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Abstract

Protein-RNA complexes provide a wide range of essential functions in the cell. Their atomic experimental structure solving,
despite essential to the understanding of these functions, is often difficult and expensive. Docking approaches that have
been developed for proteins are often challenging to adapt for RNA because of its inherent flexibility and the structural data
available being relatively scarce. In this study we adapted the RosettaDock protocol for protein-RNA complexes both at the
nucleotide and atomic levels. Using a genetic algorithm-based strategy, and a non-redundant protein-RNA dataset, we
derived a RosettaDock scoring scheme able not only to discriminate but also score efficiently docking decoys. The approach
proved to be both efficient and robust for generating and identifying suitable structures when applied to two protein-RNA
docking benchmarks in both bound and unbound settings. It also compares well to existing strategies. This is the first
approach that currently offers a multi-level optimized scoring approach integrated in a full docking suite, leading the way to
adaptive fully flexible strategies.
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Introduction

Protein-RNA interactions often play a major role in the cell.

They are involved in many processes such as replication, mRNA

transcription or regulation of RNA levels and control the

operation of key cellular machineries such as the RNA induced

silencing complex (RISC). They are thus good candidates for

therapeutic studies [1]. The variety of proteins able to bind RNA

molecule is very large and covers a wide range of protein domains.

This includes domains such as RRM and dsRDB which all show

RNA binding activity and are well studied [2]. In the recent years,

experimental techniques have shed the light on RNA and protein-

RNA complexes. X-ray Crystallography [3] and NMR [4,5] have

provided high-resolution structures offering insights into RNA

function and binding activity and modes [6,7] but other

experimental techniques have also allowed for the analysis of

larger ensembles [8–10]. Single-molecule experiments can now

provide high-resolution data [11] and the engineering of RNA

binding molecule is with reach [12]. Despite the wide interest and

advances in structural biology for RNA and protein-RNA

complexes, the number of structures available in the PDB is

relatively small (a few thousand for RNA molecules and around a

thousand for protein-RNA complexes). And both the modelling

and the prediction of protein-RNA interactions remain a challenge

[13].

The structural modelling of large biomolecules and their

interactions is a challenging task. A large number of methods for

both predicting and evaluating the results have been developed

[14–16] and the Critical Assessment of PRediction of Interactions

(CAPRI http://capri.ebi.ac.uk) challenge [17] which allowed for

an international blind prediction setting has shown that despite

great progress, the methods available still rely on a great variety of

biological data to be available [18] and the flexibility of the

molecules remain a modelling and computational issue to

overcome [19]. The techniques are however now able to integrate

more data and predict better ion and water molecules which

mediate the binding [20]. Binding affinity is not yet a predictable

quantity but the originality and first results of the latest strategies is

encouraging [21].

Protein-RNA complexes are especially difficult to predict and

model for two reasons: the inherent flexibility of RNA molecules

and the electrostatics driving the binding as the RNA molecule is

negatively charged. Progress in RNA structure prediction and

folding [22–26] allows to deal with flexibility but have yet to be

fully multi-scale [27] and integrated in the docking processes. This

can be done once the scoring function for protein-RNA are

efficient enough and provide accurate conformation selection.

Specially designed coarse-grained force-fields based on statistics

[28–32] have shown great promises and coarse-grained versions

for reducing the initial exploration phase of coarse-grained search

are interesting [33,34]. The optimization is however often based

PLOS ONE | www.plosone.org 1 September 2014 | Volume 9 | Issue 9 | e108928

http://creativecommons.org/licenses/by/4.0/
http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm
http://www.genci.fr
http://capri.ebi.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0108928&domain=pdf


on relatively simple statistics measurements and rarely benefits

from the variety of structural datasets recently made available to

the community. The Protein-RNA interface database [35] offers

high quality curated datasets for statistical analysis. Both available

in a redundant and non-redundant version it allows for fine

measurements on high-resolution structures. The three protein-

RNA benchmarks available in the literature [36–38] also offer a

great opportunity to assess and review high-resolution structures

and predictions.

The availability of structural data is essential for machine

learning based strategies for scoring in docking experiments.

Various machine learning strategies have been developed in the

past for protein-protein complexes [39–43] and have proven to be

key in reranking and optimizing docking experiments for protein-

protein complexes as the last CAPRI rounds has shown [44,45]. In

this study, we use a machine-learning based strategy to optimize

the well-known RosettaDock scoring function for high-resolution

docking. RosettaDock is a leading edge protein-docking suite [46–

48] which while being very versatile and widely used have been

only seldom used for protein-RNA docking [28,49]. We first

extended the RosettaDock low resolution model to RNA for both

searching and scoring. We then used the Protein Interface

Database [35] as reference dataset to generated near-native and

plausible docking conformations. We then optimized the Rosetta-

Dock high-resolution scoring function using supervised machine

learning. After cross-validation and carefully handling tests, we

assessed the obtained protocol on the protein docking benchmarks

I and II [36,38]. We show that the obtained RosettaDock RNA

protocol performs better than in the previous attempts [49] in a

semi-rigid body approach for both bound and unbound docking

and can undoubtedly be used for successful protein-RNA

predictions.

Figure 1. Flowchart of the machine learning strategy. The procedure is made of six steps: a) data processing using the non-redundant PRIDB
to generate candidates, b) splitting of candidates into test decoys, decoys, near-native structures according to their Irmsd so as to define the
perturbation set, c) definition of the sample set using 30 near-native structures and 30 decoys per native structure - randomly chosen, d) leave-one-
pdb-out evaluation, e) scoring function learning using ROGER and f) result analysis.
doi:10.1371/journal.pone.0108928.g001
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Materials and Methods

Protein-RNA complexes training and evaluation sets for
RosettaDock

Protein-RNA native X-ray structures for learning were down-

loaded from the Protein-RNA Interface Database (PRIDB) [35].

The non-redundant PRIDB (RB199) contains 199 RNA chains

extracted from the PDB in 2010. From the 134 complexes

described in this set, we only kept the binary complexes: one

protein and one RNA molecule. We also discarded complexes

involving the ribosome because of their redundancy and to avoid

biasing towards ribosome data but also to avoid computationally

expensive procedures. The resulting native structure dataset from

the PRIDB is made of 120 complexes (Table S1).

We also used the two protein-RNA benchmarks [36,38] as a

validation set in bound and unbound (protein and RNA when

available) settings. Among the 45 complexes contained in the

Benchmark I [36], 11 complexes are not found in the PRIDB.

Among the 106 complexes from the Benchmark II, we only kept

the 76 complexes for which an unbound structure of the protein

exists. Among these 76 complexes, 36 cannot be found in the

PRIDB. After checking for overlap on the two benchmarks which

were obtained using two different strategies, the resulting test set is

made of 40 complexes. The list of complexes used in this study can

be found in Table S2.

From all the native structures from both the PRIDB and the

benchmarks, near-native and decoy conformations are generated

using the Rosetta perturbation protocol [47]. For each pdb file,

10,000 perturbation conformations are to be obtained. Among

these 10,000, to allow for correct learning, we want 30 near-native

conformations whose Irmsd is smaller than 5 Å and 30 decoy

conformations whose Irmsd is greater than 8 Å. Irmsd definition is

taken from [14] and adapted to protein-RNA complexes by using

the RNA backbone P atoms. For that purpose, the amplitude of

the translation and the three rotations applied is chosen to follow a

normal law of variance 1 and different expectations (small, regular

and large). The regular setting is set to 3 Å for the translation and

8u for the rotations, the small (resp. large) setting is set to 1 Å (resp.

9 Å) for the translation and 4u (resp 27u) for the rotations. For each

pdb file, the setting chosen is the smallest allowing for enough

near-native and decoy conformation generation.

Figure 2. Energy vs Irmsd for 9 protein-RNA complexes. The 10,000 conformations evaluated for our optimized RosettaDock scoring function
are shown in black. On each plot, the bottom left panel shows the equivalent non-optimized RosettaDock result.
doi:10.1371/journal.pone.0108928.g002
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RosettaDock protocol and scoring functions
The RosettaDock protocol is two-level docking search: low

resolution and high resolution. The low resolution stage uses a

coarse-grained representation of the partners to quickly sample the

search space for candidates. The high resolution stage rebuilds the

all-atom partners from the low resolution candidates to perform a

refined atomic search possibly including rotamer search and loop

optimization.

The low resolution scoring function uses the backbone of the

molecule and one centroid per residue [47] and contains five

weighted terms:

SLowres~wContactSContactzwBumpSBumpzwEnvSEnvz

wPairSPairzwAlignSAlign

where SContact represents the number of interface residues being

defined by having a centroid less than 6 Å away from a centroid in

the other partner; SBump is a distance-based penalty for steric

clashes; SEnv defines the probability of finding a residue in a

specific environment (buried/exposed and interface/non inter-

face); SPair is a pair potential defining the propensity of residues to

be found in interaction in given environments and SAlign is an

optional term to match a specific alignment pattern (e.g.

antibodies).

These five terms of the low resolution score can be computed for

protein-RNA complexes in the same way they were for proteins.

For RNA, the backbone is chosen to include the sugar ring and the

centroid is taken to be the center of mass of the base. All the

parameters for the low resolution scoring terms are computed on

the PRIDB reference set.

The high resolution scoring function uses all the atoms of the

molecules, including the hydrogen atoms, and is made of seven

weighted terms:

SHighres~wVdW SVdW zwElecSEleczwSolvSSolvzwHbondSHbond

zwSASASSASAzwPairSPairzwRotamerSRotamer

where SVdW is a Van der Waals term (Lennard-Jones based), SElec

is a Coulomb term, SSolv a solvent term based on the Lazaridis-

Karplus model, SHbond is a H-bond 10–12 potential term, SSASA is

the solvent accessible surface area term (often omitted), SPair is a

pair potential defining the propensity of residues to be found in

interaction in given environments and SRotamer is a probability of

finding a specific rotamer. Exactly like for the previous low

resolution scores, all the terms can be computed for RNA. The

rotamer term and loop optimization are switched off for RNA

such as in [28] and in previous CAPRI runs containing RNA [49]

for which the RosettaDock all-atom procedure was just used to

Figure 3. ROC Curves (True Positive Rate -TPR- vs. False Positive Rate -FPR-). (a) ROGER logistic scoring function, (b) Default RosettaDock
score, (c) the whole protein-RNA benchmark I, (d) the whole protein-RNA benchmark II. The median ROC Area Under the Curve (AUC) is shown as a
black line. The dotted lines delimiting the gray area correspond to the 1st and 3rd quartiles. Reported on the plots are ROC-AUC values for the
median.
doi:10.1371/journal.pone.0108928.g003
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refine the obtained conformation and RNA parameters were

derived from protein data.

Low resolution weights
The low resolution representation for each residue/nucleotide is

made of the backbone atoms and one pseudo-atom called centroid to

represent the side-chain. For the residues, the location of the centroid is

taken from RosettaDock (average over a reference set of PDB

structures). For RNA nucleotides, the centroid is taken as the averaged

position (See Figure S1). The low resolution scores are computed for

RNA on the full PRIDB (more than a thousand structures). They

represent counting statistics and are not optimized further.

High resolution scoring weights optimization strategies
We performed the optimization by supervised learning. To

ensure an accurate learning phase, the perturbation was split in

two categories for learning labelled near-native (Irmsd,5 Å)

and decoy (Lrsmd.8 Å). The assessment was performed using

slightly different categories so as to mimic the CAPRI context:

near-native (Irmsd,5 Å) and non-native (Irmsd$5 Å). While

these rmsd range are certainly not always likely to accurately

represent a correct RNA binding mode, especially considering

the variability in size of the RNA molecules, they represent a

reachable goal not yet attained by the CAPRI community.

Weights for the all atom scoring function described above were

optimized in the [0:1] interval within the ROC-based Genetic

LearneR (ROGER) framework using logistic regression and

Receiver Operating Characteristic (ROC) based genetic algorithm

as previously described for protein-protein docking [40]. The

optimization of the Area Under the ROC curve (ROC-AUC) is

performed using 100,000 iterations with m= 10 and l= 80.

The first evaluation of the whole scoring procedure is made

using cross-validation and a leave-one-pdb-out approach. Inspired

by the leave-one-out procedure in statistics, we previously used this

strategy for machine learning of protein-protein docking scoring

functions [40,41,43]. For a specific pdb file, all the native, near-

native or decoy conformations, that were generated from this file,

are removed from the learning set. The evaluation is then

performed for this specific pdb file. The original set learning

containing 120 complexes, the whole procedure is repeated 120

times. The set being non-redundant, like cross-validation, this

computationally expensive process ensures that the result for a

specific pdb file is not biased.

To also avoid biasing the samples towards a category while

learning, learning is performed with 30 near-native and 30 decoy

structures for each of the 120 pdb file leading to a total size of

7,200 structures for the learning set (3,60062). Test is performed

on the 10,000 candidates of each test pdb file. The global

procedure flowchart is available in Figure 1.

Assessment
The learning procedure is initially assessed using standard

machine learning criteria: analysis of the ROC curve, ROC-AUC

in a cross-validation setting and precision for the top 10 structures.

CAPRI/Critical Assessment of protein Structure Prediction

(CASP) inspired biological criteria are used for the final

assessment: Energy vs. Irmsd curve and Enrichment Score (ES).

Interface root mean square deviation (Irmsd) is taken from Lensink

et al. [50]. We adapted the Enrichment Score from Tsai et al.

[51], and also used for RNA structure assessment [52,53]. The

enrichment score is defined as: ES~
Etop10%\Rtop10%

�
�
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structures. By looking at the degree of overlap between the two

categories, the enrichment score provides insight on how good the

scoring is ES,1 corresponds to bad scoring, ES = 1corresponds to

random scoring and ES = 10 is perfect scoring. Even if what can

be considered good scoring is not obvious, the comparison of ES
values between 1 and 10 provides good information on how well

the strategy performs on different targets.

Results and Discussion

Native and near-native configurations are recovered
A data based docking procedure for protein-RNA complexes

should first be able to recover the native and close-to-native states

for a reference set of complexes. This is assessed by a careful cross-

validation setting. In this study we assessed the performance of our

learning procedure by plotting Energy vs. Irmsd and checking the

enrichment scores of our procedure relatively to the Rosetta

CAPRI default. Figure 2 shows detailed results for nine different

complexes (the remaining plots can be found in Figure S2).

Interestingly, while only one complex (2e9t) shows a funnel in the

default Rosetta version, none of the others do. Funnels can be

found however on all the optimized scoring function plots that

correlate to a high Enrichment Score. While not all complexes in

the dataset display such a good conformation selection, the

optimized scoring always performs better than the default

RosettaDock setting and seems suitable for prediction.

Figure 4. 3D structures and predictions for three protein-RNA complexes (reference set). The protein is shown in blue, the native RNA in
red and the RNA candidates in yellow. For each pdb example: (left) native structure, (middle) native structure superposed to the 5 best energy
candidates from ROGER score and (right) native structure superposed to the 5 best energy decoys from RosettaDock default score.
doi:10.1371/journal.pone.0108928.g004
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The machine learning procedure was also assessed separately by

plotting the ROC curves in the leave-one-pdb-out setting. Figure 3

(panels a and b) shows the ROC curves for the optimized and

default RosettaDock scoring functions respectively. While the

default strategy does not show any discrimination power, our

optimized function performs very well. In particular, at the origin,

the ROC curve is very steep. This is especially interesting as in the

CAPRI challenge only 10 putative conformations can be

submitted and in any experimental setting, not more than 100

can be easily tested. Table 1 reports the statistics for the previously

mentioned complexes and confirms that a large number of near-

native conformations can be found in the top10 and top100

conformations, making the optimized score suitable for prediction

(Results on the whole reference set are available in S3). The ROC-

AUC often shows larger improvements than the Enrichment

Scores as the near-native category for the AUC is defined by a 5 Å

threshold (the ES uses the top10% which is generally different than

5 Å).

The strategy was then further evaluated on the Benchmark I

and Benchmark II protein-RNA complex structures in a bound

setting. Figure 3 (panels c and d) shows the ROC curves for both

benchmarks. The ROC-AUC confirms that the optimized scoring

function performs well in a prediction setting and is robust to the

biological diversity and flexibility encountered in both bench-

marks.

Figure 5. Violinplots of weights for the ROGER optimized
RosettaDock scoring function. Default reference weights are shown
in grey diamonds. fa_atr and fa_rep represent Lennard-Jones terms
(attractive and repulsive). fa_dun corresponds to the internal energy of
sidechain rotamers as derived from Dunbrack’s; fa_sol is the Lazaridis
Karplus solvation energy and fa_pair is the statistics based pair term,
known to favour salt bridges for proteins. Remaining are H bond terms
for long-range and short-range interactions for both backbone (bb) and
side-chain (sc) terms. Last term (hack_elec) represents the empirical
electrostatics contribution.
doi:10.1371/journal.pone.0108928.g005
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Most of the best energy candidates are biologically
relevant near-native candidates

The RosettaDock perturbation generation for the conforma-

tions ensures that the packing at the interface is relatively correct.

Visual inspection shows that the conformations of best energy

conformations are relevant from a biological perspective (interface

area, contacts, clashes…). Figure 4 shows the 5 best energy

candidates are very close to the native structure (bound setting).

When various interface cavities are available for the docking (e.g.

Figure 4b), the optimized function also clearly selects the right

interface despite the atomic contacts being reasonable in both

putative cavities. The default RosettaDock scoring function does

select reasonably packed conformation but not always the right

interface location.

Optimized weights and interface H-bonding network
In a bound setting, for protein-RNA, the relative influence of

the parameters shows that the H-bond network is extremely

important and must be maintained. Figure 5 shows the weights

obtained for the RosettaDock scoring function by optimization. H-

bond terms involving the backbone are high at short range but also

at long range. Unsurprisingly the H-bonding terms of the side

chains are extremely important both for single and double strand

RNAs (data not shown). Except for the pair term, most of the

other terms have a very small influence. Other than the putative

H-bonding network, only the pair terms have some importance.

This is in accordance with the previous pair scoring functions

developed for protein-RNA docking [28]. The relative importance

of the weights however has to be assessed keeping in mind the

values of the terms cannot really be normalized in the same range.

The Lennard-Jones terms not having influence might be due to the

fact that the system is set up on perturbation decoys generated by

RosettaDock. By definition these will have a relatively good

packing and clashing or too distant conformation will be left out

without having to use the scoring function. To ensure the

biophysical interpretation of the sign of the weights was

compatible with our results, we also tried to optimize the scoring

function by allowing the weights in the [21;1] and in the [21;0]

intervals [54]. This led to much less stable learning procedures and

worse results. We also checked whether the structural nature of the

RNA molecules (single-, double-strand, tRNA…) made a differ-

ence but could not find any remarkable pattern. Score being high-

resolution in a bound setting, the atomic contacts are more

significant than the overall shape criteria.

Benchmarking bound and unbound docking
The scoring function was then assessed in both bound and

unbound (protein and RNA when available) settings. Perturbation

runs were performed in a bound setting on the 40 complexes of the

benchmarks not in the reference set. Only the 6 pdb files

corresponding to median, 1st and 3rd quartile ROC performance

were assessed in a full docking run unbound setting (for

computational reasons). Results can be found in Table 2 and

Table S4. As it was the case in a bound setting where results are

consistent with the ones obtained on the reference set with cross-

validation, the increase in performance for the unbound setting is

also very clear. Results also show that AUC and enrichment score

alone are not sufficient to evaluate the procedure and that the E vs.

rmsd plots have to be checked as the rmsd distribution among the

decoys can vary: while the enrichment score can be poor, the

selection can be very good. The E vs. rmsd plots show very sharp

funnels (Figures S3 and S4).These may contain two or three very

sharp peaks corresponding to small changes in the residue

rotamers and/or to the H-bonding network. All peaks do however

correspond to native conformations in the CAPRI definition. For

some case, the results stay poor: to improve these results flexibility

of RNA should be taken into account so as to provide a wide range

of small rmsd.

Limits
A current limit of our approach is the way RNA flexibility is

handled. Handling RNA flexibility for RNA during docking is a

very difficult task [13]. Thus, aside from hydrogen atoms and

protein rotamers, flexibility is not well taken into account. This

can however be handled by geometric sampling [55]. For small

RNA molecules this lack of flexibility handling is a limitation

that cannot allow for good results despite a good high-resolution

scoring function as it calls for a preliminary sampling

experiment. Modelling electrostatics is also a major issue when

modelling RNA molecules: solvent and ions are often found at

the interface and are still hard to predict [56]. In our reference

set, the interaction between the mRNA binding domain of

elongation factor SelB from E.coli in complex with SECIS RNA

(PDB code 2pjp) is an example where the interface is mediated

by sodium ions that our model does not take into account and

for which we obtained very poor results (See Figure S5). While

our approach could totally be adapted and used for protein-

DNA complex prediction, providing the parameters are

optimized on a suitable dataset, a similar effect where ions

mediate the interaction would be seen. It is also unclear whether

the changes and motifs occurring in the DNA double helix for

binding could be well captured by this approach. In addition to

limited flexibility treatment, this limits the current data based

approaches.

Conclusions

Protein-RNA complexes are undoubtedly a real challenge for

the design of good docking scoring functions. Using a well curated

dataset and a well-designed optimization strategy, we show that we

could set up of an efficient protein-docking scoring function that

can be used in RosettaDock and that can perform better than the

existing option in both bound and unbound settings. While scoring

can be improved, the nature of RNA makes the prediction

experiment still difficult. Electrostatics plays a large role in RNA

interactions and ions have to be modelled. Like ours, the data

based approaches are limited by the relatively small number of

structures available to take ions into account carefully. RNA

flexibility modelling for docking is then the next challenge: while

some strategies allow for conformation sampling, selection of one

or several putative bound states for large cross-docking exper-

iments are still out of reach for both modelling and computational

reasons.

Availability
The source code and files needed to modify RosettaDock 3.4

are available at: http://albios.saclay.inria.fr/rosettadockrna

Supporting Information

Figure S1 Model of a nucleic acid (uracile). The

phosphate group and the sugar heavy atoms are depicted in gray:

(a) coarse-grained level with the centroid atom in red and (b) full-

atom level with the base atoms in blue. The centroid is the

geometric center of the heavy atoms.
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Figure S2 Energy vs Irmsd for the whole reference
dataset in a leave-one-pdb-out setting.
(PDF)

Figure S3 Energy vs Irmsd for the benchmark set in a
bound setting. The 10,000 conformations evaluated for our

optimized Rosetta scoring function are shown in black. On each

plot, the bottom left panel shows the equivalent non-optimized

Rosetta result.

(PDF)

Figure S4 Energy vs Irmsd for the unbound test set. The

10,000 conformations evaluated for our optimized Rosetta scoring

function are shown in black. On each plot, the bottom left panel

show the equivalent non-optimized Rosetta result.

(PDF)

Figure S5 Structure of the mRNA binding domain of
elongation factor SelB from E.coli in complex with
SECIS RNA (PDB code 2pjp). Mg2+ ions (shown in yellow)

are located at the interface and mediate the interaction.

(TIFF)

Table S1 Protein-RNA complexes reference set from the
PRIDB. The rightmost column indicates putative redundancy

with the docking benchmarks. The Type column refers to the

structural family of the RNA molecule: single strand RNA

(ssRNA), double strand RNA or single-stranded RNA of helical/

paired structure (dsRNA) or transfer RNA (tRNA).

(PDF)

Table S2 Protein-RNA complexes for the test set. For

each complex the unbound column for protein and RNA reports

the PDB code of the unbound structures when available. The

difficulty codes are taken from [36,38].

(PDF)

Table S3 Leave-one-pdb-out scoring statistics for the
reference dataset. Enrichment Score, 10 best energy candi-

dates, 100 best energy candidates, number of near-native

structures and Area Under the ROC Curve are reported for each

native structure both using the non-optimized RosettaDock

scoring function (Default) and our optimized scoring function

(ROGER).

(PDF)

Table S4 Scoring results on the bound benchmark test
set. Enrichment Score, 10 best energy candidates, 100 best

energy candidates, number of near-native structures and Area

Under the ROC Curve are reported for each native structure both

using the non-optimized RosettaDock scoring function (Default)

and our optimized scoring function (ROGER).

(PDF)
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