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Model of Predicting Drug-Drug 
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Drug-drug interactions (DDIs) may trigger adverse drug reactions, which endanger the patients. 
DDI identification before making clinical medications is critical but bears a high cost in clinics. 
Computational approaches, including global model-based and local model based, are able to screen 
DDI candidates among a large number of drug pairs by utilizing preliminary characteristics of drugs 
(e.g. drug chemical structure). However, global model-based approaches are usually slow and don’t 
consider the topological structure of DDI network, while local model-based approaches have the 
degree-induced bias that a new drug tends to link to the drug having many DDI. All of them lack an 
effective ensemble method to combine results from multiple predictors. To address the first two issues, 
we propose a local classification-based model (LCM), which considers the topology of DDI network and 
has the relaxation of the degree-induced bias. Furthermore, we design a novel supervised fusion rule 
based on the Dempster-Shafer theory of evidence (LCM-DS), which aggregates the results from multiple 
LCMs. To make the final prediction, LCM-DS integrates three aspects from multiple classifiers, including 
the posterior probabilities output by individual classifiers, the proximity between their instance 
decision profiles and their reference profiles, as well as the quality of their reference profiles. Last, the 
substantial comparison with three state-of-the-art approaches demonstrates the effectiveness of our 
LCM, and the comparison with both individual LCM implementations and classical fusion algorithms 
exhibits the superiority of our LCM-DS.

Drug-drug interactions (DDIs) may occur unexpectedly when drugs are co-prescribed. The identification of 
DDIs is difficult in the process of drug development1 because of both a small number of participants and a large 
number of drug pairs in clinical screening. Thus, a minority of DDIs could be usually identified in the clinical trial 
phase while a majority of them are only reported after the co-prescription of multi-drugs are made. On the one 
hand, DDIs would trigger adverse drug reactions, such as efficacy reduction and toxicity increment, such that the 
patients, who are treated with multiple drugs, are led into unsafe and even incorrect medications2–5. The broad-
casting of adverse effects caused by DDIs cannot be neglected, because the number of potential DDIs is rising 
with the power of two along with the increasing number of approved drugs. On the other hand, the identification 
of DDIs is one of the crucial steps towards finding synergistic drug combinations6, which further cover the issues 
about drug targets, drug resistance and drug sensitivity7.

Consequently, it is imperative to identify DDIs before multi-drug co-prescriptions are made. However, 
experimental approaches (e.g. testing cytochrome P4508 or transporter-associated interactions9) are performed 
under the consideration of animal welfare with high costs in both money and time. In contrast, computational 
approaches can help screen DDI candidates among a large number of drug pairs with much lower costs. They 
have winning interests from both academy and industry recently10–12.

Text-mining based computational approaches apply the techniques of text-mining to detect DDIs recorded 
in diverse text sources, such as scientific literatures13–15, electronic medical records16, and the Adverse Event 
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Reporting System of FDA. These approaches are particularly helpful when building a DDI database. However, 
they cannot predict or alert newly potential DDIs for multi-drug treatment, because they depend on the evidence, 
which reports the DDIs found in clinical treatments.

Many works in other areas have demonstrated that the utilization of pre-existing knowledge is promising to 
build a predictive model with the advantages of both low cost and good effectiveness. For example, the genes 
identified in silico as cancer prognostic biomarkers17 show their strong correlations with cancers, such that 
they have been widely used to build predictive models for diverse cancer-related alerts (e.g. survival of patients 
under PIK3CA-mutated Breast cancer18, tumor clinical phenotypes19, and recurrence of colorectal cancer20). For 
another example similar to DDI prediction, the observation that similar drugs tend to interact with similar targets 
inspires the development of diverse models for predicting drug-target interaction21–24. Analogously, by leveraging 
pre-existing drug properties (e.g. chemical structures25, targets26, drug classification codes27 and side effects28) 
which can be acquired before multiple drugs are co-prescribed, similarity-based computational approaches 
are able to provide predictive models for deducing potential DDIs. These approaches can be grouped as global 
model-based (e.g. global classification-based27) and local model-based(e.g. naïve similarity-based approach25 and 
network recommendation-based28). They enable drug safety professionals to screen potential DDIs fast so as to 
help make appropriate clinical multi-drugs treatments.

Similarity-based approaches usually hold diverse assumptions. Global classification model-based approaches 
(GCM) accept that DDIs are globally distinct to non-DDIs27. After treating DDIs and non-DDIs as positive and 
negative instances respectively, it trains a classifier to perform DDI prediction for new drugs. However, GCM 
neglects the topological relationship between DDIs and non-DDIs. Local model-based approaches (e.g. Naïve 
similarity-based approach25 and label propagation28) consider such a relationship to some extent and utilize the 
local topology of a DDI network. They usually run faster than GCM. Nevertheless, both of them have the intrinsic 
degree-induced bias that greatly tends to generate a high confidence of being a DDI to the pair of a newly-given 
drug having no known DDI and a known drug having many DDIs. Even though such a bias is probably useful to 
DDI prediction, it deserves a better utilization or relaxation.

Furthermore, though current approaches always utilize a single model to perform DDI prediction, they lack 
the effective combination of multiple predictions generated by different predictors/models (e.g. classifiers). The 
fact that different models may fit different data characteristics of pre-existing drug properties/knowledge should 
be considered.

To address the abovementioned issues, we first propose a novel local classification-based model (LCM) under 
the assumption that similar drugs tend to interact with the same drugs. Then, we design a novel supervised fusion 
algorithm based on the Dempster-Shafer theory of evidence (LCM-DS), which aggregates the results from dif-
ferent LCMs. Last, in the scenario of predicting potential DDIs for new drugs, the results demonstrate that the 
proposed LCM is superior to three state-of-the-art approaches greatly and its ensemble version LCM-DS outper-
forms both three individual LCM implementations and five classical fusion algorithms.

Methods
Local Classification Model.  Given m drugs, D = {di}, i = 1, 2, ..., m, of which each has at least one DDI with 
others. Their pairwise interactions are accordingly arranged into an m × m binary symmetric matrix Am×m = {aij}, 
in which aij = aji ∈ {0, 1}, aij = 1 if the interaction between di and di occurs, aij = 0 otherwise. Moreover, their pair-
wise similarities are organized into another m × m positive symmetric matrix Sm×m = {sij}, where ∈ +sij  denotes 
the similarity between di and dj. For a newly give drug dx, which has no interaction with any drugs in D, its pair-
wise similarities to all di are also organized into a vector ×S m

x
1 .

Our problem is to infer how likely the new drug dx interacts with the drugs in D and it is represented as a set 
of local drug-specific classifications as follows.

In the local classification specific to drug di in D, we first label the drugs interacting with di as positive instances 
and other drugs in D as negative instances. For example in Fig. 1, when predicting how likely dx interacts with d4, 
we assign d1, d3, d5 and d7 with positive labels, d2 and d6 with negative labels respectively. Then, we train a classifier 

Figure 1.  Illustration of LCM predicting DDI for a newly given drug. Nodes are drugs. The hollow nodes are 
known drugs and the solid lines between them denote their interactions. The node filled with red is the newly 
given drug. Our problem is to determine which drugs it is likely to interact with.
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C specific to di by the labels L of the drugs and their pairwise similarity matrix Sm×m. Finally, we apply the 
well-trained classifier C on the unlabeled instance dx to obtain its label. Generally, the classifier simply outputs a 
single label to denote a positive or a negative instance. Because we need to know how likely dx interact with a 
specific drug in D, the classifier is required to output a 2-dimensional decision profile vector = = + −C x p py ( ) [ , ]x , 
where p+, p− ∈ [0, 1] are the probabilities of dx being a positive instance and a negative instance respectively, and 
they satisfy p+ + p− = 1.

The proposed LCM has a faster training and a requirement of less memory than GCM27 because the num-
ber of instances handled by LCM is the number of drugs but not the number of drug pairs, which is usually 
huge, handled by GCM. Compared with NS25 and LP28, LCM is able to minimize their intrinsic degree-induce 
bias because the prediction for a new drug depends only on the distributions of positive instances and negative 
instances in feature or similarity space (see also Section 3.2).

Similarity Calculation.  Drugs are popularly represented as binary profiles according to diverse drug proper-
ties, such as fingerprints of chemical structures and keyword occurrence lists of side effects. In the binary profile 
of a drug, each entry denotes the presence or absence of one of its concerned properties by 1 or 0 respectively. 
A classical similarity measure widely adopted by former works is Jaccard Index (also called as Tanimoto coeffi-
cient). Technically, the pairwise similarity between two drugs is defined as SJaccard(i, j) = |fi ∩ fj|/|fi ∪ fj|, where the 
numerator is the number of common presence entries between fi and fj while the denominator is the number of 
presence entries in their binary union. Once a similarity matrix is given, it can be exploited to train a classifier 
and make the prediction.

Classifiers.  Except for similarity, the classifier is another crucial factor in classification. When implementing 
LCM, we considered three classifiers, multi-label K nearest neighbors (MLKNN)23, Regularized Least Squared 
classifier (RLS)24,29 and Support Vector Machines (SVM)30, of which all can accept the form of similarity matrix 
as their input. Their brief introductions are shown in the following respectively. In addition, we refer to drugs as 
instances in the context of classification.

•	 MLKNN: Denote Nj(x, K) as the set of K nearest neighbors of instance dx, nj(x, K) as the number of neighbors 
interacting with dj (having positive labels) among Nj(x, K), and px

j as the probability that dx interacts with dj (a 
positive label). When dx is a testing instance, ∈p [0, 1]x

j  defines its confidence score of being a positive 
instance as follows

=
= ⋅ = | =

∑ = ⋅ = | ==

p y n x K k y
y t n x K k y t
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Pr[ ] Pr[ ( , ) ] (1)
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where =y tPr[ ]j  is the prior probability of an instance having label t and = | =n x K k y tPr[ ( , ) ]j j  is the prob-
ability of dx having k neighbors under the condition of a positive/negative label with respect to dj. Two prior 

probabilities can be directly estimated by = ≈ + +y c mPr[ 1] (1 )/( 2)j j  where cj is the number of drugs 

interacting with dj and = = − =y yPr[ 0] 1 Pr[ 1]j j . The conditional probability can be estimated by
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where yj(i) = t is the i-th drugs having label t, B[S] = 1 if statement S is correct and B[S] = 0 otherwise. Totally, 
we generate two probability tables, which account for positive instances and negative instances respectively. 
Each of them contains K + 1 probability entries, which correspond to the K + 1 possible values with respect 
to nj(x, K) = 0, 1, ..., K respectively.
  Note that, for a queried instance, the theoretical version of MLKNN uses the distances to other instances 
to find its top K neighbors31, while our input is a set of pairwise similarities between instances (organized 
into a similarity matrix). To bridge the gap, we need to turn similarities into distances by two points. First, 
the smaller the distance between two instances is, the greater their similarity is. In addition, the value of 
distance should be non-negative. Thus, the distance between two instances is finally defined as by 1- their 
similarity, such that the K nearest neighbors of an instance are just the top K most similar instances to it23.

•	 RLS: Let D be the set of the training instances (drugs), dx be the testing instance, Yj = A(:, j) be the m × 1 class 
label vector of training instances which are specific to drug dj and correspond to the j-th column of the inter-
action matrix, and K(X1, X2) be the kernel matrix, which reflects the pairwise similarities between two groups 
of drugs. Specifically, K(D, D) = Sm×m, which contains the pairwise similarities of D, and = ×dK D S( , )x m

x
1 , 

which contains the pairwise similarities between dx and m training drugs. RLS classifier is an elegant linear 
system, which has the order equal to the number of training instances24. The trained RLS classifier outputs the 
confidence score fj(dx) of how likely a given new drug dx interacts with drug dj as follows,

α= + −f d dK D K D D I Y( ) ( , )( ( , ) ) (3)j x x j
1

where I is the m × m identity matrix and α is the regularization parameter (usually equal to 0.5) to prevent 
overfitting.
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•	 SVM: Similar to RLS, SVM is also a kernel-based classifier, which can perform the highly non-linear classifi-
cation as a linear classification by kernel trick30. Usually, the training of a binary dj-specific SVM depends on 
the solution of the following optimization problem

∑ ∑∑

∑
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�where ∈y {0, 1}k
j  is the dj-specific label of the training drug dk, M is the number of the training instances, K is 

the kernel function, γ is the tunable parameter to reflect the trade-off between the training error and the mar-
gin of separation, and the variable αk

j to be solved is the dj-specific weight of dk. Once the training of SVM is 
done, for the given testing instance dx, it outputs the confidence score of how likely a given new drug dx inter-
acts with drug dj by a linear operation as follows,

∑α= + .
=
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The abovementioned three classifiers shall be taken as the member classifiers when performing the integration 
of classifiers for DDI prediction in the next section.

Classifier fusion.  In the context of classifier fusion, our problem is restated as the inference of how likely 
a given drug dx interacts with a specific drug dj by combining the evidences generated by a group of classifiers.

Formally, given m training instances X = {xi}, i = 1, 2, ..., M with their labels li ∈ {1, 2, ..., K} where K is the 
number of classes (e.g. K = 2 in our problem). N classifiers {Cn} n = 1, ..., N are trained by their similarity matrices 
and their labels. Classifier Cn generates a K-dimensional decision profile ∈ Ryn

x K for an unlabeled instance x.
Denote e y( )k n

x  as the evidence supporting the proposition “classifier Cn thinks that x is of class k”. Classifier 
fusion combines the evidences e y{ ( )}k n

x  to make a final decision of how likely x is of class k.The general architecture 
of classifier fusion is shown in Fig. 2.

The fusion rules of evidences can be categorized into unsupervised and supervised rules. Unsupervised rules 
combine those output evidences of x directly by arithmetical operations, such as Average, Product, Maximum and 
Minimum. For a given unlabeled instance x, the above four unsupervised rules are defined as follows
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While supervised rules need to generate a training profile by the evidences of the training instances, and 
integrate the training profile with the evidences of x generated by classifiers to make the combined evidence of 
x. Decision Template is a popular supervised rule32 and has been applied in other related areas (e.g. drug-target 
interaction prediction33). It combines the evidence of x from different classifiers by

Figure 2.  Architecture of classifier fusion.
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N

n
x1

1k
k i is the decision template of class k, which is generated from the training instances. In 

details, xi denotes the instances having class label li = k in X, yn
xi is their discriminating profile, and Nk is the num-

ber of such instances and ∑ == N Mk
K

k1 .
In the next section, we should introduce a novel supervised fusion based on the Dempster-Shafer Theory of 

Evidence.

Dempster-Shafer Theory of Evidence.  When representing and combining measures from different 
sources (e.g. the decisions of multiple classifiers), the Dempster–Shafer (DS) theory of evidence provides a better 
frame of discernment than the Bayesian theory by generalizing Bayesian reasoning34. This theory defines a set of 
mutually exhaustive and exclusive atomic hypotheses Θ = {θ1, ..., θK}, and its power set 2Θ that contains the empty 
set ∅, Θ itself and other subsets of Θ. For the K-dimensional decision profile generated by classifier Cn generates, 
each hypothesis θk represents that “yn

x is of class k.” In the case of binary classification, Θ = {+, −} and its power 
set 2Θ = {∅, {+}, {−}, Θ}.

The DS theory of evidence also assigns a belief mass function, called Basic Belief Assignment (BBA), to each 
element in 2Θ. The BBA function →Θm: 2 [0, 1] is defined as

∑∅ = =
∈ Θ

Am( ) 0 and m( ) 1
(8)A 2

where A is named as a composite hypothesis, which may contain an individual atomic hypothesis or multiple 
atomic hypotheses, and it satisfies + ≤A Am( ) m( ) 1. In classification, A represents that “yn

x is only of composite 
class A but none of its subsets” such that the conflict between evidences can be modeled. The BBA function Am( ) 
reflects how many relevant and available evidences support the composite hypothesis. The theory provides a 
combination rule = ⊕m m m1 2 for two BBAs m1 and m2. It is defined as:

∑
∩

= ⋅−

=
A Z B Cm( ) m ( ) m ( )

(9)B C A

1
1 2

where = ∑ ⋅∩ ≠∅Z B Cm ( ) m ( )B C 1 2 .
Furthermore, this theory defines a belief function →ΘBel: 2 [0, 1], which is the sum of all the masses of sub-

sets B of the set of interest A and satisfies = ∑ ⊆A BBel( ) m( )B A . Suppose that a simple support function Bel satis-
fies Θ =Bel( ) 1 and its focus F ⊆ Θ. We have = ⊄A F ABel( ) 0 if  and =A bBel( )  if F ⊆ A & A ≠ Θ, where b is 
called Bel’s degree of support.

Therefore, a BBA can be considered as a generalization of a probability density function, while a Bel is a gen-
eralization of a probability function. Obviously, if A is an atomic hypothesis, =A ABel( ) m( ). Besides, in the case 
of θ ≠m( ) 0i  for all the atomic hypotheses and =Am( ) 0 for all the composite hypotheses, DS theory would 
simplify itself as the Bayesian probability theory.

DS-Based Fusion.  Our problem is now to predict how likely a given drug dx interacts with a specific drug dj 
according to the evidences generated by N classifiers. Inspired by Rogova’s work35, we consider the entry account-
ing for posterior probability of each class in the decision profile vector as a BBA (Equation 8) and design a novel 
DS-based fusion algorithm to address this problem in the following.

Define the reference profile Rk
n w.r.t class k and classifier Cn as the mean vector of a set of decision profile vec-

tors C x{ ( )}n k
trn , where x{ }k

trn  are the training instances belonging to class k. Class-conditional probability distribu-
tions for all K classes can be estimated by both intra-class and inter-class distances between the decision profile 
vectors of instances and the class-specific reference profiles36. Thus, the reference profiles can largely reflect the 
abilities of Cn in classification.

Define a function φ=s R y( , )k
n

k
n

n
x  as the likelihood measure of the decision profile yn

x w.r.t classifier Cn and 
class k. It measures the evidence that supports the hypothesis θk, while other measures s{ }j

n  where j ≠ k jointly 
represent the evidence which opposes θk or supports its negation θk.

Because the combined evidence e y( )k
x  finally indicates how likely the given instance x is of class k, we let sk

n 
reflect two aspects of instance x, y k( )n

x  and || − ||R yk
n

n
x , w.r.t class k. The former is the posterior probability output 

by classifier Cn while the latter defines the proximity between the posterior probability profile and the reference 
output profile of class k for classifier Cn. The norm in || − ||R yk

n
n
x  can be any form, such as L2-norm. Therefore, sk

n 
can be defined as follows,

=
⋅ −|| − ||
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The likelihood sk
n can be treated as a simple support function with focus θk and its value is just the supporting 

degree for the focus. Therefore, the BBAs of classifier Cn for focus θk specific to class k can be defined as

θ θ= = Θ = −s sm ( ) , m ( ) 0, m ( ) 1 (11)k
n

k k
n

k
n

k k
n

k
n
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On the opposite side, there are multiple measures { }sj
n  where j ≠ k jointly measure how well the evidence θk is 

supported. Thus, a combination of the simple support functions accounting for { }sj
n  with focus θk is need to define 

the BBAs. Obviously, the combined degree of support is − ∏ −≠ ( )s1 1j k j
n . Thus, the corresponding BBAs of 

classifier Cn for focus θk specific to class j ≠ k are

∏ ∏θ θ= = − − Θ = − .≠ ≠ ( )s sm ( ) 0, m ( ) 1 (1 ) , m ( ) 1 (12)k
n
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k i k i
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k
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Then, according to the combination rule of BBA (Equation 9), the evidence = = ⊕e y( ) m m mk n
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ing θk with respect to classifier Cn and class k is defined as:
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Last, the combination of the evidences generated by N classifiers w.r.t class k is defined as

∏=e Z w n ey y( ) ( ) ( ), (14)k
x N

k k n
x

1

where Z is the normalizing constant, and wk(n) is the weight of classifier Cn for class k among all the classifiers 
and is defined as

∑ ∑= − ⋅ − .
≠ ≠
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(15)
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In details, wk(n) consists of a reference-between class specificity and a reference-within class specificity w.r.t 
class k and classifier Cn, where r q( )p

n  is the q-th element of the reference profile w.r.t class p generated by classifier 
Cn. The first specificity term indicates how dominant the reference value of class k in the reference profile of class 
k is to those in the reference profiles of other classes, while the second one reflects how dominant the reference 
value of class k is to other values in the reference profile of class k.

In summary, when combining the outputs of multiple classifiers for an unlabeled instance under DS theory, 
our approach, LCM-DS, considers three aspects, including its direct outputs of classifiers (posterior probabili-
ties), the difference (or proximity) between its outputs and the reference outputs of the training instances, and the 
class-specific weights w.r.t classifiers.

Declaration.  A preliminary version of this work has been published as an extended abstract (DOI: 10.1109/
BIBM.2016.7822571).

Data availability.  Both the dataset and the codes of our LCM-DS can be freely downloaded from https://
github.com/JustinShi2016/ScientificReports2018.

Experiments and Results
Settings.  To validate the effectiveness of our approach, we adopted the DDI dataset in Zhang et al.’s work28, 
which contains 569 drugs and 52,416 pairwise interactions between them. The original work also provides three 
similarity matrices, derived from PubChem fingerprints of drug chemical structures37, a set of keywords of side 
effect recorded in SIDER38, as well as a list of medical terms of off-label side effects39 respectively. More details 
are shown in the original work28. We directly adopted their average as the final similarity matrix, which is used to 
train predictive models.

Though there are several implementations of SVM, we selected LibSVM30 because of its fast running as well 
as convenient usage. By regarding the similarity matrix as the pre-computed kernel matrix, we have only one 
tunable parameter, the cost C, of LibSVM. We investigated how C influences the prediction by simply tuning its 
value from a recommend list {0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, and 128} one by one. The predictions of DDI 
under 50% hold-out cross validation(CV) with 50 repetitions showed that the value of C doesn’t influence the 
prediction substantially, i.e., the method is quite robust in terms of these variations. For simplicity, we set C = 1 
when training a LibSVM model in all the subsequent experiments. Likewise, we set the regularization parameter 
α = 0.5 in RLS, and set the number of nearest neighbors K = 5 in MLKNN23. In addition, we adopted the L2-norm 
when calculating the proximity measure in Equation 10.

We adopted the Area Under the Precision-Recall curves (AUPR) as the measuring metric for DDI prediction, 
because the number of drugs interacting with dj (positive instances) is significantly less than that of drugs not 
interacting with dj (negative instances) in each dj-specific classification. In such a case, AUPR performs a greater 
penalty on highly-scored false positive instances40,41 that the Area Under the Receiver Operating Characteristic 
Curve (AUC), which tends to generate an over-optimistic measure.

Comparison between LCM and state-of-the-art approaches.  We first made a fair comparison with 
three state-of-the-art approaches, GCM27, NS25 and LP28. During the comparison, we performed the exactly same 
rounds of hold-out CV as those used by Zhang et al.28. In each round of hold-out CV, a fixed percentage (e.g. 25% 
hold-out ratio) of drugs were randomly selected as the testing drugs and all the DDIs associated with them are 
removed as well for validation. The remaining drugs were used as the training drugs and their pairwise DDIs were 
used to train predictive approaches. A toy diagram of hold-out CV is shown in Fig. 3. In addition, since GCM uses 
SVM as its classifier, we adopted SVM when implementing our LCM.

https://github.com/JustinShi2016/ScientificReports2018
https://github.com/JustinShi2016/ScientificReports2018
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Such a round of CV with a specific hold-out ratio was repeated 50 times under 50 different random seeds28 
and its result over the 50 repetitions was reported by the average of AUPR values, which were measured in all 
the rounds of the hold-out CV respectively. Totally, we performed five rounds of CV under 15%, 25%, 50%, 75% 
and 85% hold-out ratios (Table 1). The comparison reveals two observations: (1) all the local models, including 
NS, LP, and LCM, are better than GCM, because local models contain the topological information of DDI net-
work whereas GCM does not; (2) LCM is remarkably superior to those state-of-the-art approaches with 6~22% 
improvement in terms of AUPR.

Secondly, to elucidate LCM’s advantage further, we compared our LCM with GCM, of which both apply SVM 
to perform DDI prediction, in terms of training time. We run LCM and GCM27 under those different hold-out 
ratios respectively in the computer, which is equipped with Intel 4700MQ (2.40 GHz) and 64-bit Windows 7 
(Home Premium). Considering the fact that running of GCM cannot be performed with too many training 
instances (116,886 and 90,951 respectively) in the cases of 15% and 25% hold-out ratios, we randomly sampled 
the same number of training instances (40,470) as that in the case of 50% hold-out. Hence, the running time in 
such two scenarios of hold-out CV is approximately the same as that in the scenario of 50% hold-out CV. The 
results listed in Table 2 show that LCM runs significantly faster than GCM (with the same classifier, SVM), even 
subsampling is adopted.

We further made a theoretical investigation about computational complexity. The computational complexity 
of SVM falls into the range of [O(n2), O(n3)], where n is the number of training instances. For m known drugs, 
GCM takes m(m + 1)/2 drug pairs as the training instances, while our approach only takes m drugs as the train-
ing instances in each of m classification tasks. Thus, the computational complexity of GCM is larger and in the 
range of the closed interval [O(m4), O(m6)]. In contrast, the computational complexity of LCM is bounded by 
[O(m × m2), O(m × m3)]. Therefore, in terms of computational complexity, LCM outperforms GCM.

Thirdly, to illuminate why LCM achieve the better prediction than NS and LP, we performed an additional 
investigation by leave-one-out cross-validation (LOOCV). We took one drug as the only one testing drug and 

Figure 3.  Illustration of hold-out cross validation. Eight drugs having known DDIs are randomly split into a 
training set and a testing set. The former contains seven training drugs (denoted as d1, d2, …, d7) while the 
latter contains only one testing drug x. The pairwise DDIs between the training drugs are organized into an 
interaction matrix, of which the cells marked with ‘1’s denote the interactions between the training drugs and 
the cells without mark denote non-interactions. The real interactions between ‘x’ and the training drugs are 
removed and marked with ‘?’ (See also Fig. 1). In the round of CV, the task is to deduce how possibly the testing 
x interacts with the training drugs one by one. The procedure is repeated until all the eight drugs are taken as the 
testing drugs in turn.

Approaches

Hold-out Ratio

15% 25% 50% 75% 85%

GCM (SVM) 0.5902 0.5871 0.5796 0.5776 0.5721

NS 0.7010 0.6992 0.6955 0.6986 0.6899

LP 0.7292 0.7282 0.7052 0.6736 0.6501

LCM (SVM) 0.8078 0.8046 0.7824 0.7376 0.7117

Table 1.  Comparison under different ratios of hold-out cross validation (AUPR).
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the remaining drugs as the training drugs in each round of LOOCV. For the known drug di of interest, we first 
ranked the testing drug dx by its predicted score, which indicates how likely dx interacts with di. For m known 
drugs (m = 568 here), dx obtains m predicted scores. The higher the score is, the lower the value of rank is, and the 
higher the occurring chance of a DDI is. Usually, the top-n ranks of drug pairs are regarded as potential DDIs. We 
then calculated the correlation between the ranks and the degrees of all the known drugs. For drug di, its degree 
is the number of other known drugs interacting with it. Finally, we repeated the procedure until each of the drugs 
were taken as the testing drug in turn and recorded the average value of the correlations obtained in all the rounds 
of LOOCV.

If such a correlation is significantly high, we say that the predictive model can be replaced by a degree 
only-based model. Thus, we investigated whether the ranks achieved by the predicting approaches are strongly 
correlated with the degrees of drug nodes in a DDI network. Considering that the relationship between the rank 
and the degree could be non-linear, we adopted Spearman’s correlation to assess it. Our investigation shows 
that the Spearman correlations of NS and LP are up to 0.998 and 0.983, whereas that of our LCM is 0.851. The 
extremely high correlations (>0.98) of both NS and LP indicate that they tend to recommend those drugs having 
many known DDIs as the interacting partners for a newly queried drug. The comparison reveals that the pre-
diction achieved by a degree-related model would be greatly approximate to those achieved by NS and LP, but 
significantly different from that achieved by LCM.

The underlying reason is that both NS and LP involve the multiplication, which is correlated to the sum of the 
pairwise similarities between other existing drugs interacting with di. As a result, their predictions are depend-
ent on the number of positive instances (existing drugs interacting with di) when predicting how possibly a 
newly-given drug dx interacts with an existing drug di. As a result, both of them have the degree-induced bias that 
leads their prediction to tend to rank the pairs between a newly-given drug and the drugs having many DDIs with 
top priorities. By contrast, the multiplication involved in LCM is usually related to the similarity matrix and a few 
of instances supporting the discriminate boundary in the case of SVM. Consequently, LCM only depends on the 
positive instances and the negative instances, of which both are located on the discriminate boundary, such that 
it is able to relax or minimize this bias.

Furthermore, we made a case study to show how the bias affects the prediction and demonstrate the ability 
of our LCM to relax the bias. We focused on the drug ‘Amoxapine’ which interacts with 7 known drugs having 
meanwhile different numbers of DDIs. We removed the interactions of ‘Amoxapine’ and predicted its interact-
ing drugs. In an ideal prediction, it is anticipated that the ranks of the drug pairs between ‘Amoxapine’ and its 
interacting partners should be <= 7. We then extracted two of its interacting partner drugs, ‘Paroxetine’ and 
‘Fluvoxamine’, which have the most and the least numbers of DDIs (444 and 101) respectively, and checked the 
real prediction achieved by NS, LP, and LCM. For the pair of ‘Paroxetine’ and ‘Amoxapine’, NS and LP generate 
rank 25 and rank 22 respectively whereas our LCM gives rank 4. Thus, our LCM generates the correct prediction 
(rank < 7) but they cannot. For the pair of ‘Fluvoxamine’ and ‘Amoxapine’, NS and LP give 366 and 361 whereas 
our LCM gives 204. Even all these approach cannot give a correct prediction, our LCM still gives a significantly 
higher rank than both NS and LP for the queried drug pairs. Similar predictions were able to be found in other 
cases. Consequently, our LCM is able to relax such a degree-induced bias.

Validation of LCM-DS.  In this section, we shall first show how the factors, including the posterior probabil-
ities (yn

x) directly output by a classifier, the proximity between them and the reference profiles || − ||R y( )k
n

n
x  of the 

training instances, and the classifier weight (wk(n)), affect the performance of LCM-DS respectively.
To investigate the influence of these three factors, we built three variants of LCM-DS, of which each variant 

has the lack of a unique factor respectively. Then, we run and compared them with the regular LCM-DS (Fig. 4). 
The comparison shows that the lack of any of them decrease the predicting performance and the absence of the 
posterior probability factor causes the biggest decrement.

We made a case study to demonstrate the importance of the factors. Two drugs, ‘Prostacyclin’ and ‘Amikacin’, 
were chosen to investigate the predicted scores, which indicate how likely these two drugs interact with the train-
ing drugs. We sorted the predicted scores to rank the drug pairs, in which their partners are the training drugs, 
and reported the average ranks of the positively labeled drug pairs (Table 3). The less, the better.

Three observations on these two drugs can be drawn: (1) all these factors contribute to the prediction 
because the absence of any of them increase the average ranks of DDIs for the selected drugs; (2) the factor of 
post-probability plays, as anticipant, the most important roles in LCM-DS because its absence causes the biggest 
increment of average ranks; and (3) LCM-DS integrating them achieves the best performance because it generates 
the smallest average ranks. Totally, the comparison demonstrates that LCM-DS is an effective fusion rule, which is 
able to integrate all the individual factors contributing to the prediction to obtain a better prediction.

Moreover, we made a deeper investigation on LCM-DS by comparing it with both its member classifiers and 
classical fusion rules. The member classifiers are MLKNN, RLS, and SVM. The classical fusion rules include four 
unsupervised fusion rules (i.e. Average, Maximum, Product, Minimum) and one supervised fusion rule (Decision 

Approaches

Hold-out Ratio

15% 25% 50% 75% 85%

GCM (SVM) 50.195 48.989 49.078 23.843 4.044

LCM (SVM) 7.954 6.356 2.047 0.349 0.168

Table 2.  Comparison between LCM and GCM according to running time (seconds).
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Template, DT32). Three individual classifiers were implemented under the framework of LCM and integrated 
into LCM-DS. In details, the similarity-based version of MLKNN was originally implemented by our previous 
work23, which developed an approach for predicting drug-target interactions. RLS was directly implemented by 
Octave codes. The implementation of SVM was by compiling and building the source codes of LibSVM30 into 
the Octave interface. All the fusion rules were also implemented by Octave codes. See also Section 2.3 for more 
technical details about the classifiers and see also Section 2.4 for more technical details about the fusion rules. We 
performed 85% hold-out CV again in the comparison (Fig. 5).

The comparison demonstrates that (1) the performance of individual classifiers varies and RLS achieves the 
best classifiers in this case of hold-out CV; (2) Former fusion rules may (e.g. Product, DT) or may not (e.g. 
Average, Maximum, Minimum) outperform individual classifiers; (3) DS wins the best among both member 
classifiers and classical fusion rules with the significant improvement. In summary, the proposed supervised 
DS-based fusion rule is effective.

Discussion
DDIs frequently induce adverse drug reactions or occasionally facilitate better drug co-prescriptions. DDI iden-
tification before making clinical medications is critical but bears a high cost in clinics. Computational approaches 
have exhibited their ability on screening DDI candidates among a large number of drug pairs by utilizing prelim-
inary characteristics of drugs. However, global model-based approaches are usually slow and neglect the topolog-
ical structure of a DDI network, while local model-based models have the degree-induced bias.

To address these two issues, we have presented a novel local classification-based model (LCM) in the scenario 
of predicting DDI candidates for new drugs, which have no existing DDI with known drugs. For a specific drug 

Figure 4.  The influence of three factors in LCM-DS under the 85% ratio of Hold-Out Cross Validation with 
50 Repetitions. The first label, ‘Regular’, denotes the regular LCM-DS without removing any factors. The other 
labels denote the variants of LCM-DS, which have no post-probability factor, no proximity factor and no 
classifier weight factor respectively.

Drug

Average Rank

LCM-
DS

No Post-
probability

No 
proximity

No Classifier 
Weight

Prostacyclin 90.16 104.94 92.23 94.39

Amikacin 52.79 60.45 58.80 53.23

Table 3.  Comparison between LCM-DS and its variants in terms of average rank.

Figure 5.  Comparison with Individual Classifiers and Classical Fusion Rules under the 85% ratio of Hold-Out 
Cross Validation with 50 Repetitions.
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having known DDIs, an LCM treats drugs having and having no interaction with it as positives and negative 
instances respectively, and trains a set of small-size classifiers to discriminate how likely a newly-given drug inter-
acts with the drug of interest. Compared with the global classification-based model, LCM shows the advantages 
of theoretically faster running and practically better performance. Compared with two other local model-based 
approaches (naïve similarity-based and label propagation-based approaches), LCM is able to relax their intrinsic 
bias because the prediction for a new drug depends on the distributions or discriminant boundaries of positive 
instances and negative instances in the feature/similarity space.

More importantly, to address the issue that computational approaches lack an effective ensemble method to 
combine results from multiple predictors, we have designed a novel supervised fusion algorithm (LCM-DS) to 
aggregate the outputs of multiple classifiers for an unlabeled instance based on the Dempster-Shafer theory of evi-
dence. Our LCM-DS integrates three factors from multiple classifiers, including the posterior probabilities output 
by individual classifiers, the proximity between the decision profiles of given instances and the reference profiles, 
as well as the quality of the reference profiles, which jointly contribute to the final decision.

Finally, both the experiments of DDI prediction and the case study demonstrate that the present LCM outper-
forms three state-of-the-art approaches, including one global model-based approach and two local model-based 
approaches, and its fusion version, LCM-DS, is superior to both all of its member classifiers and five classical 
fusion algorithms.

In the coming future, we shall improve our approaches in two aspects. First, LCM is of a supervised learning 
model, which treats unknown drug pairs as negative instances. In fact, a few of unknown drug pairs could be 
DDIs. Thus, a semi-supervised learning model6 or a one-class learning model should be considered. Secondly, 
other pre-existing knowledge should be considered in the proposed LCM-DS. Especially, the essence of DDI 
is strongly correlated with drug-binding proteins, such as drug targets and enzymes, which attend in different 
pathways. Thus, the integration of drug target-based21,22,42,43 and/or pathway-based7 similarities into the current 
similarities would be helpful to improve DDI prediction and even to reveal the underlying mechanism of DDI 
occurrence. In addition, because our LCM-DS actually provides an effective framework for combining deci-
sions from different pre-existing sources, it can be easily applied in similar areas (e.g. lncRNA-disease association 
prediction44).
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