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A B S T R A C T

Exposure to head impacts may alter brain connectivity within cortical hubs such as the default-mode network
(DMN). However, studies have yet to consider the confounding effects of altered resting cerebral blood flow
(CBF0) and cerebrovascular reactivity (CVR) on changes in connectivity following sub-concussive impacts. Here,
23 Canadian collegiate football players were followed during a season using calibrated resting-state MRI and
helmet accelerometers to examine the interplay between the neural and vascular factors that determine func-
tional connectivity (FC). Connectivity-based analyses using blood oxygen level dependent (BOLD) and cerebral
metabolic rate of oxygen consumption (CMRO2) mapping were used to study the DMN longitudinally. Network-
specific decreases in CBF0 were observed one month following the season, while impaired CVR was documented
at both mid-season and one month following the season, compared to pre-season baseline. Alterations in CBF0
and BOLD-based CVR throughout the season suggest that neurophysiological markers may show different sus-
ceptibility timelines following head impacts. DMN connectivity was increased throughout the season, in-
dependent of changes in cerebrovascular physiology, suggesting that alterations in FC following sub-concussive
impacts are robust and independent of changes in brain hemodynamics. No significant correlations between
impact kinematics and DMN connectivity changes were documented in this study. Altogether, these findings
create a strong paradigm for future studies to examine the underlying neural and vascular mechanisms asso-
ciated with increases in network connectivity following repeated exposure to sub-concussive collisions, in an
effort to improve management of head impacts in contact sports.

1. Introduction

Over the course of a season, collegiate football players experience a
large number of head impacts that are sub-concussive (Broglio et al.,
2011; Reynolds et al., 2017a). Sub-concussive impacts are defined as
impacts that do not cause the array of symptoms typically associated
with sport-related concussion (SRC; Mccrea et al., 2003; McCrory et al.,
2013; Nelson et al., 2013). In recent years, the acute and chronic effects
of repeated exposure to sub-concussive impacts has raised concern
within the sport community (Findler, 2015; Omalu, 2015; Sanders,
2016). In general, these concern are driven by the fact that cumulative
exposure (Montenigro et al., 2016; Stamm et al., 2015), and SRC history
(Churchill et al., 2017; Tremblay et al., 2014), may contribute to
functional and structural changes within the brain that are observed

longitudinally in retired professional athletes.
Neuroimaging has emerged as an informative tool to investigate the

effects of sub-concussive head trauma on brain functional integrity. One
modality of particular interest is resting-state functional magnetic re-
sonance imaging (rs-fMRI), which reflects the degree of synchrony be-
tween low-frequency spontaneous fluctuations in the Blood Oxygen
Level Dependent (BOLD) signal (Biswal et al., 2007; Cordes et al., 2000;
Kannurpatti and Biswal, 2008). Rs-fMRI can be used to examine in-
trinsic brain activity and coordination across functionally-related but
spatially distinct brain regions and quantified as functional connectivity
(FC) within the whole-brain (Fox et al., 2005; Shirer et al., 2012), or
specific networks of interest (Finn et al., 2015), such as the default
mode network (DMN; Greicius et al., 2003, 2009; Uddin et al., 2009).
Alterations in BOLD-FC have been documented following season-long
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exposure to sub-concussive head impacts (Abbas et al., 2015a, 2015b;
Reynolds et al., 2017b; Slobounov et al., 2017), and acute onset par-
ticipation in a single rugby game (Johnson et al., 2014), suggesting that
repetitive head trauma may alter brain network organization, without
the presence of a concussion.

In fMRI, BOLD is used as a surrogate for neuronal activity (Ogawa
et al., 1990) by way of the relationship between neural activation, local
increases in blood flow (due to neurovascular coupling), and sub-
sequent decreases in deoxy-hemoglobin concentration, which lengthens
T2* relaxation. The functional hyperemia following neuronal activation
relates the increase in signal to greater cellular metabolic activity,
which can be quantified indirectly using BOLD-based imaging (Davis
et al., 1998). During rs-fMRI, spontaneous fluctuations in the BOLD
contrast reflect a complex interplay between neural, vascular and me-
tabolic factors, which together, make up the signal used to infer FC
measurements (Carusone et al., 2002; Kannurpatti et al., 2010; Liu,
2013; Tak et al., 2014). Though it has been shown that resting-state
BOLD fluctuations may partially reflect local metabolic processes in the
absence of a stimuli (Fukunaga et al., 2008), studies using BOLD-based
rs-fMRI to explore the effects of head impacts on FC have yet to account
for the interdependency between the BOLD signal and local fluctuations
in perfusion based on neurovascular coupling (Chu et al., 2018; Tak
et al., 2015, 2014). This relationship may arise from spurious correla-
tions due to macrovascular drainage routes across the brain (Jo et al.,
2010; Tak et al., 2015) or cerebral blood flow (CBF) fluctuations as a
function of neuronal activity, and changes in cerebral metabolic rate of
oxygenation (CMRO2; Chuang et al., 2008; Fukunaga et al., 2008; Liang
et al., 2013; Viviani et al., 2011; Wu et al., 2009; Zou et al., 2009).

This dependency of the BOLD signal on multiple factors is an im-
portant limitation given that baseline cerebral blood flow (CBF0) and
cerebrovascular reactivity (CVR) affect the signal (Chu et al., 2018; Li
et al., 2014, 2012; Liang et al., 2013; Liu, 2013), and both measures
may be altered following exposure to head impacts (Slobounov et al.,
2017; Svaldi et al., 2017, 2015). CBF provides an index for the mean
delivery of arterial blood to cerebral tissues over time, while CVR re-
flects the capacity of the arterial blood vessels to alter blood flow in
response to a vasoactive stimulus (Mandell et al., 2008; Yezhuvath
et al., 2009). Additional research has also shown that in areas with
impairments in CVR, there may be an uncoupling between neuronal
activation and blood flow, which inherently confounds BOLD-based
fMRI (Para et al., 2017), and network BOLD-FC measurements (Tak
et al., 2015, 2014). Preliminary changes in FC following exposure to
repetitive head trauma (Abbas et al., 2015a, 2015b; Reynolds et al.,
2017b; Slobounov et al., 2017) are often interpreted as impairments in
neural connectivity (decreased FC), or hyper-connected compensatory
mechanisms for neural recruitment (increased FC). However, it is cri-
tical that we consider the robust effect of physiological modulators
(CBF0, CVR and CMRO2; Chu et al., 2018; Fukunaga et al., 2008) on the
BOLD signal, in order to acheive more informed conclusions regarding
the potential changes in network FC following participation in contact
sports.

A large volume of studies have provided evidence that the bio-
mechanics of impacts sustained by football players across all sports
levels vary between positions (Broglio et al., 2012; Crisco et al., 2012;
Crisco et al., 2010, b; Mihalik et al. 2007), session types (i.e. games vs.
practices; Mihalik et al. 2007b; Schmidt et al. 2016), starting status
(Broglio et al. 2011), and, even based on different offensive strategies
(Martini et al. 2013). Changes in impact biomechanics, and rates of
head injuries, have also been documented over the course of a season,
as generally more SRC (Kerr et al. 2015), and high g-force sub-con-
cussive collisions (Slobounov et al. 2017), are sustained during the first
weeks of practice. Despite these findings however, there remains a gap
in knowledge about the relationship between sub-concussive impact
kinetics and possible changes in network FC.

In this work, we use calibrated resting-state imaging (Wu et al.
2009) to account for physiological modulators related to the BOLD
signal, and to investigate the effects of repetitive sub-concussive head
impacts on changes in CMRO2-based FC strength. Longitudinal changes
in BOLD- and CMRO2-based FC were examined in the DMN, throughout
a season of collegiate football, given previous evidence of vulnerability
of the DMN following exposure to head impacts (Abbas et al. 2015a,
2015b; Johnson et al. 2014; Reynolds et al. 2017b; Slobounov et al.
2017). Changes in FC over time were correlated with head impact ki-
nematics, based on data acquired using helmet accelerometers, in order
to explore the relationship between exposure and changes in network
connectivity. We hypothesized that differences in BOLD-based DMN
connectivity would be significantly confounded by changes in CBF0 and
CVR throughout the season. Furthermore, we predicted that CMRO2-
based correlations would show differences in the strength and spatial
distribution of FC following exposure to head impacts, while mini-
mizing the confounding effects of vascular hemodynamics. Finally, we
hypothesized that increased exposure to head impacts would be asso-
ciated with greater changes in network connectivity.

2. Methods

2.1. Subjects and ethical approval

The protocol used in this work was approved by the Queen's
University Health Sciences Research Ethics Board (Kingston, ON,
Canada) and informed consent was obtained for all participants. In this
study, 26 collegiate Canadian football players were enrolled in a
longitudinal neuroimaging study (Fig. 1). The first imaging time point
was completed at pre-season baseline, within two months before the
first contact practice at the start of the training camp (‘PRE’). Data from
three of these subjects were removed due to anxiety in the magnet bore
(N=2), and poor data quality due to excessive motion (N=1). Of the
remaining 23 athletes (Table 1), 15 were brought back for neuroima-
ging after a 14-day training camp period, and the first two season games
(post training-camp, ‘PTC’). Eight players did not complete the mid-
season time point due to SRC (N=2) or season ending injuries (N=6).
One month following the last game of the season, 12 athletes completed

Fig. 1. Schematic timeline of the season, scheduled
scan times and removal of subjects. The timeline of
the study design shows when football players were
scanned; prior to the first contact practice of the
season (day 1 of training camp; PRE), following
training-camp and two season games (PTC), and one
month following the last playoff game of the season
(POST). Subjects removed at each time point are il-
lustrated with a dotted line. The number of subjects
in bold at each time point were included in the
mixed analysis for the effect of time, on each para-
meter.
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the imaging at the final time point (post-season, ‘POST’) in order to test
whether physiological and connectivity-based metrics had returned
towards baseline values. This was done because athletes did not engage
in any contact activities following the last competitive game of the
season, allowing for possible recovery of the changes in imaging mar-
kers. The three athletes that did not complete the post-season imaging
were removed due to SRC (N=2) sustained between the PTC and POST
time points and a season-ending knee injury (N=1).

2.2. Characterizing exposure to sub-concussive impacts

All athletes enrolled in this study were required to wear the Riddell
Revolution Speed helmet (Riddell, Elyria, OH). Helmets were mounted
with gForce tracker accelerometers (gForce Tracker, GFT; Hardware
version GFT3S ver4.0, Artaflex Inc., Markham, ON, Canada), which
provide in-depth kinematic information about each impact to the head
(Fig. 2). The GFT hardware has been validated using laboratory con-
trolled impacts, showing that the system is appropriate for monitoring
exposure to head impacts (Campbell et al. 2016). The five impact lo-
cations (i.e. ‘front’, ‘top’, ‘right’, ‘left’ and ‘back’) were binned based on
information about elevation and azimuth angle, similar to Mihalik et al.
(2007). The minimum peak linear acceleration for collection was set to
15 g, to align with previously published literature using the same
technology (Campbell et al. 2016).

A total of three impact kinematic features were used to characterize
exposure for each player. These included the total hit count, the mean
linear acceleration (g) and the mean rotational velocity (°/s), averaged
on a per session basis, as an index for the daily exposure that each
athlete sustained between the PRE and PTC time points. Only these
impacts were used in the linear regression analyses of the neuroimaging
data between the PRE and PTC time points to study the acute effects of
sub-concussive impacts.

2.3. Structural imaging and tissue segmentation

Imaging data were collected from all subjects on a Siemens 3.0 T
Magnetom Tim Trio system using a 32-channel head coil receiver. An
anatomical T1-weighted MP-RAGE (magnetization prepared rapid ac-
quisition gradient echo) was acquired for accurate segmentation and
registration into standard space using the following parameters:
TR=1760ms, TE=2.2ms, time of inversion (TI)= 900ms, voxel
size= 1mm isotropic, field of view (FOV)=256×256mm, flip
angle= 9°, receiver bandwidth=200Hz/pixel. Subject-specific grey-
matter (GM), white-matter (WM) and cerebrospinal fluid (CSF) maps
were generated for each subject using 3D automatic segmentation
(FAST) (Zhang et al. 2001). The T1 and tissue maps were then spatially
resampled onto the Montreal Neurological Institute (MNI) standard

template (2-mm isotropic) using affine (12 DOF) (Jenkinson et al.
2002), and non-linear warp-fields (FNIRT; Andersson et al. 2007).

2.4. Dual-echo resting-state fMRI and pre-processing

To derive CMRO2 fluctuations, resting-state BOLD and perfusion
data were acquired simultaneously using a dual-echo pseudo-con-
tinuous arterial spin labeling sequence (pCASL; Alsop et al. 2015; Dai
et al. 2008) with echo planar imaging (EPI) readout: TR=4000ms,
TE1/TE2=10/30ms, FOV=250×250mm, flip angle= 90°, voxel
size= 3.9mm isotropic, post-labeling delay (PLD)=1000ms, slice
gap=0.773mm, label offset= 100mm, receiver band-
width= 2604 Hz/pixel, EPI factor= 64, tagging duration 1.665 s (Wu
et al. 2007). A total of 25 axial slices were acquired on a 64× 64 matrix
(7/8 partial Fourier) in ascending order for whole brain coverage using
parallel imaging (GRAPPA acceleration factor= 2). During the RS scan
(9min), subjects were instructed to keep their eyes open, focus on a
fixation cross, and remain awake. EPI images were calibrated using a
pre-scan normalized image acquired using the body transmit/receiver
coil, which corrects for inhomogeneities in the receive sensitivity of the
32-channel head coil.

RS data were preprocessed using a combination of FSL (Jenkinson
et al. 2012), AFNI (Cox 1996) and in-house designed Matlab (MATLAB
2015b, The MathWorks, Inc., Natick, Massachusetts, United States)
scripts (Fig. 3A). After discarding the first two volumes to ensure MR
steady state, both echoes were split and motion corrected using FSL's
MCFLIRT and the first volume as the reference template (Jenkinson
et al. 2002; Jenkinson and Bannister, 2002). Once re-aligned, the vo-
lumes were averaged over time to extract non-brain tissues using the
brain extraction tool (BET). The BOLD data were then reconstructed
using a surround averaging of the second echo (TE=30ms) and low-
pass filtered at half the Nyquist frequency (i.e. 1/4TR; Tak et al., 2014,
2015). The ASL data (TE=10ms) were high-pass filtered with a cutoff
frequency of 1/4TR to remove low-frequency BOLD contamination. All
BOLD and ASL time frames were spatially transformed into MNI space
(2-mm isotropic) via the structural scans, using boundary-based regis-
tration (Greve and Fischl 2009), and spatially smoothed using a 8mm
full-width at half-maximum (FWHM) Gaussian kernel. As described in
Tak et al. 2014 (Tak et al. 2014), the CBF weighted image contains
some T2* weighting from the BOLD effect, which must be removed to
avoid BOLD contamination of the ASL signal. Following steps in-
troduced by (Chuang et al. 2008), and others (Nasrallah et al. 2012; Wu
et al. 2009; Zou et al. 2009), the ASL signal was demodulated to the low
frequency range by multiplying each volume by cos[πn] where n de-
notes the volume number (see Fig. 2 in Tak et al. 2014). In this analysis,
cardiac and respiratory contribution to the signal were assumed to be
global across the brain, although these can also vary across the head
(Brosch et al. 2002; Van de Moortele et al. 2002). Since neuronal ac-
tivity-related signal in the WM and CSF is minimal, the segmented
tissues were used as regions-of-interest (ROIs) to remove cardiac and
respiratory noise. Signal from WM and CSF ROIs, along with the 6
standard motion parameters were used to clean the resampled resting
data using FSL's regfilt tool (Jenkinson et al. 2012).

2.5. Calibrated fMRI and voxelwise computation of M

In calibrated fMRI, the M parameter represents the voxelwise cali-
bration value needed to derive the CMRO2 signal (see below; Davis
et al. 1998; Hoge et al. 1999). To estimate voxelwise M maps, each
subject completed a 6-min hypercapnia (HC) and hyperoxia (HO) step
protocols with dual-echo pCASL (Alsop et al. 2015; Dai et al. 2008)
imaging and the same parameters described above. For quantification
of CBF, a tissue equilibrium magnetization map (M0) was also acquired
using a longer TR (15,000ms) and no spin labelling. BOLD data were
isolated from the pCASL timeseries using a surround averaging of the
second echo (TE= 30ms; Smith and Brady 1997), while the ASL were

Table 1
Subject demographics based on history of sport-concussion.

No SRC (N=9) Previous SRC (N=14)

Age (years) 20 ± 1 21 ± 1
Height (cm) 184 ± 6 185 ± 6
Weight (kg) 99 ± 17 94 ± 6
Number of prior concussions (N) 0 1.4 ± 0.5 (range: 1–2)
Time since injury (years) N/A 5 ± 3 (range: 2–10)
Position (N) DB (3)

DL (2)
LB (2)
OL (1)
WR (1)

DB (3)
DL (1)
LB (5)
S (1)
TE (2)
WR (2)

Values are mean ± standard deviation unless stated otherwise. DB=defensive
back, DL=defensive lineman, LB= linebacker, N/A=not applicable,
OL= offensive lineman, S= safety, SRC= sport-related concussion,
TE= tight-end, WR=wide-receiver.
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was reconstructed using a linear surround subtraction between the
adjacent tag and control volumes of the first echo (TE=10ms). Pre-
processing steps for the HC and HO data included brain extraction
(BET), motion correction (FSL MCFLIRT; Jenkinson et al. 2002; Mark
Jenkinson and Peter Bannister, 2002), co-registration in native space
using boundary-based registration (Greve and Fischl 2009), spatial
smoothing (8mm FWHM), band-pass filtering to remove signal drift,
and despiking. Then, the ASL data from each block paradigm were
converted to physiological units using the single-blood compartment
model ((Eq. (1); Wang et al. 2003):

= ∙∆ ∙
∙ ∙ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥− ∙ − + ∙CBF λ M R

α M e e min
6000

2 ( )
.b

inv
PLD R τ PLD R

ml
g1

0
( )

100

b b1 1
(1)

The following parameters determined using the literature and
scanning parameters were used to solve for CBF: blood/tissue water
partition coefficient (λ)= 0.9ml/g (Herscovitch and Raichle 1985),
labelling duration (τ)= 1.665 s, and arterial blood longitudinal re-
laxation rate (R1b= 1/T1b)= 1/1.650 s (Zhang et al. 2012). A slice
time correction for the differences in PLD due to the two-dimensional
EPI readout was also introduced between each axial slices (Alsop et al.
2015). For images acquired during baseline and HO breathing, the

inversion efficiency (αinv) was set to 0.84. During HC, αinv was set to
0.80 to account for the higher blood flow velocity in the feed arteries, in
response to the higher arterial CO2 content (Aslan et al. 2010). The
vasoconstrictive effects of HO (Bulte et al. 2007) on CBF were also
accounted for on a per-volume basis based on the method proposed in
Germuska et al. (2016) and the linear relationship between R1 and PaO2

(Ma et al. 2014). Once pre-processed, the HC and HO data were input
into the Gauthier calibration (Gauthier et al. 2012) to solve for M, on a
voxel per voxel basis.

In addition to the voxelwise M maps, which are used in the next
section to derive the CMRO2 timeseries, the CBF0 and BOLD-CVR maps
were derived from the HC data. This is because both CBF0 and CVR can
potentially bias BOLD-based rs-fMRI estimation of FC, by way of the
interplay between regional differences in signal- and noise-driven cor-
relations (Chu et al. 2018; Golestani et al. 2016; Liu 2013; Qiu et al.
2017). CBF0 maps were computed by averaging all baseline volumes
while BOLD-CVR maps were calculated by dividing the magnitude
change in BOLD signal from the change in end-tidal CO2 during HC
(BOLD(CVR)= % ΔBOLDHC/ΔPETCO2). To avoid bias in CVR estimates
due to regional temporal delays in time to peak (Champagne et al.
2017; Donahue et al. 2016; Duffin et al. 2015; Poublanc et al. 2015),
the final 80s of the block stimulus (120 s) were used to estimate the

Fig. 2. Sample data from the gForce tracker helmet accelerometer. (A) Individual impact location (circle in front) and linear (left) and rotational (right) time-
dependent profiles for the x, y and z coordinates. (B) Summary of all impacts locations (N = 219) sustained by one player between the pre-season (PRE) and follow-
up (PTC) scanning time points. (C) Individual x, y and z biomechanical features which make up the resultant peak linear acceleration and rotational velocity. Lin =
linear, rot = rotational.
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relative change in BOLD (%Δ) from baseline.
Coupling between rs-BOLD and -CBF fluctuations is highly variable

across the brain (Tak et al. 2014), and over time, especially within
major nodes of well-established RS network nodes such as the DMN. To
assess the confounding effect of BOLD-CBF coupling on changes in
connectivity over time, the coupling coefficient between each signal
was computed on a voxel-wise basis. Potential time shifts between the
BOLD- and perfusion-based signal were corrected based on cross-cor-
relations (Fig. 3B; Chang and Glover 2009; Frederick et al. 2012; Tong
and Frederick, 2010, 2012), and a lag range of −3.5 s to +3.5 s
(Fukunaga et al. 2008). Once re-aligned, Pearson correlations between
the CBF and BOLD signal were computed at each voxel to measure the
degree of concordance between each time series, using a statistical
threshold of P < 0.01.

2.6. Resting-state calibration and CMRO2 mapping

The M maps were warped non-linearly to 2mm MNI space using
transformation matrices calculated above, to match the spatial resolu-
tion of the resting state BOLD and CBF volumes. Then, the BOLD
(SBOLD%) and perfusion (SCBF) timeseries, along with the voxelwise M
map, were used to derive the CMRO2 (SCMRO2) time course for each
voxel (Fig. 3B), using the following equation (Chiarelli et al. 2007;
Davis et al. 1998; Wu et al. 2009):

= ⎛
⎝

− ⎞
⎠

∙∼ −S S
M

S1 ( ) .CMRO
BOLD

CBF
α

β% 1
β

2

1

(2)

In Eq. (2), M is replaced by the voxelwise map calculated above, α;
which represents the Grubb coefficient modelling the non-linear cou-
pling between flow and venous volume (CBV/CBV0~(CBF/CBF0)α), was
set to 0.18 (Chen and Pike 2010), and β; which relates the change in
dHb concentration to R2

⁎, was set to 1.3 (appropriate for field strength
of 3.0 T; Boxerman et al. 1995).

2.7. Data analysis

2.7.1. Network construction and calculation of functional connectivity
strength

Major resting networks were reconstructed using group spatial
Independent Component Analysis (ICA) in FSL's MELODIC (Jenkinson
et al. 2012). Group-level ICA was repeated at each time point to
properly separate neural-related signals from different sources of noise
and variability across subjects (Beckmann 2012; Murphy et al. 2013). A
total of 50 dimensions were pre-set for the component analysis
(Fig. 3C). All resulting components were visually inspected and overlaid
onto the well-known functionally-defined brain network atlas from
Shirer et al. (2012) for manual interpretation, and identification of the
DMN (Griffanti et al. 2017).

Individual-based FC-strength was estimated using the masked
components identified from the ICA at each time point (threshold at

Fig. 3. Schematic of the proposed method for resting-state pre-processing, voxelwise mapping of CMRO2 timeseries and computation of functional connectivity. The
modules include the pre-processing of the dual-echo pseudo-continuous (pCASL) data (A), the calibration of the BOLD signal (second echo) using the concurrent
perfusion signal (first echo) and the voxelwise M parameter map (determined from quantitative calibrated MRI using hypercapnia and hyperoxia breathing chal-
lenges) (B), and the estimation of the network-specific functional connectivity strength (D) which was calculated in each subject as the averaged voxelwise con-
nectivity from the regions defined using independent component analysis (C).
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t > 4). Voxel-based network-wide correlations were computed where
each voxel's timecourse, within a network mask, was correlated to all
other timeseries. As a result, a m x m matrix of Pearson correlation
coefficients was obtained, where m represents the total number of
voxels within the mask (Fig. 3D). The matrix of correlation values was
then converted to Fisher Z transforms (Fisher 1915) to stabilize the
variance of the distribution in Pearson coefficients. Once transformed,
coefficient scores were averaged across the network to reflect the
overall FC strength (Fig. 3D). This was repeated for both the BOLD and
CMRO2 timeseries in the network of interest (DMN).

2.8. Statistical analysis

The effects of time on network mean CBF0, BOLD-CVR, BOLD-CBF
neurovascular coupling and FC strength were assessed using a two-
factor linear mixed model for repeated measures. Time (i.e., overall
comparison of PRE vs. PTC vs. POST) was the first factor modeled as a
fixed effect, while subject was modeled as a random variable. Due to
the confounding effects of baseline end-tidal CO2 (PETCO2) on baseline
perfusion (Ainslie and Duffin 2009; Battisti-Charbonney et al. 2011),
subject-specific mean baseline PETCO2 was used as a time-varying
covariate in the model assessing differences in CBF0. The BOLD-based
analysis of FC strength was corrected for time variations in CBF0, BOLD-
CVR and BOLD-CBF coupling, which were added as covariates in the
statistical model. Statistical significance of the confounding variables,
set a P < 0.05, would suggest that time varying physiological para-
meters may contribute to changes in DMN connectivity. These factors
were not included in the analyses of the CMRO2-based DMN con-
nectivity because the calibration model accounts for regional phy-
siology through the M parameter and the concurrent perfusion mea-
surements (TE1). The analysis was repeated with and without the
adjustment for history of concussion, given the possible long-term ef-
fects of sport-related concussion on brain connectivity (Churchill et al.
2017). Statistically significant effects of time for any parameter (set a
P < 0.05) were followed up with multiple direct pairwise comparisons
of the sessions (i.e., PRE vs. PTC, PRE vs. POST, and PTC vs. POST), in
order to assess differences between time points.

The relationships between neuroimaging changes from PRE to PTC
and impact exposure were assessed using multiple linear regression.
The three mean impact kinematics measurements per session were
correlated with the magnitude change in network BOLD- and CMRO2-
based connectivity between the PRE and PTC time points for the 15
players that returned for imaging at the PTC time point (Fig. 1). Only
impacts with a linear acceleration threshold of 25 g and above were
considered in the weighting of the impact exposure (Slobounov et al.
2017). All statistical tests were performed in IBM SPSS statistics (ver-
sion 24.0, SPSS Inc., Chicago, IL, USA).

3. Results

Between the PRE and PTC time points, athletes sustained 6.8 ± 3.0
impacts per session (Table 2), on average. Frequency of head impacts
per session ranged from 3.6 ± 2.4 to 13.0 ± 6.8, which were both for
TEs, which indicates that exposure is athlete-specific and variability
even within a position can be large. Standard deviations for the fre-
quency of impacts per sessions were also large. Peak linear acceleration
and rotational velocity for all 15 athletes reached an average of
41.9 ± 4.2 g and 572.9 ± 89.1°/s, respectively (Table 2).

Group ICA at each time point provided robust spatial characteristics
of the DMN, which co-localized well with the previous literature
(Figs. 4 and 5). Group DMN connectivity was also noticeably more
pronounced in the left hemisphere, following thresholding (t > 4) of
the ICA results (Fig. 4A).

Regional differences in CBF0 (P=0.017) were observed across time
points (Table 3). Pairwise comparisons showed that DMN CBF0 was
significantly decreased one month post-season (POST), when compared

to both the PRE (P=0.034) and PTC (P=0.007) time points. This was
true following correction for the effect of PETCO2, which had no sig-
nificant effect on CBF0 (P=0.058). Differences in DMN regional BOLD-
CVR were also documented over time (P=0.030), with significant
lower CVR measurements at mid-season (PTC; P=0.047) and recovery
(POST; P=0.018) time points, compared to PRE-season baseline
(Table 3). As opposed to regional CBF0 and BOLD-CVR, no significant
differences in BOLD-CBF neurovascular coupling (P=0.907) were
found within the DMN (Table 3). The analysis of regional physiology
was repeated with history of concussion as a covariate. There was a
significant confounding effect (P=0.012) for concussion history on
regional differences in DMN BOLD-CVR (P=0.021 corrected) only.
The analyses of DMN CBF0, and BOLD-CBF coupling were not con-
founded by differences in concussion history, within the group.

BOLD-based DMN connectivity was significantly increased over
time (P=0.002, Fig. 5), with greater group FC strength at the PTC
(P=0.014) and POST (P=0.0004) time points, compared to PRE-
season baseline. No significant confounding effect on connectivity was
observed for regional CBF0 (P=0.205), BOLD-CVR (P=0.162), BOLD-
CBF coupling (P=0.453) or concussion history (P=0.661). CMRO2-
based DMN connectivity showed similar significant differences over
time (P=0.013, Fig. 5), with increases found between the PRE-PTC
(P=0.037) and PRE-POST (P=0.026) time points. Again, concussion
history did not confound CMRO2-based differences in connectivity over
time (P=0.949).

Summary helmet kinematic features were not correlated with the
magnitude of the change in BOLD- or CMRO2-based connectivity be-
tween the PRE and PTC time points.

4. Discussion

4.1. Main findings

This study is the first to combine calibrated RS imaging and helmet
telemetry to comprehensively examine the underlying changes in net-
work FC following exposure to sub-concussive impacts. The main
findings are three-fold: First, significant changes in regional BOLD-CVR
and CBF0 were observed within the DMN, although these differences
did not significantly confound changes in BOLD-based DMN con-
nectivity. Second, DMN hyper-connectivity was observed over time and
this was consistent for both BOLD- and CMRO2-based FC measure-
ments, following correction for local physiological modulators. Finally,
exposure data from the helmet accelerometers was not significantly
correlated with changes in DMN connectivity.

4.2. Alterations in network-specific hemodynamic parameters throughout a
season of football

Asymptomatic football athletes with no reported SRC during the
season exhibited regional changes in CBF0 within the DMN, with re-
duced perfusion observed one month after the conclusion of partici-
pation in contact activities, confirming that baseline flow may be al-
tered after the season. In Slobounov et al. (2017), higher CBF0 was
found across several regions of the brain after exposure to sub-con-
cussive head impacts. Though we did not find significant differences in
perfusion between the PRE and PTC time points, we observed a small
increase in CBF0 for two-thirds of the players within the DMN (data not
shown). In addition to fluctuations in CBF0, the football athletes
showed significant regional decreases in BOLD-CVR within the DMN,
suggesting changes in the ability of the cerebrovascular vessels to re-
spond to the hypercapnic stimulus. This is similar to previous literature
by Svaldi et al. (2015, 2017), who reported decreased fronto-temporal
CVR in high-school female soccer players following exposure to sub-
concussive head trauma. These changes persisted 4 to 5months post-
season. Changes in BOLD-CVR observed in this cohort mid-season were
also persistent one month following the end of the season, confirming
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that quantifiable changes in the cerebrovasculature may occur despite
athletes being asymptomatic. Although the physiological basis for
transient changes in BOLD-CVR remains unknown, recent work by
Adams et al. (2018) proposed that changes in vascular reactivity may
arise from morphological changes in perivascular density. This how-
ever, remains an area of active research. Of note, changes in BOLD-CVR
were maintained between the PTC and POST time points, suggesting
that the acute and cumulative mechanical loading of head impacts may
have a different time course with respect to their effect on cerebral
physiology. BOLD-CVR may be more sensitive after acute onset to
contact, whereas perfusion-based changes may take longer to develop,
hence why significant CBF0 differences in this cohort were only ob-
served after the season. This observation would also support the dis-
crepancy between Slobounov et al. (2017) and our findings, as they
studied perfusion changes after the whole season, and not just the first
third (e.g. PTC). Despite changes in CBF0 and BOLD-CVR, no significant
differences in regional coupling were observed, which suggests that
although baseline (e.g. CBF0) and dynamic (e.g. BOLD-CVR) physiolo-
gical parameters may be altered, the relationship between BOLD- and
CBF-based fluctuations was maintained throughout the season.

4.3. Fluctuations in default mode network connectivity during and following
the season

In this study, we observed increased DMN connectivity over time.
These results were consistent after correcting for the confounding ef-
fects of regional hemodynamic measures (e.g. CBF0, BOLD-CVR, BOLD-
CBF coupling), and when using a more direct measurement of neural
activity with the calibrated CMRO2 time series. Our findings are in

concordance with previous literature (Abbas et al. 2015a, 2015b;
Johnson et al. 2014; Reynolds et al. 2017b), and add robust evidence to
the growing body of work suggesting that changes in brain connectivity
may result from participation in collision sports, in parallel to changes
in cerebrovascular physiology. Clinically, changes in DMN connectivity
have also been observed in mild traumatic brain injuries (Zhou et al.
2012), as well as in retired professional athletes with history of con-
cussion (Esopenko et al. 2015), indicating that alterations in brain
connectivity may follow both concussive and sub-concussive head
trauma. In this study, a specific focus was around studying the DMN
given previous evidence for BOLD-based changes in FC. Consistent
findings within the DMN across different study groups suggests that
certain network structures such as the DMN may be more prone to re-
organization following exposure to sub-concussive impacts. The reasons
for this susceptibility are currently unknown. However, different factors
such as the regio-specificity of the network nodes, and the spatial dis-
tribution of strain forces on tissues following different impacts (Elkin
et al. 2018) may contribute to these differences.

Confounding vascular factors did not have a significant effect on
BOLD connectivity differences across time point. These findings were
confirmed with CMRO2-based connectivity, which suggests that
changes in FC following exposure to head impacts may be robust and
independent of regional changes in brain hemodynamics. Thus, future
research should be directed towards examining the underlying me-
chanisms that lead to hyper-connectivity patterns following head im-
pacts. This may allow identification of potential substrates for com-
pensation at the neuronal level that allows for maintained brain
functionality despite imaging changes.

Table 2
Cumulative impact data for the subjects included in the regression analysis between the imaging findings and helmet biometrics.

Subject number Position Starting status Number of sessions
recorded

Frequency per session Peak linear acceleration per session
(g)

Peak rotational velocity per session
(°/s)

1 DB starter 20 5.7 ± 5.3 38.1 ± 8.2 515.6 ± 157.8
2 WR starter 4* 5.3 ± 5.1 43.4 ± 13.8 508.7 ± 174.6
3 LB back-up 18 3.9 ± 3.8 38.1 ± 14.8 505.6 ± 222.0
4 OL starter 13 6.5 ± 2.6 37.8 ± 4.6 579.3 ± 115.6
5 TE starter 14 3.6 ± 2.4 39.7 ± 12.1 441.3 ± 201.2
6 LB starter 15 9.1 ± 7.6 49.7 ± 8.1 659.1 ± 166.8
7 S starter 17 5.8 ± 8.1 38.2 ± 10.2 491.8 ± 246.6
8 LB back-up 13 6.0 ± 4.0 44.1 ± 9.1 731.3 ± 218.2
9 DL back-up 17 11.5 ± 5.2 44.5 ± 8.2 672.6 ± 105.0
10 TE starter 14 13.0 ± 6.8 40.3 ± 3.7 497.8 ± 106.8
11 WR back-up 11 6.8 ± 6.1 48.3 ± 18.6 619.0 ± 157.5
12 DB back-up 16 3.9 ± 3.2 36.0 ± 7.5 542.4 ± 147.1
13 WR starter 10* 3.9 ± 3.5 45.2 ± 18.0 718.6 ± 255.9
14 DL starter 15 11.1 ± 7.7 40.3 ± 6.3 587.9 ± 133.3
15 DB starter 6* 6.3 ± 3.8 45.3 ± 10.8 522.0 ± 161.1
Mean ± SD N/A N/A 13.5 ± 4.2 6.8 ± 3.0 41.9 ± 4.2 572.9 ± 89.1

Values are in mean ± standard deviation. *=Denotes players who had missing accelerometer data due to issues with the impact monitoring system.
DB=defensive back, DL=defensive line, LB= linebacker, OL=offensive lineman, S= safety, SD= standard deviation TE= tight-end, WR wide receiver.

Fig. 4. Results of the group-based independent component analysis (ICA) for network reconstruction in the baseline subjects (PRE). (A) The panel shows the
independent component network map for the left (LH) and right (RH) hemispheres of the default mode network (DMN), displayed onto the freesurfer template in
standard MNI space (2mm-isotropic). (B) The group averaged BOLD (red), CBF (blue) and CMRO2 (black) timeseries (± standard error) for the network. BOLD =
blood oxygen level dependent, CBF = cerebral blood flow, CMRO2 = cerebral metabolic rate of oxygen consumption, MNI = Montréal Neurological Institute.
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4.4. Poor relationship between changes in network connectivity and impact
biomechanics

Helmet accelerometer data reported in this study is the first to
provide evidence for the daily exposure of Canadian collegiate football
players at various in positions. Compared to previous literature on
American collegiate athletes (Crisco et al., 2010, b; Mihalik et al. 2007),
mean linear accelerations reported in this study were higher, on
average, likely due to the higher force threshold used for the analysis
(i.e. 25 g vs. 10 g (Mihalik et al., 2007) or 14.4 g (Crisco et al., 2010,
b)), which was chosen because of the previous methodological design in
Slobounov et al. (2017). In terms of frequency of impacts per athlete
exposure exceeding 25 g, players studied in this cohort sustained on
average 6.8±3.0 impacts per session, compared to 4.3± 2.4 impacts
per session in Slobounov et al., (2017; extrapolated from Table 1). The
difference between these frequencies is likely related to variability in

position studied, the differences between the helmet tracking system
(gForce tracker vs. BodiTrak system in Slobounov et al. (2017)) and
possibly, differences between Canadian and American football. Some of
those differences include a larger playing field in Canadian football,
along with the ability to have various motions for skilled athletes prior
to the snap. This may allow players to achieve maximum running speed
more frequently. Other differences include a full yard separating the
offensive and defensive linemen, as well as an additional player on the
field, for a total of 12 athletes per team, as opposed to 11 in American
football. Further research on the effects of rule changes in Canadian
football, as well as the standardization of equipment with respect to
impact monitoring system will help further advance this field of re-
search.

In order to investigate the relationship between changes in network
connectivity and exposure to head impacts, we correlated common
daily exposure metrics with the magnitude of change in FC between the
PRE and PTC time points. No significant relationship was observed
between the changes in DMN FC measurements and any of the helmet
biometric measures. The lack of relationship with neuroimaging find-
ings suggests that helmet-based sensors may be limited in predicting
changes in the brain, following exposure to impacts, possibly due to
limitations in the accuracy and reliability of the data acquired
(Cummiskey et al. 2017), or poor correlations between trauma and
changes in connectivity. Furthermore, it is worth acknowledging that
despite the validation provided by (Campbell et al. 2016), rotational
measurements provided by helmet-based technologies like the GFT can
be biased by possible relative motion between the head and the helmet,
which would further limit the accuracy of rotational measurements
reported in this study. Lastly, no additional correction algorithms were
applied to the raw GFT data, in order to transform linear and angular
measurements from the helmet shell to the center of mass of the head.
This may also be a possible source of error limiting the potential for the
kinematic measures to predict changes in the brain, as such corrections
may prevent overestimation of the peak linear accelerations. Consensus
for proper calibration of the quantitative measures recorded using the
helmet-mounted sensors should be considered in future research

Fig. 5. Boxplot results for changes in connectivity throughout the season. BOLD- (top row) and CMRO2- (bottom row) based connectivity for each time point (x-axis)
in the DMN. The color-coded time points PRE (magenta), PTC (cyan) and POST (yellow) show changes in DMN connectivity over time. Group-averaged connectivity
maps across time points are also displayed onto the freesurfer template in standard MNI space (2mm-isotropic). The left medial (bottom row) and superior (top row)
views are shown for the DMN. Connectivity values are shown in Fisher Z transforms (Z(r)). ⁎P<0.05, ⁎⁎P<0.0005, BOLD = blood oxygen level dependent, CMRO2

= cerebral metabolic rate of oxygen consumption, DMN = default-mode network, MNI = Montréal Neurological Institute.

Table 3
Statistical results for regional CBF0, BOLD-CVR, and BOLD-CBF neurovascular
coupling over time.

Metric Mean ± standard deviation P-values

PRE PTC POST

CBF0 (ml/min/100 g)a 65 ± 7 68 ± 8 62 ± 7 0.017⁎#

BOLD-CVR (%ΔBOLD/
ΔPETCO2)b

0.29 ± 0.07 0.26 ± 0.06 0.25 ± 0.05 0.030^⁎

BOLD-CBF coupling
(Z)b

2.94 ± 0.66 3.03 ± 0.49 3.02 ± 0.68 0.907

a= Statistically compared using a two-factor linear mixed model for repeated
measures with end-tidal CO2 as a time-varying covariate. b=Statistically
compared using a two-factor linear mixed model for repeated measures. ^ =
P<0.05 between PRE and PTC, ⁎ = P<0.05 between PRE and POST, # =
P<0.05 between PTC and POST. BOLD= blood oxygen level dependent, DMN
= default-mode network, CBF0 = resting cerebral blood flow, CVR = cere-
brovascular reactivity, PRE = baseline time point, PTC = post-training camp
time point, POST = post-season time point.
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designs.

4.5. Limitations

Some factors and assumptions may limit the interpretation of the
results reported in this study. As with other neuroimaging studies of
collision sport athletes, our sample size was limited and not constant
across different sessions, due to SRCs and season-ending injuries.
Though we attempted to limit this effect using a linear mixed statistical
model, this may have influenced our results given that only 12 athletes
were scanned at that POST time point, one month after the season. In
this design, we used a global mean connectivity measure as an overall
index for network connectivity. However, such a measure does not
provide an accurate picture of the node to node variations in con-
nectivity, which limits our understanding of the potential seed-specific
alterations within each network. Our design also did not include a
control group of non-contact sport athletes, which limits our char-
acterization of the variability in the data independent of the effect of
head impacts. The lack of control group also limits our ability to control
for the effect of exercise and other physiological factors like fitness that
may contribute to changes in cerebral physiology (Mairbäurl 2013).
However, the possible effect of exercise on baseline physiology is un-
likely to affect the changes in connectivity reported here, as these were
independent of the changes in brain hemodynamics across the time
points.

In addition to limitations within the study design, other physiolo-
gical parameters relative to RS imaging could be accounted for in future
work. For instance, recent work by Chang and Glover (2010) and Deco
et al. (2009) has proposed the introduction of temporal delay correc-
tions across regions, which may improve FC measurements within
networks. Other methodological approaches such as dynamic con-
nectivity analyses (Hutchison et al. 2013; Preti et al. 2017) may also
help account for temporal fluctuations in the brain across different
connectivity states, and inherently improve FC measurements. As well,
in this calibrated RS study, the Grubb coefficient (α), which relates
changes in flow and CBV, was assumed to remain constant (α = 0.18)
along the resting-state time course. However, it is possible that this
value fluctuates over time and that a better model for deriving CMRO2

timecourse includes varying estimates of α. Additionally, because RS-
BOLD fluctuations are minimal, dividing the BOLD signal by M in Eq.
(2) biases the resultant CMRO2 timecourse towards the ASL signal.

Despite these limitations, this method is the first to delve into the
physiology of RS connectivity analyses following head impacts.
Limitations such as the ones highlighted above will require additional
research as the field of calibrated MRI continues to expand our un-
derstanding of the complex physiology underlying the BOLD signal.

5. Conclusion

The purpose of this study was to investigate the effects of sub-
concussive head impacts on brain connectivity, while controlling for
the possible confounding effects of key vascular hemodynamic factors
such as CBF0, BOLD-CVR and BOLD-CBF coupling, that contribute to
RS-FC measurements. Alterations in CBF0 and BOLD-CVR throughout
the season suggests that changes in neurophysiological markers may
occur on a different timeline following head impacts. This is a key
finding moving forward as it highlights that different pathological
mechanisms within the cerebral vasculature may be responsible for
driving changes in physiology that occur at different rates following
exposure to sub-concussive head impacts. Alterations in BOLD- and
CMRO2-based connectivity were observed in addition to changes in
regional network perfusion and vascular reactivity. Despite finding
decreases in CBF0 and BOLD-CVR within the networks, changes in
cerebral physiology did not significantly confound the increases in
DMN network connectivity throughout the season. These findings em-
phasize that exposure to head impacts may alter specific connectivity

patterns within the brain, in parallel to changes in cerebrovascular
physiology. Lastly, our results provide more evidence on the limited
predictive capacity of simple kinematic features to determine differ-
ences in neuroimaging findings following head impacts, across different
football athletes. Altogether, these findings create a strong paradigm for
future studies to examine the underlying neural and vascular mechan-
isms associated with increases in network connectivity following re-
peated exposure to head impacts. Novel tools such as calibrated MRI
may allow us to better understand how changes in brain network or-
ganization and vascular physiology related to head impacts may be
reduced, as we strive to make sports safer.
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