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Abstract: Gelatin and chitosan nanoparticles have been widely used in pharmaceutical, biomedical,
and nanofood applications due to their high biocompatibility and biodegradability. This study
proposed a highly efficient synthesis method for type B gelatin and low-molecular-weight (LMW)
chitosan nanoparticles. Gelatin nanoparticles (GNPs) were synthesized by the double desolvation
method and the chitosan nanoparticles (CNPs) by the ionic gelation method. The sizes of the obtained
CNPs and GNPs (373 ± 71 nm and 244 ± 67 nm, respectively) and zeta potential (+36.60 ± 3.25 mV
and −13.42 ± 1.16 mV, respectively) were determined via dynamic light scattering. Morphology and
size were verified utilizing SEM and TEM images. Finally, their biocompatibility was tested to assure
their potential applicability as bioactive molecule carriers and cell-penetrating agents.

Keywords: LMW chitosan; type B gelatin; nanoparticles; synthesis

1. Introduction

Nanoparticles (NPs) have been used in many applications based on their small size,
surface area, and morphology [1–3]. NPs exhibit special attention for their application
in diagnosis, imaging, drug delivery, and bioactive compound encapsulation [4]. In this
regard, NPs have been demonstrated to improve drug–target approaches and compound
delivery, improving dissolution kinetics and controlled release [3]. Furthermore, the
chemically reactive surface functional groups have allowed for functionalization with a
wide range of chemical and biochemical molecules such as peptides, nucleic acids, and
small drugs that makes them suitable to overcome physiological barriers such as the
intestinal lumen (pH = 5.5–7.0) and the blood–brain barrier [3,5–7].

Polymeric nanoparticles (PNPs) have attracted significant attention given their high
biocompatibility and degradation times, making them optimal as adjuvants in drug and
bioactive compound carriers, gene-editing, and even cell biochemical pathways detec-
tion [8,9]. PNPs have been synthesized from both synthetic and natural polymers to yield
a tunable spectrum of properties such as surface charge, shape, reactive functional groups,
and size [10].

PNPs provide a cost-effective way for the encapsulation of bioactive compounds
for oral delivery (e.g., micronutrients, enzymes, and antioxidants). In this regard, these
encapsulation techniques have demonstrated promising results to overcome extreme phys-
iological conditions commonly found along the gastrointestinal tract (GIT) that usually
involve the exposure to oxygen, changes in pH (usually from 1.3 to 7.4) [11], shear stress,
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and the presence of degrading enzymes [12]. In fact, the encapsulation or immobiliza-
tion of bioactive compounds provide absorption-enhancing properties for functional food
manufacturing while maintaining their structural stability, especially as they pass through
the GIT [13]. Transit through the GIT negatively impacts the stability of bioactive com-
pounds, which results in poor bioavailability and low permeability across the intestinal
barrier [12,14].

Among the synthetic polymers, poly(ethylene glycol) and poly(lactic–co-glycolide)
have been tested to deliver drugs, nutraceuticals, and bioactive molecules and macro-
molecules [15]. However, they have demonstrated better performance in vitro and in vivo
when tissue-resemble materials are employed for their synthesis [16]. For this reason,
this approach has been widely used for applications that require high biodegradability,
biocompatibility, non-antigenicity, low cost, and even availability from renewable sources,
as is the case of chitosan and gelatin [16].

Gelatin nanoparticles (GNPs) have received particular attention due to their collagen
precedence, which confers an amino acidic-based structure comparable to proteins and
peptides [16,17]. Additionally, the remarkable properties of chitosan nanoparticles (CNPs)
have been attributed to their polysaccharide structure that confers antimicrobial [18–20],
mucoadhesive [21], and analgesic properties [22].

Synthesis of PNPs of natural origin is generally centered on polymerization or depoly-
merization by desolvation, emulsion-based synthesis, ionic gelation, and nanoprecipita-
tion [23,24]. However, the complex downstream processing for purification represents one
of their main issues, limiting their scalability and industrialization. This is mainly due to
their low density and small size, limiting conventional unit operations such as precipitation,
centrifugation, and filtering. This ultimately leads to significantly low synthesis yields [25].

Conversely, this work offers an alternative synthesis method of higher yield and
low-cost for type B gelatin and low molecular weight (LMW) chitosan NPs. We introduced
two-step desolvation and ionic gelation synthesis methods with enhanced recovery and
purification steps. The obtained NPs were characterized in terms of shape, morphology, and
surface charge. Moreover, we conducted preliminary biocompatibility assays to investigate
their potential as bioactive molecule carriers and cell-penetrating agents.

2. Materials and Methods
2.1. Materials

Hydrochloric acid (HCl, 37%, CAS 7647-01-0), glutaraldehyde (GTA, 25%, CAS 111-30-8),
acetone (99.5%, CAS 67-64-1), glacial acetic acid (99.7%, CAS 64-19-7), and sodium hydroxide
(NaOH, 98%, CAS 1310-73-2) were purchased from PanReac AppliChem (Chicago, IL, USA).
Low molecular weight (LMW) chitosan (50–190kDa, deacetylation degree of 75–85%,
CAS 9012-76-4), phosphate buffer saline (PBS-1X), thiazolyl blue tetrazolium bromide (MTT,
CAS 57360-69-7), dimethyl sulfoxide (DMSO, 99%, CAS 67-68-5), and Dulbecco’s modified
Eagle’s medium (DMEM) were purchased from Sigma-Aldrich (St. Louis, MO, USA) and
Type B gelatin from the local store Químicos Campota (Bogotá, Colombia). Fetal bovine
serum (FBS) was obtained from Biowest (Riverside, MO, USA). Trypsin EDTA was obtained
from Lonza (Riverside, MO, USA).

2.2. Synthesis of Type B Gelatin and LMW Chitosan Nanoparticles

A two-step desolvation method was used to synthesize GNPs (Figure 1) [26]. Type
B gelatin (5% p/v) was dissolved in type II water at 50 ◦C by magnetic stirring. Then,
acetone at a volume ratio of 1:1 was dripped to the mixture and left still for 5 min to
dehydrate gelatin and induce coiling by the prevalence of positive charges in protonated
amine (–NH2) functional groups [27,28]. The supernatant, rich in acetone, was collected
and centrifuged for 3 min at 4500 RPM to recover the remaining high molecular weight
(HMW) gelatin. Then, the remaining pellet was diluted in type II water (volume ratio of
1:1 with acetone) and reincorporated to the coacervate phase by mixing at 50 ◦C for 20 min.
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The pH was adjusted between 10.5–11.5 with 0.1 M NaOH to ionize the pendant carboxyl
(–COOH) functional groups of acidic amino acids (i.e., glutamic and aspartic acids) [28].
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Figure 1. Schematic for the synthesis of type B gelatin NPs (GNPs) by a two-step desolvation method
with acetone. (A) Type B gelatin was dissolved, dehydrated, and protonated by a first desolvation
step. (B) Then, HMW type B gelatin was deprotonated to then induce a controlled gelatin coiling and
crosslinking. (C) GNPs recovery (created with BioRender.com, accessed on 12 October 2021).

Then, the gelatin was desolvated again by incorporating acetone (6 mL of acetone
per milliliter of the initial gelatin solution) at 2 mL/min at room temperature to change
their conformation from stretched to spiral by a controlled restoration of charges and to
prevent precipitation [27,29]. Subsequently, chemical crosslinking of the –NH2 of gelatin
was induced by adding 4 µL of GTA per milliliter of the starting solution and allowing
it to react for 16 h. Excess acetone was evaporated at 40 ◦C for 1 h under continuous
magnetic stirring followed by the dilution of the mixture (1:3 v/v) with type II water to
avoid agglomeration. Finally, the GNPs were recovered by lyophilization and stored at
4 ◦C until further use.

The ionic gelation method was used as a reference to design the new synthesis protocol
of CNPs [30]. Chitosan (2.4 mg/mL) was dissolved in acetic acid (2% v/v) by continuous
magnetic stirring for 3 h to protonate the pendant –NH2 groups of monomers and thus
increase its solubility (Figure 2). The pH was adjusted to 3.6 with NaOH 3 N to induce
partial charge restoration. To obtain the CNPs, chitosan chains were crosslinked with 1.2 µL
of GTA per millimeter and stirred for 1 h. To recover the CNPs and remove excess solvents,
the mixture was dialyzed against Type II water using a 2 kDa membrane (Sigma-Aldrich,
St. Louis, MO, USA) for three days at room temperature, lyophilized, and finally stored
at 4 ◦C. For both syntheses, experiments were conducted in triplicate to calculate the
synthesis yield from the initial weight of the polymer and the weight of lyophilized NPs.
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Figure 2. Schematic for synthesizing low molecular weight (LMW) chitosan NPs (CNPs) by the
ionic gelation method in aqueous 2% v/v acetic acid. (A). LMW chitosan was protonated to achieve
dissolution and deprotonated to control aggregation before chemical crosslinking with GTA to form
the NPs. (B). CNP purification and recovery by three-day dialysis and lyophilization (created with
BioRender.com, accessed on 12 October 2021).

2.3. Characterization

The size distribution and surface charge in aqueous solution were measured with the
aid of a dynamic light scattering (DLS) instrument Zeta-sizer Nano (Malvern Panalytical,
Malvern, UK). Microscopic inspection of the nanosized structure, morphology, and shape
was achieved via transition electron microscopy (TEM) in a Tecnai F30 (FEI Company,
Fremont, CA, USA) and scanning electron microscopy (SEM) in a JSM6490-LV TESCAN
(JEOL, Tokyo, Japan) at ×3000 and ×400 magnifications with a 10 kV accelerating voltage.
Moreover, NP morphologies in solution were characterized by cryogenic-SEM by dripping
5 µL of NPs suspensions into liquid nitrogen.

2.4. Biocompatibility

Biocompatibility characterization following the international standard ISO10993 was
included to ensure their safe use for potential biomedical applications such as therapeutic
biomolecule carriers [31]. The hemolytic activity was tested by measuring erythrocyte lysis
after isolation from a healthy human donor (4.2 × 106 erythrocytes) using EDTA collection
tubes. The samples were obtained with the approval of the Ethical Committee at the
Universidad de Los Andes (minute number 928-2018, which also contained the informed
consent signed by subjects). Separation of plasma and white blood cells was achieved by
removing the supernatant after centrifugation at 1800 RPM for 5 min at room temperature.
The low-density phase containing the erythrocytes was resuspended and washed three
times with NaCl (0.9% w/v) and once with PBS-1X. A diluted erythrocyte stock solution
was prepared by adding 1 mL of the isolated erythrocytes in 9 mL of PBS-1X. Then, serial
dilutions of 1:2 of GNPs and CNPs from 200 to 12.5 µg/mL were prepared in PBS-1X and
exposed to the same volume of the erythrocyte stock in a 96-well microplate. The contact
was allowed for 1 h at 37 ◦C, and the samples were then centrifugated at 1800 RPM for 5 min.
Finally, 100 µL of each supernatant was transferred to a new microplate and read at 450 nm
in a microplate spectrophotometer (Thermo Scientific™, Waltham, MA, USA). PBS-1X and
Triton X-100 were used as positive and negative controls, respectively. The experiments
were conducted in triplicate.

BioRender.com
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To avoid coagulation, the platelet aggregation induced by the GNPs and CNPs was
tested on isolated platelets from freshly drawn blood from a healthy human donor in 3.2%
citrate blood tubes. Then, blood was centrifugated to obtain the platelet-rich plasma (PRP)
at 1000 RPM for 15 min at room temperature. Samples of serial dilutions of GNPs and
CNPs from 200 to 12.5 µg/mL were prepared in PBS before exposure to PRP (1:1 v/v) for a
final volume of 100 µL. Thrombin (Thb) and PBS-1X were used as the positive and negative
controls, respectively. The treatments were incubated for 5 min at room temperature, and
the absorbance was recorded at 620 nm in a microplate spectrophotometer.

Cytocompatibility was confirmed by measuring the metabolic activity of Vero
cells (ATCC® CCL-81) by quantifying the conversion of 3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide (MTT) to formazan in the mitochondria. Briefly, 100 µL
of a cell stock of 100,000 cells/mL in DMEM media supplemented with 10% FBS were
deposited in a 96-well microplate for a cell density of 10,000 cells/well and incubated at
37 ◦C and 5% CO2 for 24 h. After incubation, the media was removed, and 100 µL of serial
dilutions 1:2 (i.e., 200–12.5 mg/mL) of concentrated stocks of GNPs and CNPs in DMEM
media were exposed and incubated 37 ◦C and 5% CO2 for 24 h and 48 h. Then, MTT
reagent was added and allowed to react for 2 h before replacing the media with 100 µL of
DMSO to dissolve the formazan crystals. Finally, absorbance was measured at 595 nm in a
microplate spectrophotometer to calculate cell viability.

3. Results and Discussion
3.1. Synthesis Yield

For both CNPs (92.60% ± 0.66%) and GNPs (89.95% ± 1.13%), the obtained synthesis
yield was about 6% higher than the synthesis methods reported previously (Table 1).
Although the nanoprecipitation method reports a yield of up to 95%, the resultant GNPs
exhibited a larger size than the two-step desolvation method [32,33] and required an
excipient stabilizer to avoid aggregation [34,35].

The high synthesis yield obtained here can be attributed to the purification and
recovery alternatives based on solvent dialysis and lyophilization. This, considering
that liquid-phase surface tension hinders precipitation of nanosized structures with low-
density, led to the recovery of only the larger nanoparticles. In contrast, the smaller ones are
commonly discarded [36]. Additionally, dialysis and lyophilization are optimal alternatives
for small-size nanoparticle recovery without compromising their final physicochemical
properties, as discussed below.

Table 1. Comparison of PNP yield synthesis.

Type Method Nanoparticle Yield (%) References

Two-step desolvation 89.94% ± 1.13% This study

GNPs
One-step desolvation ≤83% [37,38]
Two-step desolvation 1.5–83% [38–42]

Nanoprecipitation 20–95% [43–47]

Ionic gelation 92.60% ± 0.66% This study

CNPs
Ionic gelation ≤86% [48–51]

Emulsion cross-linking 32–51% [52]
Spray drying 13–85% [53–55]

3.2. Characterization of Nanoparticles

GNPs showed two average hydrodynamic diameters of 244 ± 67 nm and 29 ± 7 nm,
while CNPs showed a single mean hydrodynamic diameter of 373 ± 71 nm in an aqueous
medium (Figure 3A). TEM images show an average nominal size of 2 nm for GNPs
(Figure 3C) and 5 nm for CNPs (Figure 3D). GNP and CNP morphologies observed by
SEM were spherical (Figure 3C,D) and exhibited an average size consistent with that
obtained by DLS (Figure 3E,F).
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Figure 3. Characterization of GNPs and CNPs. (A) Hydrodynamic average diameter. CNPs were
close to 373 nm, and GNPs to 244 nm and 29 nm. (B) Zeta-potential (absolute value) of GNPs
(−13 mV) and CNPs (+37 mV). TEM image of GNPs (C) showed a nominal size of 2 nm while CNPs
(D) of 5 nm. (E) SEM image of GNPs. White dots confirm NP size below 100 nm and up to 400 nm
agglomerates with a spherical shape. (F) SEM image of CNPs. The visualized sample shows 170 nm
NPs with an elongated structure. Cryogenic-SEM of an aqueous solution of GNPs (G) and CNPs
(H). Round-shaped morphology, nanofibers, and agglomerate formations. Aggregates of NPs and
round-shaped morphology were observed together with fiber-like structures interconnected due to
absorbed water between NPs. White arrows point to the individual polymeric NPs.

Cryogenic-SEM (Figure 3G,H) of the NPs in aqueous media showed an interconnected
network that could be attributed to the interaction of polymeric chains as a result of retained
water between adjacent NPs [56]. In the case of GNPs, this behavior is most likely due
to the effect of RGD (arginyl-glycyl-aspartic acid) regions present in the main backbone
of, which may cause aggregation and self-assembly [56]. However, CNPs tend to form
aggregates due to the ionic strength of the glucosamine units [57].

Zeta-potentials of the GNPs (−13.42 ± 1.16 mV) and CNPs (+36.60 ± 3.25 mV) in type
II water at neutral pH indicate superior colloidal stability (Figure 3B). In both cases, the
average zeta-potential is related to ionizable functional groups in the monomers of the
polymeric chains after their extraction processes. In this regard, the negative zeta-potential
of the GNPs is explained by the alkali extraction of type B gelatin from collagen that
induces an isoelectric point between 4.8–5.4 due to partial deamination of asparagine and
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glutamine [58,59]. This suggests that if GNPs are used as cell-penetrating agents, they
are more likely to bind to cationic sites in the cell membrane via electrostatic interactions.
This phenomenon generates a localized neutralization that favors the adsorption and
clustering of other free NPs that bend the membrane and ultimately internalize through
endocytosis, facilitating the delivery of intracellular therapeutic molecules, especially
through absorptive epithelial cells (enterocytes) found along the intestinal lumen [60,61].

The deacetylation of chitin explains the zeta-potential of CNPs during their extraction
process [62], where the resulting polysaccharide contains a large number of pendant amine
groups that might protonate and confer a positive surface charge with high colloidal
stability in aqueous solvents [62,63]. Additionally, if CNPs are used for cell penetration,
they are expected to interact with negatively charged sulfated proteoglycans that can be
found ionized on cell membranes to facilitate internalization [60].

The measured zeta-potentials of the GNPs and CNPs is consistent with previously
reported studies [29,64–66]. In particular, CNP zeta-potential was reported between
+35 ± 6.53 and +47 ± 4.37 mV [67], while the zeta-potential of GNPs in a pH between 6 and
8 is close to −13 mV [68]. Moreover, the two types of NPs produced here appear suitable
as biomolecule carriers for oral delivery as evidenced by their possible destabilization as
they reach the intestinal lumen, thereby facilitating the targeted release of cargoes [61].

3.3. Biocompatibility

To evaluate the potential of NPs as cell-penetrating and bioactive-carrier nanoplat-
forms, in vitro biocompatibility was tested following the international standard ISO10993.
Accordingly, platelet aggregation, hemolysis, and cytotoxicity in epithelial-like cells (i.e.,
Vero cells) were evaluated.

Cytotoxicity was assessed by the MTT assay after 24 (Figure 4C) and 48 h (Figure 4D).
The results indicate a decrease in cell viability starting at 25 µg/mL with an average
reduction of about 10% between treatments. The reduced cell viability could be attributed to
the high affinity of the NPs toward cell membranes and their polysaccharide nature, which
facilitates their rapid and massive internalization, most likely leading to compromised
membranes and triggering apoptotic pathways [12]. In particular, innate and accelerated
internalization has been reported for polysaccharide-based structures given their chemical
composition, resembling common proteins, peptides, and metabolites [69]. These results
suggest that a significant decrease in the administered dose will be needed to achieve the
same efficacy in cargo transport and delivery, which confirms the potential of the obtained
NPs as potent carriers and cell-penetrating vehicles.

Potential hemocompatibility was evaluated to estimate the impact of the NPs as
blood-contacting nanodevices since intravenous (IV) administration remains their primary
administration route to achieve a faster adsorption of therapeutic agents [70].

Figure 4A shows that even for the maximum tested concentration (200 µg/mL) of
NPs, the hemolysis percentage remained below 1%, complying with international standard
ISO10993-4. In addition, the platelet aggregation (Figure 4B) was found close to the negative
control (PBS 1X), indicating that the IV administration of the NPs is likely to not trigger
major thrombus formation processes [70].

The hemocompatibility of the NPs is explained by their resemblance to the extra-
cellular matrix (ECM) polysaccharides, proteins, and peptides [71]. Additionally, some
authors have reported that natural-polymer based NPs exhibit superior performance as
blood-contacting materials because their superficial charges and degradation byproducts
maintain the ionic balance of blood, present low-affinity with platelets receptors (thereby
avoiding binding and activation), and showed no significant interference with red blood
cell function [72,73]. The obtained hemocompatibility results were also close to those
previously reported for LMW chitosan and type B gelatin [73–75].
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4. Conclusions

Type B gelatin nanoparticles (GNPs) and LMW chitosan nanoparticles (CNPs) were
successfully synthesized and purified with an alternative downstream processing method,
achieving synthesis yields of 92.60% ± 0.66% and 89.94% ± 1.13% for CNPs and GNPs,
respectively. To our knowledge, these results are on average 8% greater than those reported
previously as the maximum and represent a cost-effective way to further study their
scalability to produce nanostructured materials for the encapsulation and immobilization
of therapeutic agents for delivery through different administration routes.

TEM results showed that GNPs and CNPs exhibited a nominal size of about 5 nm
and 2 nm, respectively. However, in aqueous suspension, they tend to form aggregates of
about 244 nm and 373 nm, similar to the behavior exhibited by many carriers suspended in
solution such as liposomes where the van der Waals interactions play a major role [76,77].
Additionally, it has been reported that the formation of NP aggregates is related to the
interactions between themselves, thereby causing polydispersity and precipitation [78,79].
The zeta-potential results for CNPs (+36.60 ± 3.25 mV) and GNPs (−13.42 ± 1.16 mV)
confirm sufficient colloidal stability and the potential for electrostatic interactions with
cell membranes, which are beneficial for their internalization and delivery of bioactive
molecules. Further uptake assays should be conducted to verify this potential in vitro and
elucidate the corresponding mechanistic details and efficiencies.

Biocompatibility assessment confirms the relatively low cytotoxicity of NPs since
cell viability remained at about 50% (GNPs) and 75% (CNPs) after 24 and 48 h for the
maximum tested concentration (200 µg/mL). This could be most likely attributed to their
high affinity for cells membranes, causing massive internalization and consequently the
triggering of apoptotic routes. This strongly suggests that if used as cell-penetrating agents,
only low doses of the NPs might be needed to achieve a sufficiently high therapeutic effect
and effective delivery. Additionally, the hemolysis percentage was below 1%, and platelet
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aggregation was close to the negative reference (PBS 1X), confirming their potential for a
safe intravenous administration.

Overall, the newly developed PNP synthesis scheme not only provides high yields,
but leads to nanoplatforms with considerable potential for drug and bioactive molecule
delivery applications, as evidenced by their attractive physicochemical properties and the
mild biological responses induced.
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