each
method, we ran them 10 times by setting 10 random seeds
1111, 2222, . . . , 9999, 10000. Once 10 ARI and NMI val-
ues are obtained, we calculated their median as the evalu-
ation value of performance for each method. First, Figure
4A and B shows the overall performance of eight methods
in 20 real datasets. From the box plot, we can see that the
ARI (NMI) value changes among 20 datasets and scziDesk
has the highest mean value with lowest variance. The dot
plot (Figure 4C) shows the specific performance of eight
methods in 20 datasets. The size of scatter stands for the
ARI ranking among eight methods and the color stands for
ARI value. From the figure, we can see that our two meth-
ods are all purple or red with the biggest size, which implies
they rank in the top four among eight methods, and their
ARI values are >0.6 in all datasets. Overall, SIMLR gives
relatively competitive performance among four traditional
statistics-based methods. Nevertheless, it still contains some
gray scatter with the smallest size, which means it performs
the worst among eight methods and has ARI value <0.2.
Other methods, such as CIDR and RaceID3, perform very
poorly and always rank the last among the eight methods.
The result of comparing NMI value (Supplementary Fig-
ure S4A) is almost the same as that in ARI. We also ap-
plied histogram to compare all methods for each dataset
(Supplementary Figures S5 and S6); the conclusion is also

Figure 4. Real data analysis. (A, B) Box plot of ARI and NMI values in 20
real dataset experiments, respectively. (C) Dot plot of 20 real datasets. Ev-
ery point on the x-axis stands for a dataset and on the y-axis a method. The
scatter reflects the corresponding performance of a method in a dataset,
where the color stands for its ARI value and the size stands for its ranking
according to ARI value among the eight methods. The gray scatter means
that its ARI value is <0.2.

the same. Therefore, comprehensively comparing the per-
formance over 20 datasets, both of our methods achieve bet-
ter performance than other algorithms, especially scziDesk.

To intuitively compare the accuracy of clustering meth-
ods, we plotted the 2D visualization graph through data
after using dimension reduction methods, such as t-SNE
(39) and UMAP (46). The latent space in scDesk and
scziDesk is a low-dimensional embedded representation of
the high-dimensional input data. Here, we first attained the
latent space representation of 32 dimensions and then ap-
plied t-SNE with the default parameter to visualize the
embedded points in the 2D plane. The 2D visualization
of scDeepCluster and MSE can be obtained in the same
way. For other four traditional methods, we used the pro-
cedure and code provided by the author with default pa-
rameter to get the 2D visualization plot. The visualization
results of two datasets are summarized in Figure 5. Figure
5A is for ‘Qx Bladder’ dataset with four cell types: blad-
der, bladder urothelial, leukocyte and endothelial cells are
dyed with blue, red, yellow and green, respectively. Figure
5B is for ‘QS Limb Muscle’ dataset with six cell types: B
cell, endothelial cell, macrophage, mesenchymal stem cell,
skeletal muscle satellite cell and T cell are dyed with light
blue, navy, green, orange, purple and red, respectively. For
‘Qx Bladder’, we can see that scziDesk can separate four
cell types clearly in 2D plane with almost no overlap be-
tween different types. Other methods, especially CIDR and
SOUP, fail to separate cells into four parts. For another
dataset ‘QS Limb Muscle’, we can easily see that all scat-
ters are divided and aggregated into six groups from the last
two subpictures in Figure 5B, while other methods fail to
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Figure 5. Visualizing high-dimensional data in 2D plane by eight methods. Each color stands for one cell type. (A) Results of ‘Qx Bladder’ dataset. (B)
Results of ‘QS Limb Muscle’ dataset.

distinguish B cell, endothelial cell and mesenchymal steam
cell types clearly. Moreover, the red scatters, which stand for
T cells, are divided into two separate parts by SIMLR and
scDeepCluster. Only our two methods can distinguish cells
from different cell types and concentrate on the same type of
cells together in the visualization plot simultaneously. More
examples are shown in Supplementary Figure S4B. There-
fore, from an intuitive perspective, our methods are superior
to the others in both simple datasets with few cell types and
complex datasets with many cell types.

Robustness of methods

We further validated the stability and robustness of our
methods by two artificial experiments, including down-
sampling and dropout. We selected 8 out of 20 real
datasets for these experiments, which we term ‘Adam, Bach,
Plasschaert, Qx Bladder, Qx Limb Muscle, Qx Trachea,
QS Lung, Romanov’. For downsampling experiments, we
assume that we can only get partial data containing 80%
and 60% cells from whole data. We used the same 10 ran-
dom seeds as noted earlier to randomly sample cells. For
dropout experiments, we assume that all datasets will en-
counter ‘dropout’ events with a dropout rate of 15%. We ap-
plied above 10 random seeds to randomly select 15% of non-
zero expression data to be zero and got 10 different datasets

with artificial dropout. After that, we tested eight methods
in these noisy downsampling and dropout datasets. The re-
sults of two experiments are shown in Figure 6A. The first
row of Figure 6A shows ARI values of complete data, 20%
missing data and 40% missing data, and the second row
shows ARI values of raw data and dropout data with 15%
dropout rate. From the results in these five group experi-
ments, our methods, the red and brown lines, have little de-
crease of ARI values after downsampling or dropout. They
still perform better than most of other methods. The re-
sults of comparing NMI values are also the same (Supple-
mentary Figure S7). These experimental results confirmed
that our methods still have excellent performance, even after
missing information of raw datasets or artificial dropout of
non-zero expression. Therefore, our methods are stable and
robust enough to be used in many datasets and are almost
insensitive to dropout or absence, which could change the
structure of data.

Scalability of methods

With the development of sequencing techniques, the scale
of single-cell data becomes larger and larger. The total cell
numbers of scRNA-seq datasets increase from several hun-
dreds to >40 000. Therefore, to satisfy the increasing de-
mand of clustering large-scale scRNA-seq data, scziDesk
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Figure 6. Robustness and scalability experiments in real datasets. (A) The
upper part shows the change of ARI values from whole data to 80% and
60% downsampling data and the bottom part shows the results of raw data
and disturbed data with 15% artificial dropout in four real datasets. (B)
ARI values in different scales of ‘Park’ data. (C) Average elapsed time (sec-
onds) in different scales of ‘Park’ data.

should be able to finish the clustering procedure within a
reasonable time frame. Here, we will compare the running
time of scziDesk with the other six methods in a mouse kid-
ney dataset called ‘Park’ (47), which contains 43 745 cells
in total. We use the same 10 random seeds to downsam-
ple data with 2000, 5000, 10 000 and 20 000 cells. Since
the running time is too long for some methods, we only
tested their performance of entire data for the first four ran-
dom seeds when we use CIDR, SOUP and RaceID. Fig-
ure 6 and Supplementary Figure S8 compare the ARI val-
ues (Figure 6B), NMI values (Supplementary Figure S8A)
and the average elapsed time in seconds (Figure 6C) of dif-
ferent scale data for each method. From the histogram of
ARI values, we can see that scziDesk, the red one, per-
forms excellently in every data size. Besides, little change of
ARI and NMI values can be seen through downsampling,
which indicates the robustness of scziDesk. Meanwhile, the
running time of scziDesk is less than other six methods,
except SIMLR with large-scale version. Actually, SIMLR
uses approximation methods for large-scale datasets, which
would reduce the accuracy of clustering results. Although it
is faster than scziDesk, its ARI value is very low. Contrary
to previous methods, such as CIDR and RaceID, the run-
ning time of which increases dramatically through the data
scale, the running time of scziDesk increases linearly and
it can handle datasets with 40 000 cells in 1000 s. The effi-
ciency of our method allows for analyzing scRNA-seq data
with even larger scale, e.g. >100 000. Therefore, our method
holds the better scalability to integrate running time with
clustering accuracy.

ScziDesk is insensitive to cluster number

It is worth noting that the authors of two datasets, ‘Chen’
and ‘Tosches turtle’, provided coarse and fine cluster divi-
sions in their original papers. During the previous experi-

Figure 7. Perturbation experiments for cluster number. (A) Comparison of
ARI values in two real datasets with coarse and fine divisions. (B) Change
of ARI values with the disturbed cluster number in five real datasets.

ments, we used their fine divisions: ‘Chen’ has 46 cell types
and ‘Tosches turtle’ has 15 cell types. We also performed
experiments on their coarse divisions (‘Chen’ has 11 cell
types and ‘Tosches turtle’ has 8 cell types). The specific ARI
and NMI results can be found in Figure 7A and Supple-
mentary Figure S8B. It can be seen that when cluster num-
ber is reduced, the performance of almost all methods has
been improved, except for SIMLR on ‘Chen’ dataset and
SOUP on ‘Tosches turtle’ dataset. ScziDesk has improved
significantly on both datasets, especially in ‘Tosches turtle’
dataset, from the original ARI of 0.62 and NMI of 0.61 to
ARI of 0.91 and NMI of 0.85. This explains to some extent
that scziDesk performs clustering well regardless of whether
the division of the dataset is coarse or fine. In addition, we
also tested the performance of scziDesk for other datasets
by adding artificial cluster number perturbations. Specifi-
cally, assume that the true cluster number is k; we set the
experimental cluster number in {k − 2, k − 1, k, k + 1, k +
2}. Figure 7B and Supplementary Figure S9 show that the
best clustering performance of scziDesk may not necessar-
ily correspond to the true cluster number on some datasets,
but basically all appears in the case where it is increased or
decreased by one cluster, and the difference between whole
results is generally not large. When the true cluster num-
ber is small, such as ‘Klein’ (four clusters), ‘Qx Trachea’
(five clusters) and ‘QS Diaphragm’ (five clusters), reducing
the cluster number near the true one shows a greater im-
pact than increasing the cluster number, which is reason-
able since assuming that the dataset contains only two or
three cell populations would severely disrupt its structure.
Overall, scziDesk shows favorable stability for varying clus-
ter numbers.

Selecting highly variable genes and self-training strategy im-
prove clustering performance

The ultimate difference between scDeepCluster and
scziDesk mainly includes two points: scziDesk selects
top (default 500) highly variable genes (the impact of
highly variable genes’ number will be discussed in the
next section), while scDeepCluster chooses whole genes as
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Figure 8. Comparison between scDeepCluster and scziDesk. (A) Com-
parison of ARI values for three methods scDeepCluster, scDeepCluster +
select variable genes and scziDesk in 20 real datasets. (B) Comparison of
ARI and NMI values for scziDesk with and without KL divergence loss
in 20 real datasets.

input features, resulting in slow running speed and high
memory requirements. ScDeepCluster just considers the
relationship between each point and the cluster center in
the latent space and neglects the pairwise distance between
cells, while scziDesk adds affinity constraint of pairwise
similar points on the basis of clustering process. From the
comparison of previous experimental results, scziDesk is
far superior to scDeepCluster in both simulated and real
datasets. Specially, we also used the one-sided pairwise
t-test to compare their results on 20 real datasets and the
P-values for ARI and NMI are 6.8 × 10−6 and 3.7 ×
10−3, respectively, which fully validates our claim. In order
to further illustrate the impact of these differences, we
additionally designed two groups of control experiments
on 20 real datasets. First, we changed the network input
of scDeepCluster to the same expression profile of 500
highly variable genes as in scziDesk. From the experi-
mental results in Figure 8A and Supplementary Figure
S10, the modified scDeepCluster achieves better clustering
performance than original scDeepCluster on >16 datasets.
We use the one-sided pairwise t-test to compare these two
sets of results, and the P-values are 1.2 × 10−4 (ARI) and
1.1 × 10−2 (NMI), respectively, which demonstrates that
the improvement is significant. However, the modified
scDeepCluster is still inferior to scziDesk. Specifically, the
ARI and NMI values of scziDesk are significantly higher
than modified scDeepCluster on >15 datasets, with the
P-values of 3.6 × 10−3 (ARI) and 1.5 × 10−2 (NMI) given
by one-sided pairwise t-test. All of the P-values comparing
the results of scDeepCluster, modified scDeepCluster and
scziDesk are shown in Supplementary Figure S11A.

In addition, we explore the effect of self-training strategy
on the clustering results, i.e. the importance of the L3 loss
function to the clustering performance in the algorithm.
Here, we compare the scziDesk performance with and with-

out L3 in loss function using the same 20 real datasets. From
the results in Figure 8B, we see that the overall clustering
performance decreases when we throw away L3 loss. Specifi-
cally, 17 datasets give the significantly lower ARI value than
before once we delete L3 loss. We also conducted one-sided
pairwise t-test to compare the results with and without L3
loss function. The P-values of ARI and NMI are 4 × 10−4

and 2 × 10−3, respectively, which shows that there is a sig-
nificant improvement in clustering results after considering
self-training procedure as part of training. So far, we have
proved that similar points’ affinity constraint has a signifi-
cant effect on clustering performance, which is in line with
our expectation since the self-training procedure can bring
the cells with similar expression patterns closer together and
avoid the influence of outliers on the results.

DISCUSSION AND CONCLUSION

ScRNA-seq plays a vital role in the understanding of cel-
lular heterogeneity, which is concealed by traditional bulk
RNA sequencing. To this end, developing a method to dis-
tinguish different cell types from sequencing data is of great
importance. In this paper, we proposed a model-based clus-
tering method scziDesk for scRNA-seq data, which com-
bines data likelihood modeling with a self-training soft K-
means algorithm. Our method has four main advantages:
first, we applied a deep autoencoder technique with prob-
abilistic statistical modeling to estimate the expression of
single cells, denoising the data while performing non-linear
dimension reduction on the data simultaneously. Second,
we select top (default 500) highly variable genes and only
use the expression of these genes to perform cell clustering.
This step removes those redundant low-expression genes
that may contaminate cluster results and can increase clus-
tering speed dramatically. Third, we use the soft K-means
clustering algorithm with probability allocation instead of
the hard K-means clustering method, which can redress
the bias caused by incorrect allocation to a certain extent.
Fourth, on the basis of soft K-means clustering loss, the cus-
tomized self-training strategy is added as a part of train-
ing to strengthen the relationship between adjacent cells
dynamically. We conducted more experiments to show the
merit of our method in other aspects.

Compare with and without stack autoencoder architecture

In our neural network setting, we used the traditional au-
toencoder network that has two hidden layers for encoder
and decoder parts. The dimensions of the input layer and
two hidden layers are 500, 256 and 64, respectively. Another
popular autoencoder structure called stack autoencoder is
often used. As the term suggests, the stack autoencoder im-
plements twice or more data compression and data recon-
struction. In order to explore whether this network struc-
ture can improve clustering performance significantly, we
compared scziDesk with and without stack autoencoder ar-
chitecture in 20 real datasets. The dimensions of the input
layer and three hidden layers for stack encoder are 500, 256,
64 and 500, respectively. From Figure 9A, we can see that
the result without stack structure is slightly better than that
with stack structure in 20 real datasets. We used one-sided
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Figure 9. Network sensitivity analysis. (A) Comparison of ARI values with
and without stack autoencoder. (B) Comparison of ARI values with and
without Gaussian noise. (C) Box plot comparing ARI values of scziDesk
using different numbers of highly variable genes. (D) Dot plot of compar-
ing ARI values of selecting different numbers of highly variable genes. The
size of the dot stands for the rank among five results and the color stands
for the ARI values.

pairwise t-test for them and got a P-value of 0.017, which il-
lustrates that utilizing stack structure is redundant. Overall,
our neural network structure selection is appropriate.

Compare with and without Gaussian noise

Overfitting is an important topic in machine learning and
deep learning. In order to prevent this phenomenon, we add
Gaussian noise in each input for hidden layers in our en-
coder network. To test the influence of Gaussian noise for
clustering results, we also implement control experiments
with and without Gaussian noise. Figure 9B shows that the
performance with Gaussian noise is better in nearly half of
datasets, but worse in the other half. The P-value of two-
sided pairwise t-test for them is 0.84, which demonstrates
that the difference between them is not significant. Thus,
Gaussian noise has virtually nothing to do with clustering
performance, and our neural network does not appear to
suffer from the overfitting phenomenon.

Compare selecting different numbers of variable genes

In our method, we selected the top 500 highly variable
genes by default to conduct clustering analysis. Actually,
highly variable genes can capture more biological informa-
tion than lowly variable genes that have little influence over
determining cell types. Moreover, by selecting highly vari-
able genes, we can reduce the model and time complexity
of our clustering algorithms. To test the influence of highly
variable genes’ number for results, we vary them from 300
to 2000 and apply scziDesk on 20 real datasets. We used
box plot (Figure 9C) and dot plot (Figure 9D and Sup-
plementary Figure S12) to show the ARI (NMI) values of
20 real datasets by selecting 300, 500, 1000, 1500 and 2000
highly variable genes, respectively. Overall, the performance
of the highly variable genes’ number 300 was a little worse

Figure 10. Additional real dataset analysis. (A) Comparison of ARI values
between Seurat, SC3 and scziDesk in 10 real datasets. (B) Comparison of
optimal cluster number estimated by Seurat with the true cluster number
in 10 real datasets.

than the other four cases, and the mean and variance of the
other four groups of results did not seem to differ much.
Furthermore, we first apply ANOVA variance test to find
out that the number of selected genes is a significant fac-
tor for clustering performance (P-value for ARI is 7.68 ×
10−4 and 2.21 × 10−4 for NMI). Then, we conduct pair-
wise t-test between every two groups from five groups and
find that only the performance of 300 highly variable genes
is significantly lower than others, while the differences be-
tween other groups are not significant. The P-value of these
tests can be found in Supplementary Figure S11C. Specifi-
cally, we find that for those datasets with massive cell types,
such as ‘Chen’, ‘Tosches turtle’ and ‘Young’, selecting more
highly variable genes does help improve clustering perfor-
mance. Therefore, considering the relatively small change
of clustering performance in general, we recommend using
the top 500 highly variable genes for clustering as a priority.

Additional comparison with Seurat and SC3 in real datasets

As we mentioned in the ‘Results’ section, we did not com-
pare with Seurat and SC3 in whole simulation and real
datasets for fairness. We indeed compare our method with
Seurat and SC3 on 10 real datasets. Since clustering perfor-
mance of Seurat is highly dependent on model parameters,
especially ‘resolution’, here we evaluate its performance un-
der default parameters of pre-process and PCA selection
procedure, and then take the resolution parameter in the
clustering step to range from 0.5 to 1.5 by 0.1, which is rec-
ommended by the author of Seurat. We consider the max-
imum ARI values under all of these resolutions as its re-
sults and simultaneously record the corresponding cluster
number estimated by itself. For SC3, we used the approxi-
mation version of SC3 when the cell number is >5000 since
it is really time consuming on large-scale datasets. Figure
10A shows the ARI values of Seurat, SC3 and scziDesk in
five small datasets and five large datasets. Despite selecting
the optimal resolution parameter from the candidate range,
Seurat still achieves unsatisfactory performance in ARI val-
ues, which is mostly due to its linear dimension reduction
and overestimation of the cluster numbers (shown in Fig-
ure 10B). As for SC3, although in small datasets it may per-
form well, its results decrease dramatically and the ARI val-
ues are much lower than scziDesk when the number of cells
exceeds 5000. Overall, scziDesk is not inferior to these two
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Figure 11. Comparing the similarity of differentially expressed genes. (A)
Comparison of similarity of DEGs in 14 scziDesk clusters with golden
standard 14 cell types. (B) Comparison of similarity of DEGs in 14 Seurat
clusters with golden standard 14 cell types.

widely used methods and can be applied in both small and
large datasets well.

Compare selected differential expression genes’ list

Identifying cell clusters lay the basic foundation of down-
stream analysis of single-cell data analysis, such as finding
differential expression genes (DEGs) and cell function an-
notation. Here, we selected a mouse bone marrow dataset
(45), ‘Quake 10x bone marrow’, to find out whether our
method is beneficial for downstream analysis. The original
authors first collected 14 cell types from cell ontology (48),
including a small fraction of the progenitor of hematopoi-
etic stem cells (HSCs) and most of their progeny cells in
three HSC differential branches. Then, they applied the
standard annotation method for the sequencing data, i.e.
using cluster-specific gene expression of known markers and
genes to assign cell type annotations to each cluster. In this
paper, we first used our method scziDesk to get 14 cell clus-
ters and showed the comparison of UMAP visualization
plot with the given true label in Supplementary Figure S13.

In addition, we applied function ‘FindAllMarkers’
with default parameters in Seurat (22) package to find
out the DEGs of each cluster. Moreover, we used the
completely same way to obtain the DEGs under the
golden standard clusters with cell type annotation, and
also under the Seurat standard analysis pipeline with
resolution parameter equal to 0.3 to get 14 clusters. For
each method, we select top 100 DEGs of each cluster
and compare their overlap to find out whether we can
annotate every cluster correctly to a known cell type in
golden standard. The total similarity heat maps of marker
genes’ list are shown in Figure 11, where similarity =
number of overlapped DEGs/number of total selected DEGs.
The rows stand for 14 clusters determined by clustering
methods and columns stand for known cell types that are
regarded as golden standard. From Figure 11A, we can see
that for every cell type we have only one cluster that holds
the highest similarity in differentially expressed genes’ list.
Actually, most similarities are >0.9, such as the cluster 0

Table 1. Optimal parameter settings of scziDesk for real datasets

scziDesk

γ λ ARI (default) ARI

Adam 0.001 0.001 0.8680 0.8953
Bach 0.001 0.001 0.8738 0.9270
Chen 0.001 0.001 0.7677 0.8637
Klein 0.001 0.01 0.7984 0.9356
Muraro 0.1 0.1 0.6784 0.8839
Plasschaert 0.1 0.1 0.8634 0.9216
Pollen 0.1 0.01 0.8476 0.9225
Qx Bladder 0.001 0.001 0.9858 0.9900
Qx Limb Muscle 0.1 0.001 0.9441 0.9754
Qx Spleen 0.01 0.01 0.9197 0.9369
Qx Trachea 0.1 0.1 0.9123 0.9555
QS Diaphragm 0.1 0.01 0.9517 0.9715
QS Heart 0.1 0.001 0.9324 0.9578
QS Limb Muscle 0.1 0.01 0.9743 0.9837
QS Lung 0.01 0.01 0.7401 0.8659
QS Trachea 0.001 0.001 0.8085 0.8565
Romanov 0.001 0.001 0.7603 0.7831
Tosches turtle 0.1 0.001 0.6165 0.7210
Wang Lung 0.001 0.1 0.8975 0.9717
Young 0.01 0.01 0.6836 0.7939

The default value of ARI refers to the median value of 10 repeated tests
under default parameter setting. Qx refers to Quake 10x and QS refers to
Quake Smart-seq2.

with monocyte, and only three clusters give similarities
of ∼0.7. We can annotate each cluster determined by our
method to a specific cell type by finding out the most
similar cell type. However, for Seurat clustering in Figure
11B, although most clusters can match to unique cell type,
there is no cluster match with the 14th cell type, Fraction
A pre-pro B cell. Therefore, by comparing the differentially
expressed genes, our clusters have high similarities with
the golden standard cell types, which makes the cell type
annotation easy and correct. Additional feature plots of
some important identifier marker genes for cell types can
be seen in Supplementary Figure S14. For example, Csf1r
is an important marker gene to distinguish monocyte or
monocyte progenitor from other types of cells (49). From
the feature plot, cells that highly express Csf1r get together
in cluster 13 of our clustering results and this cluster can
be annotated as monocyte; that is, our clustering results
match with background biology knowledge. In summary,
applying our clustering method does contribute to the
scRNA-seq data downstream analysis.

When utilizing deep learning technology to analyze
scRNA-seq data, compared to traditional MSE-based au-
toencoder, modeling with a reasonable parameter distribu-
tion like ZINB can often learn more cluster-friendly latent
space and achieve better clustering performance. A large
part of the reason is that the MSE-based autoencoder fails
to learn the gene expression dispersion and cannot interpret
the sparsity of data. Although traditional statistical meth-
ods can also estimate the parameters of these distributions,
they usually add some additional assumptions, such as con-
jugate Bayesian priors or specific forms of generalized linear
models, which cannot fully capture and portray the complex
dependencies among parameters. The neural network can
effectively solve the model on a wider domain and capture
the potential low-dimensional manifold of the data with
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complex dependencies at the same time. This method of es-
timating parameters is fascinating and inspiring. In addi-
tion, although assuming that latent space follows the Gaus-
sian mixture model (31) has perfect statistical interpreta-
tion significance, in practice, clustering algorithms based on
distance measures like soft K-means are often more effec-
tive and robust since the component centers of the Gaus-
sian mixture model are not always consistent with the em-
bedding of latent representation (50). Besides, complex low-
dimensional manifolds cannot be characterized by mixture
Gaussian distributions at all times. In manifold learning, re-
taining affinity relationships between similar samples is crit-
ical to preserve global and local structure of the data. Since
the raw data of single-cell transcriptome are highly noisy,
the pairwise distance relationship in the high-dimensional
space is not so reliable; thus, we consider characterizing
the constraints between the pairwise similarities in the low-
dimensional latent space. The experimental results fully il-
lustrate that our self-learning strategy effectively captures
the data structure and assists the clustering process. Over-
all, perfect data representation learning with an enhanced
soft clustering algorithm achieves excellent performance.

In recent years, multi-task learning has attracted increas-
ing attention in the field of deep learning. How to balance
the training process of multiple objectives is also an essential
and worth exploring issue. In this paper, we need to judge
and weigh the importance of multiple objective functions
for data fitting and model optimization. Without any pref-
erence, we hope that the contribution of the three loss func-
tions to the gradients is at the same level; that is, by adjust-
ing the weight parameters γ and λ, their values are compa-
rable and are on the same order of magnitude. In the spe-
cific algorithm implementation, L1 is averaged over all cells
and genes, while L2 and L3 are averaged over all cells, so L2
and L3 are naturally larger than L1. Without weighted re-
coordination, simply superimposing the three loss functions
together will most likely destroy the global structure of gene
expression data. Therefore, in the ‘Analysis of real data’ sec-
tion, we set the hyperparameters γ and λ in the scziDesk
model to 0.001 for all datasets by default. Actually, when
we take the grid search method to find the hyperparameter
with the best clustering performance for each of the 20 real
datasets, we can discover that the optimal hyperparameters
for some datasets may not be the default value. Specifically,
we assume that γ and λ are both selected from (0.1, 0.01,
0.001); the parameter combinations that achieve the high-
est ARI and NMI values are shown in Table 1 and Supple-
mentary Table S2. It can be seen that taking the results of
default parameters as a reference, on average, the ARI and
NMI values of 20 real datasets under the optimal parame-
ters have increased by nearly 0.07, and individual datasets
have even improved by up to 0.2. The P-values of one-sided
pairwise t-test are 2.2 × 10−4 (ARI) and 9.0 × 10−7 (NMI)
(see Supplementary Figure S11B), respectively, which fully
illustrates that optimal hyperparameter search can improve
the results significantly. From the perspective of the optimal
parameter matching pattern, we recommend that users can
set the value of the parameter λ not greater than γ as much
as possible.

Determining the number of clusters is an open problem.
Although many statistical methods have been proposed to

solve this problem, such as gap statistic (51), silhouette score
and so on, the results are not always satisfactory. For some
datasets, the estimated cluster number by gap statistics can
be the same as the true cluster number (as shown in Sup-
plementary Figure S15), while it is overestimated most of
the time. In the ‘Results’ section, we have validated that our
method is very robust and stable against perturbations of
cluster numbers. Moreover, in our opinion, the true cluster
numbers should be given by biologists. People may like to
find more clusters if their interest is to study the fine-grained
heterogeneity, or may like to reduce the number of clusters
if they do not want to care too much about details. There-
fore, it is hard to determine the exact cluster number K with-
out background knowledge. Maybe it is more reasonable
to combine it with some other downstream analysis during
scRNA-seq data analysis, such as marker gene identifica-
tion and cellular ontology annotation.

A controversial topic is whether scRNA-seq data are
zero-inflated. Recently, Svensson (52) pointed out that
scRNA-seq data based on droplet experiments are not zero-
inflated, which means that NB distribution without zero in-
flation is sufficient to characterize these data. Twelve of the
real datasets we used are based on droplet experiments, in-
cluding inDrop, Drop-seq, 10x, etc. From their experimen-
tal results, scDesk and scziDesk modeling each win half
and the P-values of the two-sided pairwise t-test for ARI
and NMI values are 0.2340 and 0.4498 (see Supplemen-
tary Figure S11B), respectively, which demonstrates that
the difference between them is not significant. Thus, for
droplet-based datasets, we suggest that scDesk can also be
considered. In addition, our model does not consider non-
biological variation such as batch effect biases. For datasets
with strong batch effects, we recommend that users can use
some existing batch effect correction methods like pagoda2
(53) to remove these non-biological variations before using
our clustering method.

All in all, we validated our method in simulation and real
datasets by comparing the median ARI and NMI values
under different seeds with five existing methods. Our sim-
ulation experiments used a recently developed R package
‘splatter’ to generate data similar to reality. We considered
as many situations as we may encounter in real datasets,
including ‘dropout’ events, different cluster number, vari-
able cluster size and so on. Our method, scziDesk, per-
forms better than other methods in almost all situations.
For real dataset analysis, we tested 20 datasets from dif-
ferent species, organs and sequence platforms. Our model
ranks in the top two in most datasets among the eight meth-
ods and never falls into the last three. Other existing meth-
ods may fail to discover genuine clusters in some datasets
and sometimes have very poor results with ARI or NMI
< 0.2. Contrary to most deep learning-based methods with
high dependence on parameters, our method demonstrated
its robustness and stability in our extra experiments, includ-
ing downsampling and dropout. We also verified that our
method is not too sensitive to the neural network structure.
In the scalability experiments, we showed that our method
can finish clustering in the shortest time with the best perfor-
mance compared to other methods. When varying the clus-
ter number within reasonable limits, our method would not
cause clustering performance to collapse. Most importantly,
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our method helps improve differential expression analysis
and facilitates cell annotation. All in all, our method is su-
perior to most existing methods, considering accuracy, ro-
bustness and efficiency, thus satisfying the growing demand
of scRNA-seq data analysis.

Nowadays, fast-developing single-cell sequencing can
profile genetic, epigenetic, spatial, proteomic and lineage in-
formation in individual cells. It is both an opportunity and
a challenge for integrative single-cell analysis that learns
across multiple types of data. In the future, we are interested
in extending our clustering method to multi-omics research.

DATA AVAILABILITY

All real datasets and the source codes for this study
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