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ABSTRACT

Despite modern therapeutic advances, the survival prospects of pancreatic cancer 
patients have remained poor. Besides being highly metastatic, pancreatic cancer is 
challenging to treat because it is caused by a heterogeneous array of somatic mutations 
that impact a variety of signaling pathways and cellular regulatory systems. Here we 
use publicly available transcriptomic, copy number alteration and mutation profiling 
datasets from pancreatic cancer patients together with data on disease outcomes 
to show that the three major pancreatic cancer subtypes each display distinctive 
aberrations in cell signaling and metabolic pathways. Importantly, patients afflicted 
with these different pancreatic cancer subtypes also exhibit distinctive survival profiles. 
Within these patients, we find that dysregulation of the phosphoinositide 3-kinase and 
mitogen-activated protein kinase pathways, and p53 mediated disruptions of cell cycle 
processes are apparently drivers of disease. Further, we identify for the first time the 
molecular perturbations of signalling networks that are likely the primary causes of 
oncogenesis in each of the three pancreatic cancer subtypes.
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INTRODUCTION

Pancreatic cancer is the most lethal form of cancer. 
It has an extremely poor prognosis with less than 20% 
of patients surviving for more than one year following 
diagnosis [1, 2]. Factors contributing to reduced survival 
rates are the difficulty of diagnosing the disease during 
its early stages, the rapid progression of tumours with 
few specific associated symptoms, and the diversity of 
responses that different forms of pancreatic cancer have 
to anticancer drugs [3, 4]. Despite progress having been 
made towards understanding the histological phenotypes 
and molecular mechanisms at play, positive responses 
to conventional chemotherapy regimens have remained 
infrequent, and the overall survival rates of patients have 
not substantially improved [5]. 

A significant challenge to achieving better treatment 
outcomes has been the heterogeneity of pancreatic cancers. 
Underlying this heterogeneity is the vast array of somatic 
mutations that are acquired during oncogenesis, and the 
varied effects that these mutations have on cell signalling 
pathways [6, 7]. Recent analyses of genomic sequence 

datasets from patients with advanced disease have identified 
potential activating mutations, many of which occur in 
genes encoding proteins that might be suitable drug targets 
[1, 8]. In this regard the discovery of mutation hot-spots 
in various signalling kinases has already prompted the 
development of highly selective kinase inhibitors that 
are capable of specifically killing pancreatic cancer cells. 
Although the antitumor activities of some of these kinase 
inhibitors have been strong, they have rarely been long-
lasting, with the targeted cancers frequently developing 
resistance [7]. There is, therefore, a pressing need to 
identify additional potential drug targets amongst the 
dysregulated signalling and metabolic pathway components 
that differentiate pancreatic cancer subtypes. Used in 
conjunction with kinase-inhibitors, novel drugs targeting 
these pathway components could yield pancreatic cancer 
therapies with longer lasting effectiveness.

Aiding in the discovery of novel drug targets 
has been the use of next-generation sequencing based 
analytical methods that simultaneously identify mutations 
in sequences and quantify the expression of all the cellular 
genes that might have an impact on cancer progression. 
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In this regard, the Cancer Genome Atlas (TCGA) project, 
has performed a systematic genomic, transcriptomic 
and proteomic characterisation of matched healthy and 
cancerous tissue samples from thousands of individuals 
afflicted with a variety of cancers [9]. This data, together 
with matched clinical information is publicly available 
and includes data for 185 pancreatic cancer patients. 
Combining data on transcription levels, gene mutations, 
copy number alteration, protein expression levels and 
clinical information, the intention of such datasets is to 
uncover causal relationships between specific genetic and/
or cellular aberrations and the onset of disease [10]. 

Recent genomic studies using such datasets have 
both provided insights into the biological heterogeneity 
of pancreatic cancer and identified genomic aberrations 
that may be of therapeutic and prognostic value [1, 8, 10]. 
These studies have identified somatic mutations in the proto-
oncogene KRAS as a hallmark of pancreatic cancers in that 
more than 90% of pancreatic cancer cases have mutations 
in this gene [8, 10, 11]. Several other mutations are also 
strongly associated with the onset of pancreatic cancers, 
including homozygous deletions in the TP53, SMAD4, and 
CDKN2A tumour suppressor genes [10, 11]. Alteration in 
the KRAS, TP53, SMAD4 and CDKN2A are considered as 
the critical drivers of pancreatic tumorigenesis and altered 
signalling through KRAS and p53 is associated with 
varied treatment response to therapy and disease outcomes  
[11–13]. Nonetheless, as in other cancers, genetic alterations 
and variations in gene expression also occur in many other 
genes. Specifically, genes involved in the RB, beta-catenin, 
PI3K-Akt, and NOTCH pathways, commonly exhibit 
alterations that likely contributed to tumour development 
and progression [2, 8, 11]. Further, while tumours displaying 
KRAS-pathway alterations either alone or in combination 
with TP53 pathway alterations have a poor prognosis, it 
has been shown that tumours with more complex pathway 
disruptions tend to have even poorer outcomes [12, 14].

Notably, these studies have highlighted the alterations 
in key genes that function in these various signaling 
pathways. However, these studies have relied on smaller 
and/or less detailed datasets than those which are now 
available and have therefore failed to comprehensively 
define the specific signaling network perturbations that arise 
during different forms of pancreatic cancer. Here we explore 
the molecular characteristics of the three major pancreatic 
cancer subtypes and define the altered signaling pathways 
and subcellular process that, besides differentiating these 
subtypes and potentially being the underlying drivers of 
oncogenesis, also present a variety of potential prognostic 
biomarkers and drug targets.

RESULTS

We assembled a TCGA pancreatic ductal 
adenocarcinoma (PDAC) dataset comprising clinical 
information for 185 patients together with their associated 

cellular transcription data (based on RNA sequencing 
(RNA-Seq)), protein expression data (based on reverse 
phase protein array (RPPA)), and information on genomic 
mutations and copy number alterations (CNA). We 
performed, survival, clustering, and integrative pathway and 
network analyses of these diverse data types, both to classify 
the pancreatic cancers into different subtypes, and to reveal 
their clinical characteristics and the potential underlying 
causes of oncogenesis in of these different subtypes. 

Pancreatic cancer subtypes display distinctive 
clinical outcomes

Based on the mRNA transcription data we identified 
three major mRNA expression profiles using unsupervised 
hierarchical clustering (Figure 1A). Upon returning only 
exemplars for each profile, three PDAC subtypes were 
identified as: (1) quasi-mesenchymal PDAC (QM-PDAC; 
35 samples), (2) classical PDAC (C-PDAC; 87 samples), 
and exocrine-like PDAC (EL-PDAC; 48 samples) [15, 17].  
These three subtypes were associated with distinct overall 
survival, and duration of disease-free survival (Figure 
1A and 1B). Specifically, both overall survival and the 
duration of disease-free survival were shorter for patients 
with the QM-PDAC subtype, intermediate for patients 
with the C-PDAC subtype and longer for patients with 
the EL-PDAC subtype. We observed a similar trend for 
treatment outcomes, with patients having QM-PDAC 
and EL-PDAC respectively displaying the worst and 
best outcomes (Figure 1C and 1D). Further, we did not 
observe significant associations between age, gender, 
or diabetes with the distribution of the PDAC subtypes 
(Supplementary Figure 1C). 

Gene expression and pathway characteristics of 
different PDAC subtypes

We compared gene expression profiles between all 
pairs of PDAC subtypes and identified genes that were 
differentially expressed within the tumours of each PDAC 
subtype (see Supplementary File 1). Using gene set 
enrichment analysis (GSEA), we established that the genes 
which were differentially expressed between the subtypes 
were involved in a variety of different signalling pathways 
[16]. Compared with tumours of the other subtypes, 
those of the QM-PDAC subtype displayed elevated 
transcription levels for genes involved in the epidermal 
growth factor receptor (EGFR) signalling pathway, the 
transforming growth factor–beta (TGF-β) signalling 
pathway, the phosphoinositide 3-kinase-mechanistic 
target of rapamycin (PI3K-mTOR) oncogenic pathway, 
the mitogen-activated protein kinase (MAPK) oncogenic 
pathway and among others (Figure 2A). Dysregulation of 
the EGFR signalling pathway has previously been linked 
to tumour aggressiveness and reduced patient survival 
in various cancers including those of the breast and lung 
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[17, 18]. The PI3K-mTOR pathway was inactive in EL-
PDAC tumours but was activated in C-PDAC and QM-
PDAC tumours. In other cancers, including those of the 
breast, gastrointestinal tract and prostate, activation of this 
pathway has been previously associated with significantly 
decreased 5-year survival rates [19]. 

Further, we observed reduced expression of 
genes involved in electron transport chain and oxidative 
phosphorylation in the QM-PDAC tumours and, to a lesser 
degree, in the C-PDAC tumours (Figure 2A and Figure 
3A). Since patients with QM-PDAC and C-PDAC tumours 
exhibited the worst clinical outcomes, these findings are 
consistent with the hypothesised link between the Warburg 
effect (characterized by decreased mitochondrial respiration 
and increased glycolytic activity) and tumour aggressiveness 
[20, 21]. It is well established that hypoxia-inducible factor 1 
(HIF-1), which regulates glucose homeostasis by controlling 
the expression of multiple glycolytic genes and glucose 
transporters [22, 23], drives the Warburg phenotypes of 
various cancers, including those of the lungs and clear renal 
cells [22, 24]. 

In support of our findings that QM-PDAC tumours 
have a Warburg phenotype, we found elevated levels of 
HIF1A and concomitantly lower levels of its corepressor, 
SIRT6 (Figure 3B) [25]. Also, we found higher transcript 
levels of SLC2A1 and HK2 in C-PDAC tumours relative 
to EL-PDAC tumours and the highest SLC2A3 transcript 
levels in QM-PDAC tumours. The transcription of SLC2A1, 

SLC2A3 and HK2 is up-regulated by HIF1A [25]. Whereas 
SLC2A1 and SLC2A3 respectively encode the glucose 
transporters, GLUT1 and GLUT3, HK2 encodes hexokinase 
II. Interestingly, among the class 1 GLUT transporters 
GLUT3 has the highest affinity for glucose and among 
the hexokinase isoforms, hexokinase II has the highest 
catalytic efficiency. Further, GLUT 3 and hexokinase II are 
both reportedly elevated in various cancers [26–28]. This is 
particularly significant as the combined action of GLUT3 and 
hexokinase II should afford tumour cells preferential access 
to available glucose for energy production via glycolysis. 

We also found that the transcript levels of certain 
key glycolytic pathway enzymes varied between PDAC 
subtypes: these included the transcript levels of pyruvate 
kinase (PKM), lactate dehydrogenase (LDHA) and 
pyruvate dehydrogenase complex kinase-1 (PDK1) which 
were highest in C-PDAC tumours and lowest in EL-
PDAC tumours (Figure 3B). Recently, studies have shown 
that the HIF-1A induced expression of PDK1 limits the 
oxidation of pyruvate to acetyl-CoA by inhibiting the 
pyruvate dehydrogenase complex in cancers of the breast 
and kidney [29, 30]. Accordingly, we suggest that in 
QM-PDAC and C-PDAC tumours, the upregulation of 
PDK1 and LDHA would likely favour the conversion of 
glucose-derived pyruvate to lactate, thereby promoting 
the Warburg effect in these PDAC subtypes (Figure 3C).

To further investigate the degree of EGFR and 
TGF-β signalling pathway activation in the different 

Figure 1: (A) Clustering of mRNA expression data identified three major pancreatic cancer subtypes, each with distinct expression 
patterns. (B) Kaplan–Meier Curves: overall patient survival periods were lower for patients with QM-PDAC and highest for those with 
EL-PDAC. Pairwise comparisons showed statistically significant differences between: C-PDAC vs. EL-PDAC (χ2 = 4.4, p = 0.036) and 
QM-PDAC vs. EL-PDAC (χ2 = 9.7, p = 0.002). (C) Kaplan–Meier Curves: disease-free survival months were lower for patients with 
QM-PDAC and highest for those with EL-PDAC: C-PDAC vs. EL-PDAC (χ2 = 5.3, p = 0.02) and QM-PDAC vs. EL PDAC (χ2 = 9.2,  
p = 0.002). (D) Vital statistics after the first course of treatment; only a quarter of QM-PDAC patients were alive compared with nearly half 
of C-PDAC patients and two-thirds of EL-PDAC patients. Odds ratios (95% CI): C-PDAC vs QM-PDAC = 2.7 (1.158–6.568), C-PDAC vs 
EL-PDAC = 0.541 (0.261–1.122), EL-PDAC vs QM-PDAC = 5.51(1.95–13.33). (E) Treatment outcomes after the first course of therapy 
were most favourable for EL-PDAC patients and least favourable for QM-PDAC patients.
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PDAC subtypes, we mapped mRNA expression levels 
onto these pathways. We observed that there were higher 
mRNA levels for genes involved in these pathways in the 

QM-PDAC tumours than in the C- and EL-PDAC tumours 
(Supplementary Figures 3 and 4). Here and subsequently, 
we opted to compare QM-PDAC to C-PDAC and EL-

Figure 2: (A) Enrichment Map of QM-PDAC vs C-PDAC and EL-PDAC tumours: GSEA was used to obtain enriched gene ontology 
(GO)-terms that were visualised using the Enrichment Map plug-in for Cytoscape. Each node represents a GO-term with similar nodes 
clustered together and connected by edges with the number of known interactors between the nodes being represented by the thickness of 
edges. The size of each node denotes the gene set size for each specific node GO-term. A map comparing C-PDAC and EL-PDAC tumours 
is shown in Supplementary Figure 2. (B) Expression2Kinases solution: Heat map showing the top ten predicted kinases ranked according 
to their combined statistical score based on the number of substrates they phosphorylate within a protein-protein interaction subnetwork. 
Along the rows of the heatmap are proteins which are the substrates for kinases given along the columns of the heatmap. (C) Mapping 
of the top ten predicted kinases onto simplified models of the EGFR and TGF-Β signaling pathways. Six of the top ten ranked kinases 
(pink nodes) fall within these two pathways whereas the other predicted proteins are involved either directly in the cell cycle, or in the 
regulation of the cell cycle (blue nodes). We have provided simplified EGFR and TGF-β pathways with mapped mRNA expression levels 
in Supplementary Figure 5B.
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PDAC tumours (referred to collectively as the ”other” 
subtypes) because QM-PDAC has the most distinct 
molecular signature of the three PDAC subtypes. Many 
kinases have been previously implicated in carcinogenesis 
and, accordingly, we identified variations between the 
PDAC subtypes in the mRNA levels of the various kinases 
that are involved in the EGFR and TGF-β pathways [31]. 
We used an unbiased computational approach called 
Expression2Kinases (X2K) to identify the kinases that 
might be driving the hyperactivation of the EGFR and 
TGF-β pathways in QM-PDAC tumours. Among the 
top ten kinases identified were six well-documented 
oncogenes (AKT1, GSKB, MTOR, MAPK1, MAPK14, 
and MAPK7), all of which are involved in the EGFR and 

TGF-β pathways (Figure 2B and 2C) [32]. Also present 
in the top ten list were CDK1, CDK2 and ATM: kinases 
which are involved in cell cycle control. 

The mutational landscape of PDAC subtypes

We evaluated the scope of genomic alterations in 
PDAC subtypes by focusing on the types of genetic changes 
that are known to promote oncogenesis. Specifically, these 
encompassed gain-of-function mutations in oncogenes 
(OGs), amplification of OGs, loss-of-function mutations in 
tumour suppressor genes (TSGs), and deletions in TSGs. 
Across all the PDAC subtypes we found that, as has been 
reported elsewhere, KRAS, TP53, CDKN2A, SMAD4, 

Figure 3: (A) PDAC subtype-specific electron transport chain activity: a comparison of electron transport chain activity between 
pancreatic cancer subtype based on mRNA expression data. Node denote genes— left section = C-PDAC, middle section = QM-PDA and 
right section = EL-PDAC tumours. Node are coloured based on overall subtype mRNA-expression z-score (blue = low, grey = no change, 
and red = high). Edges represent various types of protein interaction (refer to legend to full notations for all edges). (B) PDAC subtype-
specific transcript levels of Warburg effect associated mRNA: levels were compared between the tumour subtypes using one-way analysis 
of variance. The data are where transformed using the Box-Cox transformation. ***, **, and *, denote pairwise student t-test statistical 
significance for p values of 0.001, 0.01 and 0.05, respectively. On each box, the central mark indicates the median, and the bottom and top 
edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered 
outliers, and the outliers are plotted individually using the '+' symbol. (C) Control of glucose metabolism by HIF1A: SLC2A1, SCL2A3, 
HK2, LDHA, PDK1 are positively regulated (black arrows) by HIF1A. PDK1 negatively regulates (red blunt arrows) the conversion of 
pyruvate to acetyl-CoA.
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and CDKN2B were the most commonly altered genes  
(Figure 4A) [1, 2, 8]. 

SMAD4 signals through the canonical TGF-β 
pathway and therefore deletions in SMAD4 should limit 
signalling through this pathway [33]: a factor that may 
seem inconsistent with our earlier finding that genes in this 
pathway display elevated levels of transcription (Figure 
2C and Supplementary Figure 4). However, SMAD4 loss 
does not initiate tumorigenesis in human pancreatic cancers 
[33–35]. Further, in pancreatic tumours displaying either 
SMAD4 deletions or SMAD4 under-expression, ligand 
stimulation of the TGF-β pathways activates non-canonical 
pathways including the MAPK, p38/JNK, and PI3K-mTOR 
pathways which can function independently of SMAD 
signalling [33, 36, 37]. Moreover, we found that among 
the PDAC subtypes, QM-PDAC had the lowest transcript 
levels of genes in the SMAD gene family (SMAD2/3/4/7; 
Supplementary Figure 4). Therefore, consistent with other 
studies, these results indicated an association between 
reduced SMAD expression and poor survival [36, 38]. 

Whereas we observed higher gene deletion 
frequencies in EL-PDAC tumours than in QM-PDAC 
and C-PDAC tumours, QM-PDAC and C-PDAC tumours 
displayed higher gene amplification frequencies (Figure 
4C). Across all the PDAC subtypes, 118 genomic alterations 
were observed, mostly impacting genes involved in diverse 
cell signalling pathways (Figure 4B and 4D); a finding 
consistent with the hypothesis that, like most other cancers, 
PDAC is primarily a consequence of disrupted signal 
transduction pathways (Figure 4D, 4E) [11, 39]. 

We uncovered little overlap in the signaling 
pathways that were impacted by genetic alterations that 
were observed in only one of the PDAC subtypes (Figure 
4E and 4F, also see Supplementary Figure 6). We found 
that 62% of the pathways affected by mutations were 
altered in tumours belonging to at least two PDAC 
subtypes, whereas only 18%, 11%, and 8% of altered 
pathways were unique to C-PDAC, QM-PDAC, and 
E-PDAC tumours, respectively. This suggests that only a 
small proportion of mutations contribute to differences in 
the signaling pathway perturbations that are seen between 
the subtypes. Conversely, it therefore also suggests that 
most of the oncogenesis promoting mutations perturb 
pathways that are active in all three of the PDAC subtypes. 

Integrative pathway analysis

We used the co-occurring mutated driver pathway 
(CoMDP) mathematical algorithm to discover de novo, 
two co-occurring pathways that may be driving the 
progression of PDAC; the first pathway involved the genes 
KRAS, COL4L4 and FBWX7, and the second involved the 
genes SMAD4, TP53, PHF24, PRG4, PI3KCA, RPTOR 
and EP300 (Figure 5A) [40]. We expanded the CoMDP 
solution pathways using known protein-protein interactions 
to generate a network enriched with MAPK, PI3K, and 

TP53 pathway members (Supplementary Figure 7).  
Two of the genes in the CoMDP solution pathways, 
PRG4 and PHF24, did not map to any signal transduction 
pathway, emphasising the fact that the roles of some 
potentially key proteins in oncogenesis still need de be 
defined. In particular, virtually nothing is known about 
PHF24 [41]. 

To further investigate the degrees of alteration that 
are evident in the expanded CoMDP solution networks 
for the different PDAC subtypes, we mapped a combined 
dataset of mRNA transcript levels, protein expression 
levels, mutations and CNA onto these networks. We 
found that alterations in p53 and cell cycle checkpoint 
pathway genes were most apparent in C-PDAC tumours 
(Figure 5B and 5C), whereas alterations in specific MAPK 
and PI3K-mTOR pathway genes were more apparent in 
QM-PDAC tumours (Figure 5D and 5E). We found that 
the PI3K-mTOR and MAPK pathways were altered 
in 93% of all PDAC tumours. Alterations, included the 
activation of, among others, the PI3KCA (in 13% of 
tumours), AKT (in 27%) and BRAF (in 9%) genes, and 
the inactivation of the PTEN (in 4% of tumours), TSC1/2 
(in 7%) and FOXO3 (in 5%) genes. Alterations in the 
PI3KCA oncogene and its negative regulator, PTEN, 
occur in cancers of the colon, breast, and prostate: cancers 
where the co-occurrence of PI3KCA and PTEN mutations 
appears to both drive oncogenesis, and reduce anticancer 
drug sensitivity [10, 42]. Furthermore, we observed that 
PIK3R1 (the regulatory subunit of PI3K) was inactivated 
in 6% of PDAC tumours; inactivated PIK3R1 promotes 
the phosphorylation of AKT, which itself promotes 
oncogenesis as it activates numerous OGs and inhibits 
TSGs within the cell [43, 44]. 

Alterations in the p53 and cell cycle pathways are 
frequent in cancer, and here we found that such changes 
were apparent in 85% of the tumours examined [45]. In 
addition to activated MDM2 and MDM4 (which both 
inhibit p53 activity), MYC, and CDK2/4/6, we found 
that p53 was inactivated in 58% of all tumours. Similarly, 
CDKN2A, CDKN2B and ATM (a kinase that activates 
p53) were inactivated in 35%, 42% and 3% of all tumours, 
respectively [45, 46]. This suggests that, within the p53 
and cell cycle checkpoint pathways, hyperactivated 
OGs such as MYC, MDM2, CDKs and inactivated 
TSGs such as TP53, CDKN2A and CDKN2B, may act 
together to promote oncogenesis both by limiting the 
repair of damaged DNA, and by permitting affected cells 
to proliferate uncontrollably through the inhibition of 
apoptosis [45, 46].

Consistent with previous observations, we found 
mutations, CNAs and changes in mRNA transcription 
and protein expression levels for proteins that participate 
in various signalling pathways that have previously been 
associated with pancreatic cancer [2, 8, 10]. Specifically, 
we observed alterations in the Notch (61%), apoptosis 
(32%) and NF-kβ (19%) pathways (Supplementary Figure 
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8). Also, we found a variety of alterations in 41 genes 
that encode the ATP-binding cassette (ABC) transporter 
proteins in 72%, 82% and 79% of all tumours that belong 
to the C-PDAC, QM-PDAC and EL-PDAC subtypes, 
respectively (Supplementary Figure 8D). The most altered 
ABC transporter gene in any PDAC subtype was ABCC9; 
found altered in 21% of all in QM-PDAC tumours. Overall, 
we observed that 78% of all PDAC tumours harboured a 

genetic alteration in at least one ABC transporter gene. ABC 
transporter-mediated energy-dependent efflux of a multitude 
of unrelated classes of anticancer drugs across membranes is 
a major cause of multidrug resistance and chemotherapeutic 
failures during cancer therapy [47, 48]. Therefore, future 
efforts to determine tumour cell ABC transporter gene 
mutations that accentuate the activities of their encoded 
transporters are expected to guide precision medicine [48].

Figure 4: Mutation and gene copy number analyses. (A) Genes with the most alterations in PDAC tumours. The only genetic 
alterations considered are mutations in, and amplifications of known oncogenes, and mutations in, and deletions of, known tumour 
suppressor genes. (B) The distribution of alterations among the three PDAC subtypes. Refer to Supplementary File 5 for details concerning 
alterations in each set. (C) The extent of genomic alterations expressed as a percentage of total numbers of alterations found within the 
tumours of each PDAC subtype. Each cell in the bar-grid represents a mutant gene. (D) Reactome pathway enrichment results of the 118 
genes that are commonly altered in tumour cells of all three PDAC subtypes. Refer to Supplementary File 6 for the complete list of Reactome 
pathways that represent significantly enriched genetic alterations in the different PDAC subtypes. (E) The predicted extent of mutation-
induced pathway dysregulation for the different PDAC subtypes. (F) The distribution of mutation-induced pathway dysregulations for 
mutations specifically associated with particular PDAC subtypes and common pathway enrichment. The non-overlapping pathways are 
those disrupted only in single PDAC subtypes (see Supplementary File 6).
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Connectivity of genomic alterations to 
transcription factors and their pathway activities 
in pancreatic cancer

To link genomic changes to transcriptional events, 
we applied the Tied Diffusion Through Interacting 

Event (TieDIE) approach to reveal a protein interaction 
subnetwork that connects altered genes to transcription 
factors and their putative targets [49]; a network referred 
to below as the TieDIE subnetwork. Additionally, we 
used the PARADIGM-shift algorithm to infer pathway 
activity levels of all proteins that are known to participate 

Figure 5: (A) The two co-occurring pathways in PDAC that are predicted to drive oncogenesis based on the mutational landscape 
representing two common driver pathways. (B) Alterations in p53 and cell cycle checkpoint pathways. p-value = C-PDAC vs Other 
subtypes, calculated using Fisher's exact test. Red indicates activating genetic alterations whereas blue indicates inactivating alterations. 
Darker shades correspond to higher alteration frequencies. Each node within the pathway represent a gene and the highlighted segments 
within each node and the percentage representing the alteration in the three PDAC subtype: C-PDAC, QM-PDAC and EL-PDAC from 
left, centre, and right, respectively. (C) The pattern of genetic alteration in selected genes that encode proteins involved in the p53 and cell 
cycle checkpoint pathways. (D) Alterations in the MAPK, RTKs and PI3K signaling pathways. p-values = QM-PDAC vs Other subtypes, 
calculated using Fisher's exact test. The connectivity of network components was extracted from Reactome Pathways, BioGrid and the 
literature. (E) The pattern of genetic alterations in selected genes that encode components of the MAPK and PI3K-mTOR pathways.
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Figure 6: (A) MAPK heat diffusion sub-network: pathway extracted from the TieDIE subnetwork using heat diffusion analysis from 
the MAPK1 network node. (B) p53 heat diffusion sub-network: pathway extracted from the TieDIE solution network using heat diffusion 
analysis from the TP53 network node. Each node indicates a pathway protein shown as concentric rings. The inner node denotes differential 
mRNA expression (Benjamini-Hochberg adjusted p < 0.05) bias for genes when comparing the QM-PDAC subtype tumours to those of 
the other PDAC subtypes (red = QM-PDAC bias, blue = bias towards other subtypes). The second ring indicates the presence of genomic 
alterations for that gene in each patient’s tumour, with each patient’s tumour being denoted by a spoke within the ring. The third ring shows 
mRNA expression levels for each tumour sample (red = high, blue = low). The outer ring indicates the PARADIGM inferred pathway 
activity for that protein in each tumour sample (red = high, blue = low). Arrows indicate known protein-protein interactions extracted from 
UCSC Super pathway, KEA, ChEA or inferred from the literature. We have attempted to make the visualisation clearer by omitting some 
interactions between some network nodes. 
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in various signaling pathways in each of the three 
PDAC subtypes [50]. Furthermore, using heat diffusion 
analysis from the MAPK1 and TP53 nodes of the TieDIE 
subnetwork, we extracted two pathways that recapitulated 
signaling via the MAPK and p53 pathways. 

The MAPK1 network was enriched with proteins 
whose associated mRNA transcription levels were 
significantly higher in QM-PDAC tumours compared to 
other PDAC subtypes. These proteins included EGFR (a 
receptor of the EGFR pathway that we found activated in 
QM-PDAC tumours), SOS1 and GRB2 (both of which 
are upstream signalling proteins in the canonical MAPK 
signalling pathway; Figure 6A) [51]. Also, the MAPK 
network connected TFs that are induced upon activation 
of the MAPK pathway, to proteins which are known to 
promote oncogenesis (such as FOS, JUN, ATF2 and ESR1). 
This inferred connectivity was further supported by the 
PARADIGM analysis which predicted that ESR1, JUN, 
GRB2 and CBL would have high degrees of activity [51, 52]. 

The p53 network, on the other hand, was more 
prominent in C-PDAC and EL-PDAC tumours, and it 
connected signalling proteins to various TFs that are 
known to promote carcinogenesis, including ATF3, 
PRKCD, NFKB1 and NFKBIA [53–55].These TFs were 
also predicted by PARADIGM to have a high degree of 
activity (Figure 6B). 

Collectively these analyses emphasise that certain 
pathways may be more prominent than others in the 
different PDAC subtypes. Differences between the PDAC 
subtypes in the activity of specific signal transduction 
proteins suggests that some of these proteins could be 
targets of PDAC subtype-specific anti-cancer drugs (see 
Supplementary Figure 10 and Supplementary Table 2). 

DISCUSSION

Through comprehensive transcriptomic and 
integrative profiling of pancreatic cancer, we have 
uncovered various functional alterations and signaling 
pathway perturbations and revealed how these alterations 
and perturbations might be associated with clinically 
relevant differences between patients with different PDAC 
subtypes. In particular, the discovery that QM-PDAC 
tumours are characterised by what is likely to be ESR1 
and NTRK1 transcription factor-mediated over-activation 
of genes associated with the EGFR and TGF-β pathways 
(Figure 6A), provides a rationale to target these tumours 
with drugs that either downregulate ESR1 and NTRK1, 
or inhibit EGFR and TGFBR2 (Supplementary Figure 10) 
[56, 57]. 

Furthermore, we find that, in general, PDAC is 
characterised by pervasive RTK, MAPK and PI3K-
mTOR alterations [1, 8, 58, 59] and that over 90% of the 
potentially oncogenic alterations occur in genes that are 
directly involved in the RTK, MAPK and PI3K-mTOR 

signalling pathways. It is well established that PDAC 
tumours frequently respond to MAPK and/or PI3K-mTOR 
pathway inhibitors [58, 60]. While cases where these 
inhibitors have failed to provide therapeutic benefits have 
highlighted the heterogeneity of PDAC, they have also 
emphasised the importance of finding additional drugs that 
are either more generally applicable to PDAC treatment, 
or which can be used to target the signalling pathways 
that are most relevant for specific PDAC subtypes [60–
62]. We identified that the most prominent cell signalling 
changes in EL-PDAC and C-PDAC tumours were within 
the p53 and cell cycle checkpoint pathways; hinting that 
these tumours might respond to cell cycle inhibitors. 
Consistent with our findings, other PDAC studies have 
also reported co-occurring mutations in genes involved in 
the p53 and cell cycle pathways. Collectively these studies 
provide a rationale for potentially treating PDAC using an 
approach that synchronously targets all of these pathways 
[63–65]. Furthermore, we have uncovered other receptors, 
intermediary signal transduction proteins and TF targets 
that may drive oncogenesis: all of which could be targeted 
by drugs designed to specifically treat QM- C- or EL-
PDAC tumours. 

Alterations in metabolism and cellular bioenergetics 
are hallmarks of cancer cells and represent an active area 
of research that is anticipated to yield novel anti-cancer 
drugs that could be used in combination with targeted-
therapies or chemotherapy [66–68]. Here, we found 
that QM-PDAC and, albeit to a lesser extent, C-PDAC 
tumours exhibit a Warburg metabolic phenotype (Figure 
3) [64]. Associations between the Warburg phenotype and 
both increased disease aggressiveness and poorer clinical 
outcomes have been previously reported [64, 67]. As 
expected, we observed decreased overall survival and a 
shorter duration of disease-free survival in patients with 
QM- and C-PDAC tumours (i.e. tumours with the Warburg 
phenotype) relative to patients with EL-PDAC tumours 
(i.e. those without the Warburg phenotype). In this regard, 
scrutinising the metabolic differences between PDAC 
tumour subtypes is likely to yield further leads for the 
development of novel therapeutic approaches.

We observed that most of the genomic alterations 
which are found within PDAC tumour cells are found 
in tumours belonging to all three of the defined PDAC 
subtypes. This finding suggests that improved responses 
to targeted-therapies may be achievable by systematic 
targeting of hub kinases within the multiple alternative 
signalling pathways that enable cancer cells to frequently 
acquire resistance [69, 70]. 

By integrative analyses of genomic, transcriptomic, 
and proteomic data, we have uncovered novel signalling 
pathway aberrations that exist in PDAC tumour cells at the 
DNA, mRNA and protein levels. Although the mutational 
landscape of a particular tumour could influence drug 
efficacy, recent studies of a range of other cancers 
employing approaches similar to those used here have 
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identified an array of altered pathways, each of which 
could present either new cancer drug targets or clinically 
relevant biomarkers of disease [9, 71]. Altogether, our 
analyses have revealed widespread signaling network 
perturbations in PDAC subtypes, many of which could 
likely impact treatment outcomes and which are therefore 
also potential targets for novel anticancer drugs. 

MATERIALS AND METHODS 

We obtained data for 185 PDAC patients involved 
in the TCGA project. Besides treatment outcomes these 
data include: whole exome sequence (WES; n = 185), 
transcriptome data (determined using RNAseq; n = 179); 
DNA copy number and mutation data (n = 179), and 
targeted proteome data (determined using RPPA; n = 123). 
Not all types of data were available for all patients because 
of assay failures, incomplete specimen availability and 
quality of issues with certain samples. All data used in our 
analyses are available from the TCGA website; https://
portal.gdc.cancer.gov/repository. 

Transcriptome-based classification

We performed unsupervised hierarchical clustering 
on RNA-seq data to identify three distinct PDAC subtypes. 
Before clustering, we removed data for unexpressed genes 
and genes that exhibited little variation between patients. 
To return only exemplars for each cluster, we applied an 
anomaly detection algorithm based on an approximate 
Gaussian distribution [72]. Finally, we further validated 
the consistency of tumours within each cluster using 
a support vector machine classifier which yielded an 
average 10-fold cross validation classification accuracy of 
95.5% over ten models (Supplementary Figure 1A). Using 
the transcriptomic classification framework established 
by Collision et al. [15], we classified the pancreatic 
cancer clusters as C-PDAC, QM-PDAC and EL-PDAC; 
respectively corresponding to clusters 1, 2 and 3 [15]. We 
have summarised the distribution of tumour grades across 
these PDAC subtypes in Supplementary Figure 1B.

Treatment outcomes

We integrated mRNA expression-based classification 
of PDAC subtypes with clinical information to review 
tumour characteristics specific to each of the PDAC 
subtypes. The Kaplan–Meier method was used to estimate 
overall survival and the duration of disease-free survival in 
a pairwise manner between subtypes [73]. Furthermore, the 
Fisher exact test was used evaluate associations between 
tumour subtypes and various clinical variables including 
treatment outcomes at the first, and later courses of 
treatment.

Differential gene expression, functional and 
pathways analyses

The identification of differentially expressed genes 
was performed in MATLAB using an implementation 
based on the negative binomial model (see Supplementary 
File 1) [74, 75]. Gene set enrichment analysis (GSEA) was 
employed to extract knowledge of overrepresented Gene 
Ontology (GO) terms for various functional processes and 
signalling pathways between molecular subtypes [16]. 
Complete GSEA results are provided in Supplementary Files 
2A–2C, for C-PDAC vs QM-PDAC, C-PDAC vs EL-PDAC 
and QM-PDAC vs EL-PDAC, respectively. Visualisation 
of significantly enriched GO terms of functional process 
and signalling pathways between subtypes was done in 
the Cytoscape plugin, Enrichment Map [76]. Furthermore, 
the mapping of gene expression levels onto template 
WikiPathways of the EGFR and TGF-β signalling pathways 
and the electron transport chain was done using the software 
PathVisio 3 (See Figure 3A, Supplementary Figure 3 and 
4) [77]. For this, we used z-score normalised expression 
data categorised into three levels: 1) Low for z-scores below 
−0.5; 2) no change for z-scores between −0.5 to 0.5; and 3) 
high for z-score above 0.5. The highlighted scale was chosen 
to consistently capture variations in gene expression across 
entire pathways.

Prediction of regulator kinases

We computationally predicted upstream regulatory 
kinases that likely effect the observed differences in the 
gene expression signatures between QM-PDAC and the 
other PDAC subtypes using Expression2Kinases (X2K) 
[78]. X2K employs a reverse engineering network-based 
approach to predict upstream regulatory kinases based 
on prior knowledge. We obtained a list of differentially 
expressed genes between QM-PDAC and the others 
PDAC subtypes: 242 up-regulated genes and 1011 down-
regulated genes based empirical Bayes statistics. Using 
this gene list, we predicted upstream regulatory TFs that 
are likely to be responsible for the observed changes in 
gene expression using the Chromatin Immunoprecipitation 
(ChIP) Enrichment Analysis (ChEA; 2016) [79]. In 
the next analysis, we linked the top 10 predicted TFs to 
upstream regulatory mechanisms by generating a TF-
intermediate protein-protein interaction sub-network based 
on prior knowledge (Supplementary Figure 5A). Finally, 
we analysed the sub-network for enriched targets of known 
protein kinases that are likely to phosphorylate proteins 
within the sub-network using the Kinase Enrichment 
Analysis (KEA; 2015) [80]. See supplementary file 3 for 
a full list of computationally predicted kinases and their 
rankings.
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Mutation and copy number alteration analyses 

We evaluated the scope of genomic alterations in 
PDAC subtypes using significantly mutated genes and copy 
number alteration identifications obtained from MutSigCV 
and GISTIC2.0 outputs, respectively [81, 82]. Data for 
the genomic alteration analysis was processed as follows: 
oncogenes (OGs) and tumour suppressor genes (TSGs) in 
the samples were annotated using information from multiple 
sources. These include the Sanger Consensus Cancer Gene 
Database (699 OGs and TSGs), the UniProt Knowledgebase 
(304 OGs and 741 TSGs), the TSGene database (1,219 
TSGs) and the ONGene database (725 OGs) [34, 86–88] 
[32, 83–85]. Collation of data from these sources yielded 
a list of 3,688 OGs and TSGs, representing 2,773 unique 
genes (969 OGs and 1,804 TSGs). We utilised this list of 
OGs and TSGs to extract genetic changes anticipated to 
have a potential impact on the oncogenesis of pancreatic 
cancer. Explicitly, we returned only gain-of-function 
mutations and gene amplifications for known OGs. Also, for 
known TSGs, we returned loss-of-function genetic changes 
that involve mutations and deletions. Using this processed 
data, we identified frequently altered genes that likely have 
detrimental impacts concerning pancreatic carcinogenesis 
(Figure 4). We compared gene mutations between the PDAC 
subtypes to generate lists of mutations that are common 
among subtypes or unique to particular subtypes (see 
Supplementary File 4). Using these lists, we performed a 
Reactome pathway enrichment analysis by querying Enrichr 
either with genes that were consistently altered in tumours of 
all three PDAC subtypes, or with genes that were altered in 
only one of the PDAC subtypes (see Supplementary File 5 
and Supplementary Figure 6A–6C) [86]. 

Integrative analysis of expression and genomic 
alterations

Identification of Co-occurring driver pathways

To discover driver pathways based on the patterns of 
mutations associated with PDAC, we applied the CoMDP 
algorithm which employs a mathematical programming 
method to identify de novo driver pathways in cancer 
from mutation profiles [40]. Briefly, this method identifies 
pathways that have a set of mutated genes with both 
high coverage (i.e. present in the tumours of multiple 
individuals) and high exclusivity, and the pathways exhibit 
a statistically significant co-occurrence pattern. Using 
mutation data, we ran the CoMDP test with K = 5 to 11 
(K equals the total gene set size) to return mutated driver 
pathways for all K values (Supplementary Table 1). Genes 
in the CoMDP solution for K = 10 were connected using 
experimentally verified protein-protein interactions to 
generate an intermediary network (Supplementary Figure 
7). The solution network was enriched with members of the 
PI3K, MAPK, p53 and cell cycle regulation pathways. To 
visualise the extent of pathway aberration at DNA, mRNA 

and protein levels, we mapped genomic alteration data, 
mRNA transcript abundance data and protein expression 
data onto the network. For the genomic alteration data, 
we only considered gain-of-function mutations and gene 
amplifications for the OGs, and loss-of-function mutations 
and deletions for the TSGs. For the transcription and protein 
expression data we only considered OGs that had a degree 
of upregulation indicated by a >2 Z-score and for the TSGs 
a degree of downregulation indicated by a <−2 X-score. 
The generated combined dataset was mapped on signaling 
pathways over-represented in the CoMDP solution network 
expanded using a prior-knowledge network. Additionally, 
plots of alteration patterns in genes among tumours were 
generated using the R package complex heatmaps [40, 87]. 
Mapping of alterations onto genes in pathways shown in 
Supplementary Figure 8A–8C were done using the software 
PathwayMapper [88]. 

Inferring gene activity from pathway analysis of 
copy number and expression data 

We used PARADIGM-shift, a probabilistic graphical 
model approach that infers the activity of signalling 
pathway proteins by detecting differences in the expected 
activity of a protein on its downstream target relative to 
what is expected given it upstream modulator [50]. We ran 
PARADIGM with default settings using three datasets as 
inputs: (i) a dataset including only statistically significant 
CNA as determined by GISTIC2, (ii) a normalised gene 
expression dataset matching the CNA input file, and 
(iii) a custom UCSC Pathway formatted file. Pathway 
information of known gene interactions was created from 
various sources including Reactome pathways, KEGG 
Pathways, the KEA database, the ChEA database and 
the UCSC Super pathway [79, 80, 89, 90]. PARADIGM 
predicted integrated pathway levels results are provided in 
Supplementary File 6. 

Identification of genomic perturbation associated 
with transcriptional changes

Genomic perturbations in PDAC subtypes were 
connected to associated transcriptional changes using 
TieDIE [49]. This method uses a heat diffusion process 
to identify relevant pathways that might be altered in 
tumours. To reveal sub-networks that distinguish QM-
PDAC from the other PDAC subtypes, using genes that we 
found altered in at least 5% of all tumours, we generated 
a ranked list of genes that were differentially mutated 
between QM-PDAC tumours and those of the other 
PDAC subtypes using the Fisher’s exact test. The resulting 
genes are assumed to be responsible for the distinctive 
molecular signatures between subtypes—these were used 
as upstream inputs in TieDIE. A downstream input file 
was generated by computationally identifying the TFs that 
are most likely to be responsible for the difference in the 
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transcriptome signatures between the QM-PDAC tumours 
and those of the other PDAC subtypes. The upstream 
and downstream input files, together with a custom super 
pathway, were used in TieDIE to compute a subnetwork 
connecting genomic alterations to transcriptional events 
(Supplementary Figure 9). We performed a secondary 
heat diffusion query on the TieDIE solution sub-network 
from the MAPK1 and TP53 nodes. Both MAPK1 And 
TP53 were flagged as being of likely importance based on 
both the numerous alterations of these genes within PDAC 
tumours and the pathway analysis that we had previously 
performed. These analyses produced two subnetworks 
that recapitulate signaling through the MAPK1 and TP53 
pathways to their downstream TFs.

Statistical analyses 

Except were stated otherwise all statistical analyses 
were performed in MATLAB 2017b. The Fisher’s exact 
test was used assess associations between categorical 
variables. The Wilcoxon rank sum test and Kruskal–
Wallis test or independent sample Student t-test and One-
way ANOVA were used for continuous variables were 
appropriate. Statistical tests were considered significant at 
p < 0.05 for single comparisons, and Benjamini-Hochberg 
adjusted p-values for multiple comparisons. 
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