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Abstract

Background: Bulked segregant analysis (BSA), coupled with next-generation sequencing, allows the rapid
identification of both qualitative and quantitative trait loci (QTL), and this technique is referred to as BSA-Seq here.
The current SNP index method and G-statistic method for BSA-Seq data analysis require relatively high sequencing
coverage to detect significant single nucleotide polymorphism (SNP)-trait associations, which leads to high
sequencing cost.

Results: We developed a simple and effective algorithm for BSA-Seq data analysis and implemented it in Python;
the program was named PyBSASeq. Using PyBSASeq, the significant SNPs (sSNPs), SNPs likely associated with the
trait, were identified via Fisher's exact test, and then the ratio of the sSNPs to total SNPs in a chromosomal interval
was used to detect the genomic regions that condition the trait of interest. The results obtained this way are
similar to those generated via the current methods, but with more than five times higher sensitivity. This approach
was termed the significant SNP method here.

Conclusions: The significant SNP method allows the detection of SNP-trait associations at much lower sequencing
coverage than the current methods, leading to ~ 80% lower sequencing cost and making BSA-Seq more accessible

to the research community and more applicable to the species with a large genome.

Keywords: Bulked segregant analysis, BSA-Seq, PyBSASeq, QTL, SNP-trait association

Background

Bulked segregant analysis (BSA) has been widely utilized
in the rapid identification of trait-associated genetic
markers for a few decades [1, 2]. The essential part of a
BSA study is to construct two bulks of individuals that
have contrasting phenotypes (e.g., tallest plants vs. short-
est plants or resistant plants vs. susceptible plants) from
segregating populations. If a gene does not contribute to
the trait phenotype, its alleles would be randomly segre-
gated in both bulks; whereas if a gene is responsible for
the trait phenotype, its alleles would be enriched in
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either bulk, e.g., one bulk has more allele A while the
other bulk has more allele a. BSA was primarily used to
develop genetic markers for detecting gene-trait associ-
ation at its early stage [1, 2]. The application of next-
generation sequencing technology to BSA has eliminated
the time-consuming and labor-intensive marker develop-
ment and genetic mapping steps and has dramatically
sped up the detection of gene-trait associations [3—20].
This technique was termed either QTL-seq or BSA-Seq
in different publications [5, 6, 21]; we adapted the latter
here because it can be applied to study both qualitative
and quantitative traits.

The widely used approach in analyzing BSA-Seq data
is the SNP index method [5]. For each SNP, the base
that is the same as in the reference genome is termed
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reference base (REF), and the other base is termed alter-
native base (ALT); the SNP index (allele frequency) of
an SNP is calculated by dividing its ALT read with the
total read (REF read + ALT read) in a bulk. The greater
the A(SNP index) (the difference of the SNP indices be-
tween bulks), the more likely the SNP contributes to the
trait of interest or is linked to a gene that controls the
trait. The second approach is the G-statistic method
[21]. For each SNP, a G-statistic value is calculated via
G-test using the REF read and the ALT read values in
each bulk. The SNP with a high G-statistic value would
be more likely related to the trait. Both methods identify
SNP-trait associations via quantifying the REF/ALT en-
richment of a single SNP, and some of the major QTLs
can be detected only with high sequencing coverage [3,
5, 22], which leads to high sequencing cost and limits
the application of BSA-Seq to the species with a large
genome. When this manuscript was in review, a new al-
gorithm termed BRM was published. The authors
claimed that the BRM had higher sensitivity than the
current methods (https://doi.org/10.1093/bioinformat-
ics/btz861).

In BSA studies, bulking enriches the trait-associated al-
leles in either bulk. The more a gene contributes to the
phenotype, the more its alleles are enriched, and so are
the SNPs within the gene (one bulk contains more REF
read while the other bulk contains more ALT read). The
SNPs flanking this gene should be enriched as well due to
linkage disequilibrium, the closer the SNP to the gene, the
more enrichment is achieved. Such SNPs are termed trait-
associated SNPs. Based on the above reasoning, we devel-
oped a novel, simple, and effective algorithm for analysis
of the BSA-Seq data via quantifying the enrichment of
likely trait-associated SNPs in a chromosomal interval.
The algorithm was implemented in Python and the script
was named PyBSASeq. The sequence data of Yang et al.
[3] was used to test our algorithm, and our method de-
tected more QTLs than the current methods [3, 22] even
with lower sequencing coverage.

Implementation

The significant SNP method was implemented in Py-
thon, and the code and its detailed usage are available
on the website https://github.com/dblhlx/PyBSASeq.
The Python implementation of the SNP index method
and the G-statistic method can be accessed on https://
github.com/dblhlx/. The input file for these scripts are
generated via SNP calling, see the Method section for
details. The workflow of the scripts is as follows:

1. Read the .tsv input file generated via SNP calling
into a Pandas DataFrame;
2. Perform SNP filtering on the Pandas DataFrame;
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3. Identify the significant SNPs via Fisher’s exact test
(the significant SNP method), calculate the A(SNP
index) values (the SNP index method), or calculate
the G-statistic values (the G-statistic method) using
the four allele depth (AD) values (ADggr; and
AD 11 of bulk 1 and ADggp, and ADy; 1o of bulk
2) of each SNP in the filtered Pandas DataFrame;

4. Use the sliding window algorithm to plot the sSNP/
totalSNP ratios, the A(SNP index) values, or the G-
statistic values against their genomic positions;

5. Calculate the threshold of the sSSNP/totalSNP ratio,
the A(SNP index), or the G-statistic via simulation.
The thresholds were used to identify the significant
peaks in the plots generated in step 4.

Two files, PyBSASeq.pdf and BSASeq.csv, will be gen-
erated after the successful completion of the PyBSASeq
script. PyBSASeq.pdf contains plots with the chromo-
somal distributions of sSNPs, total SNPs, and sSNP/
totalSNP ratios, while BSASeq.csv contains information
for all the potential significant peaks including the slid-
ing window-specific thresholds of these peaks.

SNP filtering

The GATK4-identified SNPs are filtered using the fol-
lowing parameters in order: 1) the unmapped SNPs or
SNPs mapped to the mitochondrial or chloroplast gen-
ome; 2) the SNPs with an ‘NA’ value in any column of
the DataFrame; 3) the SNPs with more than one ALT
bases; 4) the SNPs with GQ score less than 20.

Identification of significant SNPs

The Python module fisher (https://github.com/brentp/
fishers_exact_test) or scipy.stats.fisher_exact is used for
Fisher’s exact test. The former can take four one-
dimensional numpy arrays as input and hence is much
faster when dealing with a large dataset. Whereas the
latter can only take a numpy array or a Python list
([[ADggr1, ADarT1], [ADREF2, ADALT2]]) as input. When
performing Fisher’s exact test on the real SNP dataset, a
SNP with its p-value less than 0.01 is defined as a signifi-
cant SNP.

Calculation of A(SNP index) and G-statistic
The A(SNP index) of each SNP in the SNP dataset is
calculated as below:

ADyrra  ADarm
DpP, DP,

A(SNP index) =

The formula below is used for calculating the G-
statistic of each SNP, where O is the observed AD
(ADREFI! ADALTI! ADREFZ’ or ADALTZ)’ E is the eXpeCted
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AD under the null hypothesis and is calculated as in the
original G-statistic method [21], and /n denotes the nat-
ural logarithm.

G=2) 0:ix In(0/E)

Sliding windows

The sliding window algorithm is utilized to aid the
visualization (plotting) in BSA-Seq data analysis. The
window size is 2 Mb, and the incremental step is 10,000
bp. Most of the sliding windows contain hundreds or
thousands of SNPs, and some of them could be signifi-
cant SNPs. For the significant SNP method, the sSNP/
totalSNP ratio of a sliding window is the ratio of the
number of sSNPs to the total number of SNPs in the
sliding windows. A sliding window containing a trait-
controlling gene or with such a gene nearby would have
a high sSNP/totalSNP ratio because of phenotypic selec-
tion via bulking; the more the gene contributes to the
trait, the higher the sSNP/totalSNP ratio. For the SNP
index method and the G-statistic method, the A(SNP
index) or G-statistic of a sliding window is the average
values of all the SNPs in the sliding window. A sliding
window containing a trait-controlling gene or with such
a gene nearby would have a high absolute A(SNP index)
or G-statistic as well.

Empty windows would be encountered if the amount
of SNPs is too low or the SNP distribution is severely
skewed. If a sliding window has zero SNP, its sSNP/
totalSNP ratio, G-statistic value, or A(SNP index) will be
replaced with the value of the previous sliding window.
If the first sliding window of a chromosome is empty,
the string ‘empty’ will be assigned to this sliding window
as a placeholder that will be replaced with a non-empty
value of the nearest window later.

Simulation of ADgge/ADj 1 for threshold calculation

The python module numpy.random.binomial (DP, allele-
Freq) is used to calculate the simulated ADggp (SmA-
Drer) and simulated ADppt (SmADjrt) of a SNP in a
bulk. DP is the real depth per sample value of the SNP
in the bulk, and alleleFreq is the frequency of the ALT
base in the bulk under the null hypothesis that the SNP
is not associated with the trait. alleleFreq is 0.5 in an F,
population or 0.75/0.25 in a backcross population, its
value in the bulk is obtained via simulation (see the
smAlleleFreq function of the Python script for details),
which should be very close to 0.5 or 0.75/0.25. The mod-
ule returns the smAD; 1, and the smADggr can be cal-
culated as below:

SWLADREF = DP—SWIADALT
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Calculation of the sSNP/totalSNP thresholds

It takes around two minutes to calculate the threshold
of a single sliding window via simulation on a relatively
powerful desktop computer (Intel Core 17-6700 3.40
Ghz Processor and 32 Gb ram), and calculating a thresh-
old for every sliding window of the SNP dataset via
simulation would take a very long time. To overcome
this obstacle, we first calculate a genome-wide threshold
via resampling, peak sliding windows above this thresh-
old are identified as potential significant peaks, then slid-
ing window-specific thresholds are calculated via
simulation to verify if the sSSNP/totalSNP ratios of these
peak sliding windows are really significant.

Genome-wide threshold

The amount of SNPs that are the same as the average
number of SNPs per sliding window are randomly se-
lected from the entire SNP dataset. For each SNP in this
Sample, smADREH/smADALTl of bulk 1 and SmADREpz/
SmAD ;o of bulk 2 are obtained via simulation. These
simulated AD values of both bulks are used to perform
Fisher’s exact test. A SNP with its p-value less than 0.10
is considered an sSNP. The sSNP/totalSNP ratio of this
sample is calculated and recorded. This process is re-
peated 10,000 times, and the 99.5th percentile of these
10,000 simulated sSNP/totalSNP ratios is used as the
significant threshold for the detection of potential sig-
nificant peaks. A higher cut-off p-value (0.01 is used in
the real SNP dataset) is used here, resulting in the iden-
tification of more significant SNPs from the simulated
SNP sub-dataset, hence a higher threshold and less false
positives.

Sliding window threshold

For each SNP in a sliding window, smADggp1/SmAD AL T;
of bulk 1 and smADggps/smAD ;15 of bulk 2 are ob-
tained via simulation, and Fisher’s exact test, identifica-
tion of significant SNPs, and sSNP/totalSNP calculation
are performed in the same way as above. This process is
repeated 10,000 times, and again the 99.5th of these 10,
000 simulated sSNP/totalSNP ratios is used as the
threshold for this sliding window.

Calculation of the A(SNP index) and G-statistic thresholds
For each SNP in the SNP dataset, SmADggpi/SMAD A1 11
of bulk 1 and smADggps/sSmAD ;o of bulk 2 are ob-
tained via simulation. Using these AD values, the A(SNP
index) or the G-statistic of each SNP is calculated as
above . This process is repeated 10,000 times, the 99%
confidence interval of the 10,000 A(SNP index) values is
used as a significant threshold for the SNP index
method, and the 99.5th percentile of the 10,000 G-statis-
tic values is used as a significant threshold for the G-
statistic method. Please note that the threshold of the
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A(SNP index) or the G-statistic is at the SNP level while
the threshold of the sSNP/totalSNP ratio is at the sliding
window level.

Results

Identification of significant SNPs

In BSA-Seq studies, if a SNP is not associated with the
trait, its REF/ALT reads would be randomly segregated
in both bulks, and the ALT (or REF) read proportions in
two bulks should be similar; however, if a SNP is associ-
ated with the trait, its REF/ALT reads would be enriched
in either bulk due to phenotypic selection via bulking,
and the ALT (or REF) read proportions should be sig-
nificantly different between the bulks. Fisher’s exact test,
G-test, or chi-square test can be used to identify such
trait-associated SNPs from the SNP dataset, but Fisher’s
exact test is more accurate when the sample size is
small. For the same set of 2 x 2 contingency table, the
p-value calculated via either G-test or chi-square test is
less than that calculated via Fisher’s exact test, even for
sample sizes in the hundreds. To decrease the chance of
false positives, Fisher’s exact test was used to identify the
likely trait-associated SNPs here, as did by many others
[4, 20]. A small p-value of the Fisher’s exact test suggests
that the ALT proportion difference of a SNP between
bulks is more likely caused by bulking, and an SNP with
its p-value less than 0.01 was considered more likely as-
sociated with the trait and was termed significant SNP
(sSNP) here. 240,351 sSNPs were identified among total
1,303,084 filtered SNPs (see the Implementation section
for the filter criteria), and the chromosomal distribution
of SNPs was summarized in Table 1. The chromosomes
8, 1, 2, 10, and 5 contained the most sSNPs and had the

Table 1 Chromosomal distribution of SNPs

Chromosome SSNP totalSNP sSNP/totalSNP
1 52,093 160,780 0.324
2 48912 125,059 0391
3 3502 45927 0.076
4 3743 62,317 0.060
5 15,482 102,474 0.151
6 7653 159,857 0.048
7 12,679 128,658 0.099
8 54,372 132,646 0410
9 1709 57971 0.029
10 28,711 98,646 0.291
" 5235 180,319 0.029
12 6260 48430 0.129
Genome-wide 240,351 1,303,084 0.184
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highest sSNP/totalSNP ratios, correlating perfectly with
the chromosomes carrying the verified QTLs [3, 22].

Enrichment of sSNPs

The sSNPs should cluster around the genes controlling
the trait phenotype on the chromosomes due to linkage
disequilibrium. Using the sliding window technique, the
number of sSNPs was plotted across all the chromo-
somes to test if this was the case. We found the sSNP
plot approximately matched with the major peaks in
plots produced by the SNP index method and the G-
statistic method [3, 22] (Fig. 1a). However, counting the
absolute number of sSNPs is not an ideal way to meas-
ure the sSNP enrichment because SNPs were distributed
unevenly across and between chromosomes (Fig. 1a); if a
gene that conditions the trait is located in a region with
fewer SNPs, it would be missed using this approach.
Thus, we used the ratio of sSNPs to total SNPs in a
chromosomal region to measure the sSNP enrichment.
The sSNP/totalSNP ratios were plotted for all the chro-
mosomes (Fig. 1b), and the plot pattern matched very
well with that produced by the G-statistic method [3,
22]. The most obvious difference between Fig. 1a and b
was the first peak on chromosome 2 and the peaks on
chromosomes 3, 6 and 9; these regions contained fewer
SNPs, but the sSNPs enrichment was relatively high.

As stated in the Implementation section, calculating the
sSNP/totalSNP ratio threshold of a sliding window via
simulation takes around two minutes, and the entire SNP
dataset contained 34,919 sliding windows. Calculation of
the thresholds of all the sliding windows would take more
than a month, thus resampling was utilized to obtain a
genome-wide threshold (see the Implementation section)
to identify potentially significant peaks in Fig. 1b. The
threshold obtained this way was 0.087. In addition to the
six major QTLs (two of them on chromosome 2) verified
in the work of Yang et al. [3], one or more new peaks on
all chromosomes except chromosomes 5 and 10 were also
above the threshold (Fig. 1b).

The genome-wide threshold was acquired using the
sample size equal to the average number of SNPs of the
sliding windows. We tried different sample sizes for the
genome-wide threshold calculation, and the results dem-
onstrated that increasing the sample size decreased the
threshold (not shown here). The number of SNPs in
sliding windows varied drastically across the genome
(Fig. 1a), hence the thresholds should vary between slid-
ing windows, and some of the significant peaks in Fig. 1b
could be false positives if they contained a low number
of SNPs. Thus, we calculated sliding window-specific
thresholds for all the potential significant peaks in Fig. 1b
via simulation. The results revealed that most of the slid-
ing window thresholds were very close to the genome-
wide threshold, except the sliding windows with a very
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Fig. 1 Genomic distributions of SNPs and sSNPs/totalSNP ratios. The red horizontal lines are the thresholds obtained via resampling. a The sSNPs
(black) and total SNPs (blue). b The ratio of sSNPs to total SNPs

low number of SNPs. Using the sliding windows thresh-
olds, only the first peak on chromosome 3 was identified
as a false positive; this peak sliding window had only 2260
SNPs, less than 1/3 of the average number of SNPs per
sliding window (6984), and its sSNP/totalSNP ratio was
0.0929, very closed to the genome-wide threshold (Table
S1). Since the sliding windows with a higher number of
SNPs tends to have a lower threshold, the peaks with their
sSNP/totalSNP ratios lower than the genome-wide thresh-
old and containing a very high number of SNPs might be
false negatives using above approach; however, these gen-
omic regions should have very small phenotypic effects
judged by their low sSNP/totalSNP ratios.

Sequencing coverage affected the detection of SNP-trait
association

Using the Lander/Waterman equation [23], the sequen-
cing coverage of SRR834927 and SRR834931 was esti-
mated to be 84x and 103x, respectively. It would be very
costly to achieve such high sequencing coverage for the
organisms with a large genome. Thus, we wanted to know
how decreasing sequencing coverage would affect the de-
tection of SNP-trait associations. To achieve lower se-
quencing coverage, we sampled 40%, 30%, and 20% of the
raw sequence reads using the seqtk program (https://
github.com/lh3/seqtk) with different random seeds. Ran-
dom seeds were used here just to ensure that paired se-
quences in the same bulk were selected when sampling.
The sSNPs were identified from these sequence subsets

and the ratios of sSSNP/totalSNP were plotted along all the
chromosomes as above. The results revealed that the plot-
ting patterns were very similar at different sequencing
coverage levels (Fig. 2); with decreasing sequencing cover-
age, the total SNPs decreased slightly, while the number of
sSNP and the sSNP/totalSNP ratio decreased substantially
(Table S2). Because the threshold did not change as much,
more and more minor SNP-trait associations were missed
with decreasing sequencing coverage. However, with 40%,
30%, or even 20% of the original sequencing coverage,
more QTLs were detected than the current methods with
the original sequencing coverage (3, 22].

We calculated the sliding window-specific thresholds
for all the potential significant peaks in Fig. 2 as well, and
only one peak on chromosome 9 at 30% of the original se-
quencing coverage was identified as a false positive (Fig. 2b
and Table S1), again, this peak contained a very low
amount of SNPs (963). All the seven peaks identified in
Fig. 2c were still significant using the sliding window-
specific thresholds (Table S1). Although not obvious in
Figs. 1b and 2, positions of many significant peaks were
not the same at different sequencing coverage levels, the
difference was very minor for all but one peak on chromo-
some 2, which shifted 1.86 Mb at 30% of the original se-
quencing coverage (Table S1). This peak was very close to
the centromere [3], and the recombination frequency
around this region should be low. The curve around this
peak was very noise in Fig. 1b; it was not surprising that
down-sampling led to significant peak shifting.
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Sensitivity comparison

The results in Figs. 1b and 2 indicated that the significant
SNP method had higher detection power. However, differ-
ent methods were used to generate the SNP datasets [3,
22], which might lead to different detection sensitivities.
To rule out this possibility, we implemented the SNP
index method and the G-statistic method in Python and
tested all the three methods with the same SNP dataset.
First, we tested if the results of Yang et al. and Mansfeld
and Grumet can be replicated using our scripts. As in the
studies mentioned above, the SNP dataset was filtered
with the following criteria: fb.GQ > 99, sb.GQ = 99, {b.DP
> 40, sb.DP > 40, {b.DP + sb.DP > 100, and fb.DP + sb.DP
< 400. Although the SNP datasets were generated in dif-
ferent ways (GATK4 vs. GATK vs. Samtools) and no
smoothing besides the sliding window algorithm was ap-
plied in our scripts, the results, including the plot patterns,
the G-statistic values, and the A(SNP index) values and its
confidence intervals, were very similar [3, 22], and the po-
sitions of the peaks/valleys matched almost perfectly be-
tween different approaches (Figure S1). A non-parametric
method was used to calculate the threshold in the G-
statistic method by Yang et al. and Mansfeld and Grumet,
and different approaches were used to remove the G-
statistic values from the QTL regions. Thus, the thresh-
olds were a little different in these studies, and so were the
QTL detection results [3, 22]. In our G-statistic script, we
used simulation for threshold calculation (see the Imple-
mentation section), and the thresholds obtained this way
were consistent across all the chromosomes and was less
conservative than the previously reported approaches.
Using the high sequencing depth SNP subset, similar re-
sults were obtained by both the SNP index method and
the G-statistic method: the six major QTLs and a minor
QTL on chromosome 2 were detected (Figure S1). How-
ever, the significant SNP method had the highest sensitiv-
ity using the same filtering criteria, and it can detect more

minor QTLs than other methods even if the whole SNP
dataset was used (Figs. 1b, 2, and Figure S1). Please note
that 99% confidence interval was used for the calculation
of the threshold in the SNP index method, and the 99.5th
percentile was used for the calculation of the threshold in
the G-statistic method or the significant SNP method.

As in the significant SNP method, we also tested how
decreasing sequencing coverage would affect the detection
of the SNP-trait associations in these two methods. Using
the original sequencing reads, the SNP index method had
relatively low detection power, the major QTL on
chromosome 5 was missed and the peak (valley) repre-
senting the major QTL on chromosome 10 was barely be-
yond the threshold. With decreasing sequencing coverage,
the A(SNP index) did not change much, but the thresh-
olds increased dramatically, the QTLs on chromosomes 2,
5, and 10 were missed at 40% of the original sequencing
coverage and all the QTL were missed at 30% or lower of
the original sequencing coverage (Fig. 3). For the G-
statistic method, with the original sequencing reads, all
the 6 major QTLs can be detected. With decreasing se-
quencing coverage, the G-statistic values decreased sub-
stantially, whereas the threshold increased slightly; the
QTLs on chromosomes 2, 5, and 10 were missed at 40%
of the original sequencing coverage, the peaks represent-
ing the QTLs on chromosomes 1 and 8 were barely above
the threshold at 30% of the original sequencing coverage,
and all the QTLs were missed at 20% of the original se-
quencing coverage (Fig. 4).

Discussion

The significant SNP method detected more than 10
minor QTLs along with all of the major QTLs detected
via the current methods when run with the entire SNP
dataset based on the original sequencing reads (Figs. 1b,
3a, and 4a). Plant cold tolerance is a complex
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quantitative trait controlled by many genes [24, 25]. The
additional QTLs detected via the significant SNP
method may represent the minor QTLs that have small
phenotypic effects. Filtering out the SNPs with a low DP
value increased the sensitivity of the current methods
(Figure S1, Figs. 3 and 4), but doing so increased the
sensitivity of the significant SNP method as well (Figure
S1b and Fig. 1b). Decreasing the sequencing coverage
substantially reduced the detection power of all the
methods (Figs. 2, 3, and 4). At 20% of the original cover-
age (17x in the first bulk and 21x in the second bulk),
all QTLs were missed using the current methods; how-
ever, all the verified major QTLs plus one minor QTL
can still be detected via the significant SNP method,
manifesting that the significant SNP method is at least
five times more sensitive.

Because of its high sensitivity, the intervals of the QTLs
(chromosomal regions above the threshold) were quite
wide (Fig. 1b). An extreme case was chromosome 8 where
all of its sSNP/totalSNP ratios were greater than the
threshold, which does not imply that all the SNPs on
chromosome 8 were involved in conditioning the cold tol-
erance trait. The SNPs in the causal locus are enriched be-
cause of phenotypic selection via bulking while the SNPs
flanking the causal locus are enriched because of linkage
disequilibrium. Any recombination event between the
SNPs that affect the trait of interest and the SNPs flanking
the causal gene would reduce the enrichment of the flank-
ing sSNPs, thus SNPs in the causal locus should have the
highest enrichment and should be located in the peak re-
gion. Therefore, there are only two QTLs on chromosome
8: a minor one on the proximal arm while a major one on
the distal arm of the chromosome. All three methods use
the sliding window algorithm to detect the SNP-trait asso-
ciations and should have the same level of resolution if the
sliding window settings (window size and incremental
step) are the same.

The major difference between the significant SNP
method and the current methods is how the SNP-trait as-
sociations are identified. Both the SNP index method and

Table 2 The first five rows of the GATK4 output file
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the G-statistic method use SNP-level thresholds to iden-
tify significant sliding windows; whereas the significant
SNP method uses sliding window-level thresholds to iden-
tify significant sliding windows. The average number of
SNPs was 6984 in the sliding windows, much higher than
the average sequencing coverage in either bulk (84x in the
first bulk and 103x in the second bulk), which could be
why the significant SNP method has much higher statis-
tical power and is more sensitive in the detection of SNP-
trait associations. GATK is widely used for SNP and small
InDel calling, and the new version of GATK4 is also cap-
able of copy number and structural variant calling. PyB-
SASeq is designed to analyze the GATK-generated variant
calling data, though it has only been tested for analysis of
the SNP and small InDel calling data, it should be able to
handle the GATK4-generated copy number variant and
structural variant data as well.

Conclusions

The high sensitivity of the significant SNP method al-
lows the detection of SNP-trait associations at reduced
sequencing coverage, leading to reduced sequencing
costs. Thus, BSA-Seq can be more practically applied to
species with a large genome.

Methods

The sequencing data used in this study were generated
by Yang et al. [3]. Using the G-statistic method, Yang
et al. identified six major cold tolerance QTLs in rice
and five of them were consistent with the then available
QTL database or previous publications. The Oryza
sativa subsp. japonica rice cultivar Nipponbare was used
as one of the parents in generating the F; population of
the BSA-Seq experiment, and its genome sequence was
used as the reference sequence for SNP calling in our
study. The size of the F3; population was 10,800 (plants),
and the extremely cold-sensitive bulk (ES) contained 430
plants while the extremely cold-tolerant bulk (ET) con-
tained 385 plants. The bulked DNA libraries were se-
quenced using the Illumina Hiseq 2000 sequencing

CHROM? POS® REFC ALT® 834927.AD° 834927.GQ" 834931 AD° 834931.GQ"
1 29,759 C G 02 6 02 6

1 31,071 A G 2539 99 3329 99

1 31478 C T 2738 99 4832 99

1 33667 A G 21,46 99 3932 99

1 34,057 C T 2937 99 3231 99

*The chromosome on which the SNP is located

PThe position of the SNP on the chromosome
“The base sequence of the SNP that is the same as the one from the reference genome
%The base sequence that is different from REF
“The allele depths (AD) of the SNP in the first bulk (ID: 834927) or the second bulk (ID: 834931). This column contains two numbers, the first one is the REF read

(ADggr) and the second is the ALT read (ADp. )

The genotype quality of the SNP in the first bulk (ID: 834927) or the second bulk (ID: 834931)
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platform, ~ 360 million 101 bp pair-end reads were ob-
tained from the ES bulk and ~ 440 million 101 bp pair-
end reads were obtained from the ET bulk [3].

Sequencing data preprocess

The raw sequences (SRR834927 and SRR834931) for
BSA-Seq analysis are downloaded from NCBI using
fasterq-dump (https://github.com/ncbi/sra-tools). Qual-
ity control, adapter trimming, quality filtering, per-read
quality pruning of the downloaded sequences are per-
formed using fastp at the default setting [26].

SNP calling

The preprocessed sequences are aligned to the ‘Nippon-
bare’ reference genome sequence (Release 41, downloaded
from https://plants.ensembl.org/Oryza_sativa/Info/Index)
using BWA [27-29]. SNP calling is carried out following
the best practice of Genome Analysis Toolkit (GATK)
[30] and the Genome Analysis Toolkit 4 (GATK4) tool
documentation on the GATK website https://software.
broadinstitute.org/gatk/documentation/tooldocs/current/.
The GATK4-generated .vcf file usually contains the infor-
mation for two bulks, which are termed the first bulk (fb)
and the second bulk (sb), respectively. Using the GATK4
tool, a .tsv (tab-separated value) file is generated using the
relevant columns (CHROM, POS, REF, ALT, fb.AD,
tb.GQ, sb.AD, sb.GQ) of this .vcf file; Table 2 shows the
first five rows of this .tsv file.

The number of REF/ALT reads of a SNP is defined as
allele depth (AD) in GATK4. Here they are represented
as ADggr and ADart, respectively, and a ‘1’ or 2" is
added to its subscript when appropriate to indicate
which bulk it belongs to; the same can be applied to the
sequencing depth as well. In some rare occasions, the
GATK4-generated depth per sample (DP) of an SNP can
be either greater or less than the sum of the ADs in a
bulk, here the DP of an SNP in a bulk is defined as
below for all the SNPs:

DP = ADREF + ADALT
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