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Abstract: Awake surgery and intraoperative neuromonitoring represent the gold standard for surgery
of lesion located in language-eloquent areas of the dominant hemisphere, enabling the maximal safe
resection while preserving language function. Nevertheless, this functional mapping is invasive;
it can be executed only during surgery and in selected patients. Moreover, the number of neuro-
oncological bilingual patients is constantly growing, and performing awake surgery in this group of
patients can be difficult. In this scenario, the application of accurate, repeatable and non-invasive
preoperative mapping procedures is needed, in order to define the anatomical distribution of both
languages. Repetitive navigated transcranial magnetic stimulation (rnTMS) associated with func-
tional subcortical fiber tracking (nTMS-based DTI-FT) represents a promising and comprehensive
mapping tool to display language pathway and function reorganization in neurosurgical patients.
Herein we report a case of a bilingual patient affected by brain tumor in the left temporal lobe,
who underwent rnTMS mapping for both languages (Romanian and Italian), disclosing the true
eloquence of the anterior part of the lesion in both tests. After surgery, language abilities were intact
at follow-up in both languages. This case represents a preliminary application of nTMS-based DTI-FT
in neurosurgery for brain tumor in eloquent areas in a bilingual patient.

Keywords: transcranial magnetic stimulation; brain tumor; bilingual; language; preoperative
mapping; case report

1. Introduction

Surgical resection of lesions involving the language pathway remains a major chal-
lenge for the neurosurgeon, harboring a risk of new functional deficits. Repetitive navigated
transcranial magnetic stimulation (rnTMS) has proven to provide a reliable non-invasive
preoperatory cortical mapping for language function, showing a good overall correlation
with intraoperative direct cortical stimulation (DCS) [1–5]. Nevertheless, its sensitivity,
specificity, negative and positive predicting values varies widely among studies. Therefore,
rnTMS speech mapping is the only method that can replace DCS when the latter cannot
be performed [6–9]. Subcortical tracts can be identified by diffusion tensor imaging-fiber
tracking (DTI-FT) based on rnTMS mapping, obtaining an accurate and functionally ori-
ented white matter preoperative study. In fact, it allows planning of the best surgical
strategy for resection, improving postoperative outcome, especially in patients who are
not eligible for awake surgery [8,10–15]. A detailed preoperative mapping of the language
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pathway is mandatory, especially in case of bilingual patients, a peculiar subgroup that
can present different patterns of cortical representation of the languages. In fact, the first
language (L1) and the second language (L2) are processed both by shared brain areas as
well as language-specific areas [16]. Moreover, even in L1 and L2 shared areas distinct
language-specific neural population for the different languages have been identified by
rnTMS [17]. Furthermore, Tussis et al. studied the cortical distribution of L1 and L2 in the
non-dominant hemisphere with rnTMS, disclosing the involvement of dorsal precentral
and middle precentral gyrus especially for L1, and triangular inferior frontal gyrus for
L2 [18]. Whereby, a comprehensive preoperative understanding of the language path-
way may be useful also in patients eligible for awake surgery, enabling a custom tailored
craniotomy size and a faster and safer cortical mapping [2]. Herein we present the case
of a 54-year-old Romanian woman affected by a primary brain tumor in the left angular
gyrus who underwent preoperative rnTMS mapping to explore both Romanian and Italian
languages. In the following, neurosurgical planning, surgical intervention and outcome
are described and discussed.

2. Case Presentation
2.1. Patient Information, Clinical and Radiological Findings

A right-handed, bilingual 54-year-old woman was admitted at the emergency depart-
ment for a generalized tonic clonic seizure sustained by a primitive brain tumor located
between the posterior part of the superior and middle temporal gyri and the anterior part
of the angular gyrus in the left hemisphere. The lesion did not enhance after contrast
medium administration and it was hypometabolic at 18F-fluorodeoxyglucose PET/MRI.
The functional MRI (fMRI) confirmed that the lesion was located in the dominant hemi-
sphere (Figure 1). Due to the anxiety of the patient, mostly related to the diagnosis of brain
tumor, the fMRI was performed testing only her mother tongue, i.e., Romanian. Interictal
EEG showed an irritative activity in left centro–parietal derivations.
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Table 1. Neuropsychological assessment. 

Assessment Pre-Operative Post-Operative Follow-Up 1 Month Follow-Up 4 Months 
Test CS Performance CS Performance CS Performance CS Performance 

GLOBAL COGNITIVE FUNCTIONS 
Oxford Cognitive Screen (OCS)         

Denomination 3 Impaired 3 Impaired 3 Impaired 4 Normal 
Semantics 3 Normal 3 Normal 3 Normal 3 Normal 

Orientation 4 Normal 4 Normal 4 Normal 4 Normal 
Visual field 4 Normal 4 Normal 4 Normal 4 Normal 

Reading 15 Normal 13 Impaired 15 Normal 15 Normal 
Number writing 3 Normal 2 Impaired 3 Normal 3 Normal 

Calculation 3 Borderline 3 Borderline 4 Normal 3 Normal 
Visual search 47 Normal 47 Normal 46 Normal 49 Normal 

egocentric neglect −1 Normal 1 Normal 2 Normal 1 Normal 
allocentric neglect 0 Normal 0 Normal 0 Normal 0 Normal 

Imitation         
Right hand 11 Normal 8 Impaired 12 Normal 12 Normal 

Figure 1. (A) 3D FLAIR (fluid attenuated inversion recovery) image discloses a primitive brain tumor
located between the posterior part of the superior and middle temporal gyri and the anterior part
of the angular gyrus in the left hemisphere; (B) the lesion does not enhance after contrast medium
administration; (C) the 18F-fluorodeoxyglucose PET/MRI reveals the hypometabolism of the tumor
(*). (D) Axial T2w image fused with the BOLD (blood oxygenation level dependent) signal activation
map obtained during word generation task shows a focal cortical activation in the superior–anterior
part of the lesion (*).
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2.2. Neuropsychological Evaluation

Concerning the social and work surrounding the patient had been living in Italy for
17 years with her family, perfectly integrated in the social context, working as a house-
keeper. Previously, she had 13 years of education, graduating in a vocational school in her
home country.

The patient underwent a comprehensive battery of standardized neuropsychological
tests performed in Italian, in order to evaluate the impact of the tumor on cognitive
functions. A standardized evaluation of Romanian language was not executable because
native language versions of the tests were not available and because none of the team
spoke Romanian. The assessment was composed of tests covering different cognitive
domains. The Oxford Cognitive Screen [19,20], a brief screening instrument composed
of tasks on language, visual attention, spatial neglect, praxis abilities, visual and verbal
memory, calculation, number reading and executive functions. Specific tests were also
administered to better evaluate different cognitive functions. The Prose Memory Test
(immediate and delayed recall) and Interference Memory test [21] were used as a measure
of verbal memory. Forward and backward digit span and the Corsi block-tapping test
were administered to measure short-term memory and working memory both for the
verbal and visuospatial components [22]. Selective attention and switching abilities were
measured using the Trail-Making-Test, forms A and B [21]. Different components of
language abilities were assessed through specific tests: Phonemic Fluency test [21], the
Boston Naming Test for visual naming ability [23], verbal comprehension of words and
sentences and repetition of words and non-words [24]. Concerning language domain,
the baseline preoperative assessment showed an impaired performance in naming and
verbal fluency, whereas the other language abilities were normal (Table 1). Furthermore,
the patient refused the proposition of an awake surgery. Therefore, we decided to test the
patient for both languages by means of rnTMS integrated with DTI-FT. Due to her anxious
state only the dominant hemisphere was evaluated, focused on the surgical planning.

Table 1. Neuropsychological assessment.

Assessment Pre-Operative Post-Operative Follow-Up 1 Month Follow-Up 4 Months

Test CS Performance CS Performance CS Performance CS Performance

GLOBAL COGNITIVE FUNCTIONS

Oxford Cognitive Screen (OCS)
Denomination 3 Impaired 3 Impaired 3 Impaired 4 Normal

Semantics 3 Normal 3 Normal 3 Normal 3 Normal
Orientation 4 Normal 4 Normal 4 Normal 4 Normal
Visual field 4 Normal 4 Normal 4 Normal 4 Normal

Reading 15 Normal 13 Impaired 15 Normal 15 Normal
Number writing 3 Normal 2 Impaired 3 Normal 3 Normal

Calculation 3 Borderline 3 Borderline 4 Normal 3 Normal
Visual search 47 Normal 47 Normal 46 Normal 49 Normal

egocentric neglect −1 Normal 1 Normal 2 Normal 1 Normal
allocentric neglect 0 Normal 0 Normal 0 Normal 0 Normal

Imitation
Right hand 11 Normal 8 Impaired 12 Normal 12 Normal
Left hand 12 Normal 12 Normal 12 Normal 12 Normal
Memory
Verbal 3 Normal 3 Normal 2 Impaired 3 Normal

Episodic 4 Normal 4 Normal 4 Normal 4 Normal
Executive functions −1 Normal −2 Normal 0 Normal 0 Normal
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Table 1. Cont.

Assessment Pre-Operative Post-Operative Follow-Up 1 Month Follow-Up 4 Months

Test CS Performance CS Performance CS Performance CS Performance

LANGUAGE

Boston Naming Test (15 items) 5 Impaired 3 Impaired 6 Impaired 6 Impaired
E.N.P.A.

Verbal comprehension (words) 18.4 Normal 18.4 Normal 18.4 Normal 20 Normal
Verbal comprehension (sentences) 14 Normal 14 Normal 14 Normal 14 Normal

Repetition (words) 10 Normal 10 Normal 10 Normal 10 Normal
Repetition (nonwords) 5 Normal 5 Normal 5 Normal 5 Normal

Phonemic Fluency
(Mondini, 2011) [20] 7.7 Impaired 1.7 Impaired 1.7 Impaired 4.3 Impaired

ATTENTION

Trail Making Test
A 26” Normal 37” Normal 51” Normal 46” Normal
B 167” Impaired 167” Impaired 156” Impaired 133” Normal

MEMORY

Digit span
Forward 4.75 Normal 2.75 Impaired 4.75 Normal 4.75 Normal

Backward 3.71 Normal 0 Impaired 3.71 Normal 3.79 Normal
Corsi Test
Forward 6.74 Normal 5.74 Normal 4.74 Normal 3.81 Normal

Backward 5.67 Normal 5.67 Normal 5.67 Normal 3.79 Normal
Prose Memory

Immediate 9 Normal 5 Impaired 12 Normal 10 Normal
Delayed 12 Normal NE Impaired 15 Normal 17 Normal

Memory Interference
10 s 8 Normal 5 Normal 8 Normal 8 Normal
30 s 7 Normal 6 Normal 7 Normal 8 Normal

TCS: correct score (the raw score is adjusted for age and education basing on Italian-normative data from the literature, when appropriate).
E.N.P.A.: Esame neuropsicologico per l’afasia (i.e., neuropsychological examination for aphasia). NE: not executable. The impairment of
the performance is defined basing on cut-off, from normative data from the literature.

2.3. Patient’s Informed Consent

The patient signed specific informed consent for MRI acquisition, rnTMS tests, neu-
ropsychological evaluation and surgical intervention.

2.4. MRI Acquisition

The patient underwent brain MRI according to a specific protocol designed for the
nTMS and DTI-FT using a 3T scanner (Ingenia 3T, Philips Healthcare) to obtain 3D T1-
weighted images (TR/repetition time = 8, TE/echo time = 3.7); 3D FLAIR/fluid attenu-
ated inversion recovery (TR = 4800, TE = 299, TI/inversion time = 1650, flip angle = 40,
matrix = 240 × 240 mm2, voxel = 1 × 1 × 1 mm3, 196 slices, 4.05 min of acquisition time);
diffusion weighted sequences (DWI with 32 directions, TR = 8736, TE = 91; single shell,
b = 800 s/mm2) for DTI-FT.

2.5. nTMS Language Cortical Mapping and Off-Line Analysis

The 3D T1-weighted sequence was imported into the nTMS system (NBS system
4.3—Nexstim Oy, Elimäenkatu 9 B, Helsinki, Finland) for language mapping, performed
thorough a repetitive stimulation (rnTMS) according to the most update indications [25,26].
The patient’s resting motor threshold (RMT) was determined by applying nTMS to the
left motor cortex representing the hand, detecting the motor response of the m. abductor
pollicis brevis. The patient performed the language assessment (base-line test, rnTMS
mapping) first in Romanian (in the presence of an interpreter) and then in Italian. The
base-line test was performed twice without stimulation, in order to cross out from the
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list the unfamiliar words, possible confounding variables in error analysis. A total of
80 black-and-white drawings of high and low frequency objects were presented on a
17-inch monitor placed 1 m in front of the patient for the picture naming task. Display
and inter-picture time were set at 700 ms and 2500 ms, further adjusted to 2 s and 4 s
for both languages. The patient was asked to say aloud the initial phrase “this is a . . . ”
to distinguish between a speech arrest and anomia [27]. At the end of the base-line test,
70 and 67 figures were considered for Romanian and Italian mapping, respectively. The
rnTMS stimulation frequency was set at the beginning at 5 pulses at 5 Hz at 110% RMT and
then increased to 10 pulses at 10 Hz at 100% RMT because with the previous parameters of
stimulation we did not obtain any error. The stimulation coil was randomly moved between
the presentation of the images in about 1-cm steps over the perisylvian and peritumoral
cortex. The rnTMS pulse train automatically triggered with picture presentation (0 ms) [26].
The entire mapping session was recorded on video for off-line data analysis, performed
by an expert neuropsychologist (S.F.), helped by an interpreter for the review of the test
performed in Romanian. The errors were classified according to Corina et al.: semantic
paraphasias, circumlocutions, phonological paraphasias, neologisms, performance errors
and no response errors [28]. We considered a site as language-eloquent if at least two
of three stimulations caused an error response [25]. The stimulation sessions were well
tolerated with a minimal discomfort reported (Visual Analogue Scale 2/10).

The off-line analysis highlighted 39 performance errors in Romanian (320 spots tested)
of which a group of 5 was located in the superior–anterior and posterior–inferior border
of the lesion. In Italian, 2 semantic and 15 performance errors were detected (271 sites
tested), 3 of them located in the anterior part of the tumor. The language maps showed a
convergence of the errors in the anterior middle temporal gyrus, middle middle tempo-
ral gyrus, posterior middle temporal gyrus, ventral precentral gyrus and anterior supra-
marginal gyrus according to the cortical parcellation system as described in Corina et al. [29]
(Figure 2). The latest convergence corresponds to the anterior part of the tumor.
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2.6. nTMS Based DTI-FT of Language Pathway

The rnTMS cortical mapping was used to obtain the nTMS-based DTI-FT of the
principal subcortical pathways of language function: arcuate fascicle (AF), frontal aslant
tract (FAT), inferior fronto–occipital fascicle (IFOF), inferior longitudinal fascicle (ILF),
superior longitudinal fascicle (SLF), uncinate fascicle (UF) [13,30,31]. The workflow for
DTI-FT was performed on the StealthStation S7 navigation system by using StealthViz
software (Medtronic Navigation, Coal Creek Circle Louisville, CO, USA). A deterministic
approach based on the fiber assignment by continuous tracking (FACT) algorithm was used,
with these parameters: FA cut off value = 0.15; vector step length = 0.5 mm; minimum fiber
length = 30 mm; seeding density = 1.0; max directional change 90◦. All language positive
spots were imported into the planning station and used to create an overall object with an
additional 5-mm border for each cortical spot. Subsequently, the object was exploited like a
single ROI for tracking and the StealthViz software created a directionally encoded color
map and then a 3D volume of white matter fibers originating from the cortical positive
spots previously selected [11]. nTMS-based DTI-FT was able to identify the subcortical
network for both languages, consisting of 533 and 293 fibers for Romanian and Italian,
respectively. The 3D volumes were then manually elaborated to better visualize the single
language-related tracts included in the reconstruction (i.e AF, SLF and ILF) under constant
supervision of an expert neuroradiolgist [32–34] (Figure 3). White matter reconstruction
displayed an overlap of AF in both languages with the anterior part of the lesion.
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Figure 3. nTMS-based DTI-FT reconstructions of the language subcortical network in Romanian (A) and Italian (B) identifies
the arcuate fascicle (AF, red), the superior longitudinal fascicle (SLF, yellow) and the inferior longitudinal fascicle (ILF,
green) for both languages. In (C) the overlap of subcortical tracts is depicted. Italian color code—AF: red; SLF: yellow, ILF:
green; Romanian color code—AF: light blue, SLF: blue, ILF violet.

2.7. Presurgical Planning

According to the rnTMS results, the tumor was divided into an eloquent and non-
eloquent part, the latter identified as our surgical target. Using the planning station, the
anterior part was highlighted in red and the target in violet. Then, the final reconstruction
of language network was imported into the neuronavigation system to assist surgery
(Figure 4).
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Figure 4. rnTMS-based planning using StealthViz software. (A) The anterior and eloquent part of
the lesion identified by nTMS is colored in red and the posterior non-eloquent part in violet, (B) 3D
FLAIR anatomical images for comparison. (C,D) A subtotal resection was planned and guided by
neuronavigation (in violet the non-eloquent part).

2.8. Surgical Intervention and Neuropsychological Follow Up

Surgical resection of the posterior non-eloquent part was achieved by neuronavigation
because the lesion was not clearly distinguished from normal brain parenchyma. Integrated
histological and molecular diagnosis disclosed a WHO-grade IV gliomas [35]. She received
perioperative antiepileptic drugs prophylaxis. Moreover, the patient received dexametha-
sone 4 mg four times daily for one week followed by gradual tapering. Postoperative
neuropsychological assessment, performed after one week, showed a global worsening
of the performance in language tasks (reading, number writing) and in other cognitive
functions (praxical function in right hand, short- and long-term verbal memory, verbal
working memory). However, the follow-up evaluations performed at 1 and 4 months after
surgery, revealed a restoration of functions through the time. The performance at four
months after the surgery was comparable with the baseline (Table 1). Relatives reported
intact native language performance as well. The patient underwent whole brain radiother-
apy (60 Gy/30 fractions) and medicated with Temozolomide (two cycles). The patient did
not present seizures at last follow-up (10 months).

3. Discussion

Despite awake surgery associated with DCS still represents the gold standard for
language mapping, an accurate preoperative assessment of language pathway is required
to establish the best surgical strategy, for the risk–benefit balance and for the patient’s
counselling [36–38]. This is mandatory especially in case of patients with lesions located in
eloquent areas who are not eligible for awake surgery [39]. Commonly, fMRI is the most
accessible and applied preoperative mapping technique, providing the identification of
eloquent cortical areas for different types of functions. Nevertheless, the indirect signal
of area activation provided near a brain lesion could be undermined by a metabolic un-
coupling induced by the lesion itself, determining a reduced fMRI signal in perilesional
eloquent cortex [40–42]. This phenomenon, associated to a normal or increased activity
in homologous brain regions, can simulate a reorganization of the function [43]. More-
over, previous studies have not clarified the reliability of fMRI for preoperative language
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mapping in tumors located in language-eloquent areas [42,44,45] thus, the use of fMRI in
adjunct to other mapping methods is suggested [3,6,46].

nTMS is a recent and promising preoperative mapping technique for cortical functions
localization and the development of nTMS-based DTI-FT allows a functionally oriented
white matter reconstruction. In fact, the white matter reconstruction based on the rnTMS
mapping showed a more accurate and reliable reconstruction of the subcortical language
pathway compared to the standard anatomical technique [10,13]. Nonetheless, few centers
have a broad experience with this technique and the language mapping has been less
investigated compared to the motor nTMS mapping [6]. This may reflect the fact that
language function is the result of a complex cortical and subcortical network which is
more difficult to localize and challenge to map [28,47–49]. Currently, rnTMS combined
with nTMS-based DTI-FT could be remarkably useful for patients who are not eligible
for awake surgery, providing information concerning the true eloquence of the lesion
with a high specificity of rnTMS in localizing language-negative areas. Furthermore, this
technique can identify the presence of intra-hemispheric tumor-induced plasticity [14] or
inter-hemispheric function reorganization and/or migration involving the non-dominant
hemisphere [50–52].

For bilingual and multilingual neurosurgical patients affected by lesion located in
language-eloquent areas, the preoperative mapping and languages preservation represent
an additional major goal. At present, bilingual (and multilingual) neurosurgical patients
have been investigated mostly with DCS and fMRI, as highlighted in a very recent review
by Polczynska and Bookheimer [16]. This review suggests several principles concerning
languages organization in bilingual patients, which may be useful in predicting the likeli-
hood of separate versus converging representation of languages (i.e., age of L2 acquisition,
proficiency level of L2 and linguistic distance between L1 and L2). Nonetheless, fMRI may
falsely identify certain brain regions as potentially eloquent as above mentioned. Moreover,
DCS evaluates a restricted coverage within language areas, mostly focused on sites in
the frontal or posterior languages eloquent pathway. Unexpectedly, rnTMS has not been
applied to study neurosurgical bilingual patients so far and late bilingual population has
not been investigated.

We described the case of a bilingual patient affected by brain tumor located in
language-eloquent region. The patient refused to undergo an awake craniotomy. There-
fore, in order to deal with the aim of a safe resection, we applied an alternative method
that could offer an accurate mapping of both languages. Preoperative languages map-
ping was obtained by rnTMS and nTMS-based DTI-FT language assessment according
to the protocol for rnTMS language mapping used at our institution and established in
the literature [11,25,53]. Language mapping for Romanian (L1) and Italian (L2) showed
a convergence in the posterior areas of language pathways [48]. This overlapping may
be explained by the high proficiency of L2 identified by extensive neuropsychological as-
sessment and by the common derivation from Romance language as previously described.
Furthermore, the language mapping disclosed the true eloquence of the anterior part of the
lesion for both L1 and L2, limiting the surgical target to the non-eloquent region. Despite
the worsening of language tasks and in some cognitive functions, the short-term follow-up
highlighted a restoring of functions, comparable with the baseline. Probably this transient
worsening was imputable to the surgical manipulation of subcortical fibers producing a
functional, rather than anatomical damage. When performing language assessment in a
bilingual patient, the setting should consider the presence of an interpreter both during
rnTMS and off-line analysis, if the L1 is not properly known by one of the clinical staff
members. Ideally, the native language version of the neuropsychological tests should be
available and administered by a properly educated interpreter, to achieve a greater accuracy.
This can be considered as an intrinsic limitation and possible bias when analyzing different
languages, but it can be overcome by the advantages of an accurate mapping of the cur-
rently speaking languages, which requires to be preserved. Moreover, rnTMS still presents
other pitfalls that need to be assessed. In fact, the likelihood of detecting language-positive
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spots is still low, drawing attention to the necessity of a revision of current stimulation
protocols [49]. Furthermore, the interpretation of the hesitation errors varies among au-
thors, constituting a matter of debate [49,54,55] and, in addition, the pre-existing moderate
aphasia or severe cognitive impairment could undermine the reliability of the examination,
entailing an accurate patients selection [56]. Nonetheless, the use of the initial sentence
during picture naming, helping to distinguish between speech arrest and anomia is not
routinely applied [25,27]. Another point is the influence of the antiepileptic drugs on the
cortical excitability, which may influence the stimulation threshold as reported for the
motor cortex but not investigated for extra-motor cortex [57]. Regarding the functional
tractography obtained from the language mapping, a meaningful and debatable protocol
should be assessed [10,11,13].

4. Conclusions

Our experience showed the reliability of rnTMS mapping in a bilingual patient who
required surgery for a language-eloquent lesion for both languages. The potentials of this
technique are different. First of all, the clinical application in safe neurosurgical practice is
clear, because it represents a good tool for pre-surgical mapping, when awake surgery is
not applicable for different reasons and rnTMS may allow filling of this gap. Furthermore,
in the specific case of brain tumor, the preoperative mapping with nTMS-based DTI allows
a better comprehension of language pathway reorganization and plasticity. A second
important application concerns the neural basis of language, and bilingualism in particular,
which remain still unclear in the literature. In this context, further studies with rnTMS
on bilingual patients and healthy subjects are advocated to a comprehensive study of
languages organization and plasticity.
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