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Gene circuits that control metabolism should restore metabolic functions upon environmental changes.
Whether gene networks are capable of steering metabolism to optimal states is an open question. Here we
present a method to identify such optimal gene networks. We show that metabolic network optimisation
over a range of environments results in an input-output relationship for the gene network that guarantees
optimal metabolic states. Optimal control is possible if the gene network can achieve this input-output
relationship. We illustrate our approach with the best-studied regulatory network in yeast, the galactose
network. We find that over the entire range of external galactose concentrations, the regulatory network is
able to optimally steer galactose metabolism. Only a few gene network parameters affect this optimal
regulation. The other parameters can be tuned independently for optimisation of other functions, such as
fast and low-noise gene expression. This study highlights gene network plasticity, evolvability, and modular
functionality.

M
icroorganisms are continuously challenged by environmental dynamics to maintain fitness.
Sophisticated adaptation mechanisms restore basic cellular functions upon environmental changes1–6.
These mechanisms invariably involve the sensing and integration of the dynamics of the extra- and

intracellular state, and induce adjustments in protein levels through gene expression regulation. In metabolic
regulation, dedicated receptors and signalling mechanisms exist only for a few nutrients; generally, the actual state
of the metabolic network is sensed by its associated gene network via metabolite-binding transcription factors7–10.
On the basis of this information alone, the gene network induces compensatory metabolic gene expression.

Generally, metabolic networks are better understood than their associated gene networks, especially in central
metabolism; the stoichiometry and, often, the enzyme kinetics of metabolic reactions are known, or can be
determined with existing technologies. However, the identity of the metabolites that regulate the activity of
transcription factors of metabolic genes and the kinetics of reactions in the gene network are much harder to
determine experimentally. As a consequence, it is not yet understood which metabolic behaviours can be
adequately controlled by gene networks and what the functional limits of gene networks are: for instance, can
gene networks optimise metabolic functions?

Evolutionary studies indicate that metabolic networks tend to evolve via mutations in their associated gene
networks rather than in their metabolic enzyme properties. Laboratory evolution experiments indicate significant
adjustments of enzyme levels11 and fluxes through metabolic networks12–15 already within hundreds of genera-
tions16. Remarkably only a few mutations are sufficient, indicating the evolvability and plasticity of gene networks.
These studies indicate the importance of gene network control for metabolic functioning and lead to the question
whether metabolic functions can be optimised by gene networks to cause considerable increases in fitness. The
studies by Dekel et al.11 and Ibarra et al.13 indicate that gene networks can readily evolve this capability at a single
environmental condition, but they do not address whether gene networks can steer metabolism to optimal states
over a range of environmental states.

In this paper, we deduce from metabolic information alone the requirement, i.e. the input-output relationship,
for the gene network to regulate its target metabolic network in an optimal fashion over a range of environmental
conditions. The input-output mapping can be selected on the basis of available data or obtained from a computa-
tional, optimization approach. Note that the resulting input-output relationship ‘‘mapping’’ does not have to be
unique. After this input-output relationship has been found, relevant questions address whether a given gene
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network can achieve this behaviour or what candidate gene network
structures would be capable of generating the required input-output
relationship. Our method can be used in three ways: (i) to parame-
terise a gene network for which the topology is known but not all the
kinetic parameters have been identified, (ii) to identify a (minimal)
gene network that is capable of controlling a metabolic system; for
instance, by using software to evolve gene network models in the
computer17,18, or (iii) to identify a gene network and metabolic net-
work that both agree with an experimentally determined input-out-
put relationship. We focus in this work on the first application to
study the control capabilities of a well-studied gene network.

With the method outlined in this paper, we will study whether the
plasticity of a given gene network, for which the topology is known, is
large enough to give rise to optimal control of its associated target
network. For this we chose the regulation of galactose metabolism in
Saccharomyces cerevisiae. The galactose network has been studied
extensively at the genetic and metabolic level19,20 and is arguably the
best studied regulatory network in this organism. As such, it provides
a realistic and relevant network to investigate the interactions between
the metabolic and gene-regulatory networks. We find that the gene
network is indeed able to optimally steer the metabolic network over a
wide range of galactose concentrations. Subsequently, we study
whether this trait prevents the gene network from carrying out other
functions (optimally), such as fast and low-noise transcription res-
ponses. In the case of such restrictions, regulatory trade-offs would
occur within the gene network. Interestingly, about one third of the
parameters are most important for setting optimal enzyme levels,
whereas other parameter sets are more important for regulation upon
environmental perturbations, management of molecular noise or
avoiding the build-up of toxic metabolic intermediates. Our approach

can integrate metabolomics and protein expression data sets and
provides a conceptual framework to understand – or engineer – gene
regulatory networks that can implement metabolic objectives.

Results
Identification of a regulatory gene network for desired metabolic
enzyme expression. In this section, we will present the approach for
the identification of the properties of a gene network that is capable
to steer metabolic gene expression to a desired steady state at
different nutrient levels. The approach is not limited to a metabolic
network but could address any molecular network and its control
system. In later sections, we apply this approach to the galactose
network of S. cerevisiae.

The method involves a series of steps that are shown in Figure 1. A
mathematical formulation of the procedure is presented in the
Methods section. We start from a mathematical model of the meta-
bolic network, typically described in terms of a set of ordinary dif-
ferential equations and a kinetic characterisation of the enzyme-
catalysed reactions. The enzyme levels of this metabolic network will
be optimised, given biochemical and evolutionary constraints, for a
metabolic objective function. This objective function will typically
represent a functional feature of the metabolic network that has a
significant contribution to fitness and can be susceptible to natural
selection. Below we will restrict ourselves to optimisation of the
specific growth rate of S. cerevisiae, but the method can deal with
other objectives equally well.

The outcome of the optimisation is a vector of optimal enzyme
concentrations, denoted by e6, that achieves the optimum and obeys
the set of constraints. The optimisation can be carried out over a
range of different environmental conditions and therefore we write

Figure 1 | Identification procedure for a regulatory gene network capable to regulate a desired state of metabolic gene expression. (A) Schematic

overview of the metabolic and regulatory gene network and their inputs and outputs. Dynamics in the environment, in this example changes in substrate

level s, lead to altered enzyme expression levels (as indicated by eo) to restore fitness in the perturbed condition. These altered enzyme expression levels are

achieved by the regulatory gene network that uses signalling metabolites mo
c sð Þ as input. Note that these signalling metabolites are a function of the

environmental change. (B) Optimal steering of a metabolic network by a regulatory gene network involves four steps: (1) Optimisation of metabolic

performance. The metabolic network is optimised for an objective function under constraints. In this example, optimising the metabolic enzyme levels

that lead to the highest steady state flux J under the constraint of a limited amount of resource, R. (2) The optimisation is performed for different

environmental conditions (in this example different nutrient concentrations), yielding the relationship between the external substrate s and the optimal

metabolite mo and enzyme eo concentrations. (3) From mo the metabolites signalling to the gene network mo
c sð Þ are selected, to form –together with

eo(s)– the optimal input-output relationship for the gene network. (4) The gene network receives mo
c as input and generates eo as output. The kinetic

parameters of the gene network (po
g ) are found by fitting the gene network to the optimal input-output relationship.
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this optimum as a function of a(n) (environmental) parameter, s, i.e.
e6(s). The parameter s will often be the extracellular concentration of
the substrate of the metabolic network under consideration or the
signal concentration for a signalling network. Substitution of e6(s) in
the mathematical model for the metabolic network allows for the
determination of the steady state metabolite concentrations in the
optimal state m6(s) (step 2, Figure 1B).

From the vector of optimal metabolite concentrations, we select
the concentrations of the signalling metabolites that communicate
with the gene network and denote the resulting vector by mo

c sð Þ, i.e.
mo

c sð Þ [ mo sð Þ (step 3, Figure 1B). As a result of the metabolic net-
work optimisation, we obtain for every value of s corresponding
values of optimal levels of signalling metabolites and metabolic
enzymes, e.g. mo

c sð Þ, eo sð Þ
� �

. This information is sufficient for iden-
tification of a gene network that can achieve optimal gene expression:
if the gene network puts out e6(s) given mo

c sð Þ as input, then the
metabolic network achieves its optimum at s. Therefore, we have
to parameterise the gene network in such a way that it acquires as
steady state enzyme levels, e6(s), when it receives mo

c sð Þ as input. Here
we have assumed that s does not directly impact the gene network,
only indirectly through its metabolic influence on mo

c sð Þ; the method
can straightforwardly be extended to accommodate this regulatory
influence. The identification of the gene network is achieved by
parameter fitting of a gene network model (step 4, Figure 1B). The
topology of gene networks is generally much better described than
their kinetic parameters, therefore we assume that the structure of the
gene network is known and we only estimate the kinetic parameters
of the gene network. The resulting parameter vector that denotes the
best fit of the gene network to the optimal input-output characteristic
is denoted by po

g .
Rather than fitting the kinetic parameters of a gene network, of

which the topology is known, to satisfy the optimal input-output
relationship, the method can also be used to find a specific gene
network topology and its kinetic parameterisation that can generate
optimal input-output relationship. This can for instance be done
with algorithms for molecular network evolution17,18. Here we do
not consider this possibility any further but focus on the galactose
network in yeast.

Identification of an optimal gene network input-output relationship
for the galactose network in yeast. The metabolic and gene regulatory
network of the galactose utilisation system of S. cerevisiae has been
studied extensively. Detailed mathematical models of the system have
been published that capture the existing biochemical information of
this complex control system2,21–24. The relevant interactions are shown
in Figure 2. A description of the mathematical model is given in the
Methods section and is based on the model of Atauri et al.21.

In a nutshell, the metabolic network considers the following pro-
cesses. It takes up external galactose (Galout), which is in turn con-
verted into glucose-1-phosphate (Glc-1P) by a series of metabolic
enzymes. Intracellular galactose (Galin) binds to the sensory protein
gal3p, leading to its activation. Active gal3p (gal3p*) binds to the
repressor, gal80p, thereby preventing the binding of gal80pd to the
transcriptional activator gal4pd (‘d’, stands for dimer). The protein
gal4pd promotes transcription of all GAL genes, including the reg-
ulatory genes (GAL80, GAL3) and structural genes (GAL2, GAL1,
GAL7 and GAL10).

We followed the procedure laid out in the previous section (see
also Methods). We first performed a constrained optimisation of the
metabolic network to identify enzyme levels that optimise metabolic
behaviour for a given environment. We consider the case that the
specific growth rate of yeast is under selective pressure and is being
maximised by adjustments in enzyme levels. This scenario corre-
sponds to a serial-dilution experiment of S. cerevisiae continued
for hundreds of generations15. Translation of this global selective
pressure to the level of the metabolic network leads to the objective

that the galactose flux per unit protein invested in the metabolic
pathway is being maximised. To obtain a relationship between the
galactose steady state flux and the external galactose concentration
(the environmental parameter), we make use of several microbiolo-
gical relationships. First, we relate yeast’s growth rate to the external
galactose concentration using the Monod equation: m 5 mmax ?
[Galout]/(Ks 1 [Galout]), with a maximal growth rate, mmax5

0.4 (hr–1) (see Methods and Ref. 25) and a Monod constant, Ks

of 3 mM (estimated value). Second, the specific growth rate is
related to the galactose uptake rate through the galactose yield:

m~Y
galactose
biomass

� J galactose{uptake. An experimental measured

value of Y
galactose
biomass

~0:26 g=g was used26. By using these physio-

logical parameters, the galactose uptake flux ranges from 0.2 to
55 mM/min when the external galactose concentrations varies from
10 mM to 100 mM (green line in Figure 3A). The constrained opti-
misation of the mathematical model of the galactose metabolic path-
way - not coupled to the gene network - involves minimisation of the
amount of total protein used in the pathway to reach the galactose
uptake flux corresponding to a specific galactose concentration. This
procedure is then repeated at discrete intervals over the entire range
of external galactose concentrations. We find that for the highest
galactose concentration of 100 mM a total amount of 68 mM of total
enzyme is minimally needed. Under these conditions, gal1p and
gal2p have the highest expression levels of about 30 and 25 mM,
respectively and gal7p and gal10p are approximately 7 and 5 mM,
respectively (Figure 3C–F). These enzyme amounts vary over the
range of environmental conditions.

The regulatory metabolite that communicates between the meta-
bolic and the gene network is intracellular galactose (Figure 2). We
find internal galactose concentrations ranging from 0.5 mM to
0.87 mM (Figure 3B) in the optimised metabolic model, which are
realistic values given experimental data15,22,26–28. The input-output
characterisation of the optimal gene network is obtained by plotting
the internal galactose concentration, the metabolic signal to the gene
network, versus the optimal enzyme expression levels (blue lines in
Figures 3C–F). These dependencies are required for maximal specific
galactose uptake fluxes as function of the external galactose condi-
tions. Surprisingly, these dependencies are close to linear relation-
ships. The next question is whether the gene network is capable
of generating those dependencies. To address this question, we study
the gene network module first in isolation from the metabolic
network.

We assumed that the topology of the gene network is known; it is
shown in Figure 2. We only allowed the kinetic parameters of this
gene network to vary when we fitted this system to the optimal input-
output relationship from the metabolic network optimisation
(shown in Figure 3C–F). Although we keep the network topology
fixed, it should be noted that we do not restrict the values that the
kinetic parameters can take. Therefore, some of the interactions in
the network can disappear during the fitting procedure. In the fitting
procedure we searched for parameter values of the gene network that
minimise the squared distance between the desired optimal input-
output characteristic and the estimated gene network characteristic.
We considered all the four metabolic enzymes curves (Figure 3C–F)
simultaneously while fitting. It might well be that other parameter
sets lead to an equally good fit. However, here we are mainly inter-
ested if we can find such a parameter set in the first place, as this
indicates that the current gene network topology is in principle cap-
able of optimally steering galactose metabolism. The resulting
optimal gene network parameters are shown in Table S1. We also
checked the residuals of the fit and found unstructured patterns, that
were almost evenly spread among the four metabolic enzymes (see
Supplementary Information, Figure S1). In addition, numerical ana-
lysis indicates that the fit indeed found a (local) minimum of the
objective function (Supplementary Information, Figure S2).

www.nature.com/scientificreports
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The panels in Figure 3C–F show the results of the fitting proced-
ure. The fitted gene network approximates the desired input-output
relationship very well, except when the concentration of intracellular
galactose approaches zero. For the fitted gene network we find that
the metabolic enzymes gal7p and gal10p do not go to zero when the
galactose concentration drops. This could indicate missing regula-
tory interactions in the model, such as the shuttling between regu-
latory proteins between the nucleus and cytosol23. However, despite
these discrepancies the correspondence of the desired fitness func-
tion and the one of the fitted model (Figure 3A) is very satisfactory
(maximum deviation is less than 2%, Figure 3A; green and red line).

For growth conditions in batch cultures with galactose medium,
the selective pressure acts on the specific growth rate. Experimental
findings for this growth condition have shown a constant galactose
yield15. Following the definition of the yield (Y 5 m/J), an increase in
specific growth rate follows from an increase in specific galactose
uptake rate. An enhanced fitness thus indicates an increase in the
galactose steady state flux. This is the reason we have optimized the
galactose flux in silico. Can this fitted gene network regulate the

galactose network to this optimal flux state? We tested whether the
network property that natural selection acts upon, the galactose
uptake flux, follows the optimal pattern that was prescribed in
Figure 3A (green line). Therefore, we calculated the metabolic steady
state flux as function of the extracellular galactose concentration
using the metabolic network coupled to the optimal gene network.
We find a flux profile that nearly overlaps the profile as given by the
Monod-equation. Taken together, these results indicate that the
galactose regulatory network is indeed capable of optimally control-
ling the metabolic network over a wide range of external galactose
concentrations.

Regulation of the optimal regulatory gene network. The optimal
regulatory gene network brings about changes in enzyme levels to
maximise the steady state metabolic flux per unit protein. The
required changes in mRNA and protein levels take time to accomp-
lish due to the transcription and translation delays. Note that, even
though the steady state behaviour of the network was fitted,
the dilution of mRNA and protein by growth is incorporated

Figure 2 | Modular representation of the galactose network and it’s regulatory interactions in yeast. Shown are the inputs and outputs of the galactose

metabolism and galactose regulatory network, using a similar representation as in Figure 1A. Galactose metabolism (shown in blue) consists of four

metabolic enzymes (gal2p, gal1p, gal7pd, gal10pd, shown in red). External galactose (Galout, green), is imported by gal2p, resulting in intracellular

galactose (Galin, orange), which is further metabolised into glucose-1-phosphate (Glc-1P) by the enzymes gal7pd and gal10pd. Galin is needed for

activation of the galactose regulatory network by binding to gal3p. Within this network, a distinction can be made between the regulatory proteins, gal3p,

gal80p, gal4p (brown) and structural proteins (metabolic enzymes; red). Transcription of all genes is dependent on the concentration of gal4p dimer

(gal4pd) and the number of gal4dp binding sites that the upstream activating sequences (UAS’s) possess. The resulting mRNA’s are shown in yellow.

Degradation of every mRNA and protein is the net effect of intrinsic degradation and the growth rate dependent dilution.

www.nature.com/scientificreports
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(dependent on the extracellular galactose concentration; according
to the relationship shown in Figure 3A): this makes the time depen-
dency of the system response a variable in the fitting procedure.
Adequately-timed responses to environmental perturbations are of
crucial importance for cells. This is especially relevant for the
galactose network; since the galactose metabolic protein levels
can make up to 6–9% of total cellular protein29. This makes the
protein expression of this network a costly process that should be
properly regulated. Therefore, we tested to what extend the optimal
regulatory gene network is able to respond dynamically to external
perturbations.

Thus, we asked whether the gene network, optimised for optimal
regulation of the steady state flux, is indeed capable of tracking the
dynamic changes in external galactose concentrations and how
quickly the optimised model responds. With tracking of dynamic
changes we here mean the network’s ability to restore the optimal
galactose steady state flux upon an external galactose change. If the

network is able to restore the steady state flux to an optimal level, as
before the perturbation, the network displays perfect adaptation, a
well-known concept in systems biology30–32. We tested this by per-
turbing the network with different external galactose concentrations
at fixed time intervals of two hours (Figure 4). We found that for the
entire range of galactose concentrations considered, the system is
able to optimally track the environmental perturbation in this envir-
onmental time scale. It always achieves the desired optimal metabolic
state and those states are stable. The response times of about one
hour are realistic times for yeast.

We explored the dynamic properties of the optimal regulatory
gene network by considering shorter time intervals between the con-
secutive changes in the extracellular galactose concentration. When
the time between perturbations is decreased to 90 minutes the
optimal gene network can still perfectly track all perturbations
(Figure 5). Note that this value is close to the experimental reported
maximal response frequency of two strains of S. cerevisiae of

Figure 3 | Optimal gene network input-output relationship for the galactose network in yeast. (A) Relationship between external galactose

concentration (mM) and the galactose steady state flux (mM/min). The green line corresponds to the galactose flux as obtained by the Monod-equation.

The red line shows the metabolic steady state flux that is calculated using the entire galactose model with the fitted gene network parameters.

(B) Relationship between environmental dynamics and intracellular signalling metabolite. For a range of external galactose concentrations the

corresponding range of intracellular galactose concentrations (the signalling metabolite for the gene network) range between 0 and 0.87 mM.

(C-F) Input-output relationship for the galactose gene network. The blue lines correspond to the relationship between intracellular galactose (mM) and

the metabolic enzyme concentrations (mM), as obtained by optimising the –isolated– metabolic network. The red solid lines represents the gene network

behaviour with the gene kinetic parameters obtained by fitting the gene network to the input-output data. Panels correspond to: C gal2p; D gal1p;

E gal7pd; F gal10dp.

www.nature.com/scientificreports
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1.125 hr2. Upon a further reduction in the time between perturba-
tions to 60 and 30 minutes, the optimal tracking capability is lost at
the highest and second two highest concentrations, respectively.
Time-intervals between the perturbations shorter than about
15 minutes cannot be tracked by the gene network, regardless of
the external galactose concentration. This indicates a performance
limit of the optimal gene network for steady state tracking.

Degrees of freedom in the optimal gene network that do not
compromise optimal metabolic regulation. After having confirmed
that the gene network is capable of optimally steering the metabolic
network, we asked whether this optimal behaviour limits the network
from carrying out other functions that are potentially relevant for
fitness. From the fitting procedure we have obtained a set of
parameters for optimal metabolic gene regulation for maximisation
of the specific galactose uptake flux. We tested the effect of the fitted
parameters on the optimal metabolic regulation by way of a parameter
sensitivity analysis: each parameter was perturbed two-fold up or
down and the scaled effect on the optimal metabolic flux was
calculated.

We deliberately choose to change a 1D parameter sensitivity ana-
lysis (changing the parameters one by one) rather than a higher
dimensional analysis to investigate cross-dependencies between
parameters. We choose this approach because laboratory evolution
experiments indicate that generally only one (or two; but typically
only one) mutation gives rise to significant fitness changes within
hundreds of generations. With this few mutations, parameter cross-
dependencies are not of major importance when it is to be deter-
mined whether trade-offs between functional traits of the gene net-
work can occur during evolutionary adaptations.

In visualisation of the parameter sensitivity analysis results
(Figure 6), the effect of all gene network parameters are sorted
(and coloured) with respect to this fitness objective (see top two rows
in Figure 6). The parameter sensitivity analysis indicates that about
35% (i.e. 19 of the 54) of the parameters have a noteworthy (absolute
scaled slope bigger than 0.5) effect on the optimised metabolic flux,
whereas the others (35 of the 54) do not affect the flux to a great
extend. The parameters that are important correspond to processes
affecting the amount of galactose permease (gal2p) as well as the

regulatory processes carried out by the proteins gal3p and gal80p.
Remarkably, we did not find a great influence of the reactions that
involve gal4pd, the exception being the dissociation constant of the
gal80pd to the gal4pd-DNA complex. Thus, only a subset of the gene
network parameters is important for optimal metabolic regulation.

Next, we asked whether the remaining parameters can be involved
in gene network functions that are independent of this optimal meta-
bolic regulation. We performed a parameter sensitivity analysis for
three other network objectives relevant for the galactose network: (i)
the concentration of metabolic intermediate Gal-1P, which can be
toxic to cells; (ii) dynamic response of the metabolic flux to a galac-
tose change and (iii) molecular noise (stochasticity) in several gene
network intermediates. In order to make a comparison between the
parameter importance among these different scenarios, their values
(e.g. scaled parameter sensitivities) were normalised such that they
all lie within a range of 21 and 1. Consequently, the relative import-
ance for all parameters for a given scenario can be compared.
However, the absolute importance for parameters across scenarios
can differ, even though the colours are identical. Each of these scen-
arios is described below, and shown in Figure 6.

Figure 4 | Illustration of optimal tracking of the environment by the
optimal regulatory gene network. Shown is the response in the dynamic

metabolic flux profile for the model with the optimised gene network

parameters with a time interval of two hours between the perturbations.

The external galactose concentrations are perturbed as shown in the upper

part of the figure and the corresponding response of the metabolic flux is

plotted relative to the optimal flux for the indicated galactose

concentration.

Figure 5 | Optimal tracking by the regulatory gene network fails for short
switch times. Shown is the metabolic flux profile over time based on

metabolic enzyme expression of the gene regulatory network with the fitted

gene parameters. The system starts at a steady state with an external

galactose concentration of 0.05 mM. External galactose is perturbed in

similar steps and using similar concentrations as shown in upper part of

Figure 4 at time intervals as indicated in each plot. We plot the metabolic

steady state flux relative to the optimal flux at that galactose concentration.

The red dashed line corresponds to the optimal metabolic flux for the

galactose concentration corresponding to that perturbation. For sake of

comparison, we have normalised the time to each perturbation interval,

giving rise to the equal space between the perturbations in the different

plots.

www.nature.com/scientificreports
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Firstly, we tested which parameters are involved in setting the
steady state level of the metabolic intermediate Gal-1P. It has been
reported that high concentrations of Gal-1P are toxic in various
organisms, including yeast33. We found that increasing most of the
gene network parameters resulted in reduced Gal-1P concentrations.
Exceptions are the intrinsic degradation constants of the complex
gal80pgal3p* and gal80p, and dissociation constants for gal4pd
binding to metabolic gene GAL10 and regulatory gene GAL3 (cor-
responding parameter numbers are 13, 14, 41 and 44). The first two
parameters and the dissociation constant for GAL3 lead –via their
regulatory effects– indirectly to a lower Gal-1P concentration,
whereas the consequence of increasing the dissociation constant
for GAL10 acts more directly to the Gal-1P consuming enzymes.
For the opposite scenario (two-fold decrease in parameters; red
arrow row) a similar pattern emerges: the majority of the parameters
results in an increase of the Gal-1P concentration, with again a few
understandable exceptions, such as, for instance, parameters that are
involved in the Gal-1P producing step.

Secondly, we determined the important parameters for the res-
ponse time of the galactose network upon a shift in the envir-
onmental galactose concentration. Similar to the results in Figure 4
we exposed the network to a galactose upshift from 0.5 to 5 mM. The
effect of each parameter in po

g on this dynamic response was quan-
tified by calculating the response-time, e.g. the time required for the
system to reach the new optimal flux (see Methods). Metabolic fluxes
are the result of many complex interactions (e.g. enzyme and meta-
bolite levels, linkage to other competing fluxes, regulatory networks,
etc. see also34). This is also reflected by the sensitivity analysis for this
scenario: almost all parameters have a substantial effect. Perturbation
in the majority of parameters, either up or down, lead to an increase
in the response-time of the network. The exception is the degrada-
tion rate of gal10p (parameter #2). Note, that this parameter had also
the second-highest importance within the optimal metabolic flux.

Finally, the sensitivity of stochastic noise of gene network inter-
mediates to changes in parameters was determined. We have tested
the noise of three regulatory proteins, as quantified by their coef-
ficient of variation (standard deviation divided by the mean), and
compared this to noise of the metabolic protein gal7pd. Again, we
find other parameters that have most effect on stochastic noise, as

compared to the optimal flux. The parameters that are involved in
the dimerisation reactions and those that affect the concentration of
the intermediate of interest are mostly determining the level of noise.
Parameter 4 and 52 are important for controlling the noise levels.
Interestingly, they both have to do with the central regulator of the
network, gal80 (see also35). This analysis indicates that different sets
of parameters are important for different fitness objectives. This
could point at great evolvability of this gene network in a multi-
objective evolutionary setting.

Discussion
Microorganisms exposed to changing environments engage in con-
tinuous adaptations of their physiology. Metabolic adaptations typ-
ically involve alterations in enzyme expression levels achieved by
gene regulatory networks. Currently, a complete systems-level
understanding of a molecular network and its underlying regulatory
network is often not within reach and generally more information is
available for the metabolic network than the gene network. In this
study, we presented a method that identifies input-output specifica-
tions for a gene regulatory network that can be used either to select
candidate gene-regulatory networks or parameterise a network with
known topology. This method offers an integrated approach to com-
bine molecular interactions with available experimental data to come
to a coherent understanding of regulatory gene networks.

We used this method to study whether the galactose network of
yeast is capable of maximising the galactose uptake flux per unit
protein. We have shown that the regulatory network is indeed able
– by only adjusting it’s kinetic parameters – to regulate it’s metabolic
network to a desired state. However, the proposed method has much
wider applicability than considered in this work. For instance, the
input-output relationship does not need to be an optimal relation-
ship. In fact, any relationship between input and output can be used,
such as captured by experimental proteomic and metabolomics data.
In addition, the method is not restricted to metabolic-gene network
interactions but applies to any two networks where one carries out a
function and the other acts as the controller. Alternatively, the gene
network topology can be allowed to vary in the optimisation proced-
ure. In contrast to a fixed topology as used in this study, it would be of
particularly interest to incorporate unstructured networks into the

Figure 6 | Influence of parameters for optimal metabolic gene regulation by the gene network for other objective functions. Scaled parameter

sensitivities corresponding to the fold change in a system property upon 2-fold increase (green arrow) and decrease (red arrow) relative to the

unperturbed value. The parameter sensitivities per objective were scaled between -1 and 1 and coloured as indicated by the colourbar. The upper two

rows, indicated by the red-dashed box, corresponds to the parameter sensitivities of the optimal metabolic flux and the gene network parameters are

sorted according to their influence on this system function. The remaining rows report the effects of the gene network parameters on: the steady state

concentration of (potential toxic) metabolic intermediate Gal-1P27, the response time of the steady state flux after a shift in the external galactose

concentration from 0.5 to 5 mM, and the noise (quantified by the coefficient of variation) calculated from the linear noise approximation45 of some key

regulators within the gene network: gal3p*, gal4pd, gal7pd and the complex gal80pgal3p*. The numbers above each columns correspond to the gene

network parameters as listed in Supplementary Table 1.
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approach. The use of an input-output approach together with the
modular analysis of hierarchical networks offers interesting possibil-
ities for finding candidate optimal network structures36–38. In addi-
tion, in silico network evolution algorithms17,18 can be used to find
(minimal) network architectures and parameterisations leading to
optimal input-output relationships.

One of the surprising findings of this work is that the optimal
input-output relationship for the gene network turns out to be nearly
a linear relationship (Figure 3C–F). Yet, the regulatory gene network
appears much more complex than required for achieving this linear
input-output characteristic and may suggest redundancy and multi-
tasking (Figure 2). The parameter sensitivity analysis (Figure 6) indi-
cates that this complexity can serve a function in biological systems; it
may allow distributed parameter sensitivity over different fitness
contributing functions. Different functions of the gene network seem
to be tuned independently by alternative sets of parameters. With the
sensitivity analysis we aimed to unravel the different parameter (sets)
responsible for different network functionalities. From an evolution-
ary viewpoint, new functionalities can be brought about by the intro-
duction of mutations. Genome wide studies have shown that the
accumulation of mutations is a rare event. Simultaneous perturba-
tions of multiple parameters thus seems evolutionarily unlikely.
Therefore, we have restricted ourselves to single parameter perturba-
tions and not considered pairs or multiple combination of para-
meters.

The finding of the different parameter sets, each responsible for a
different gene network behaviour, could facilitate the evolvability of
molecular control systems as it suggests that trade-offs are unlikely.
The decoupling, together with the modular nature of this regulatory
network, are two fundamental properties that give rise to robust
regulatory systems39. Modular networks can maintain advanced net-
work functions due to the strong coupling (high level of complexity)
within each level, whilst these levels are connected via only a couple
of regulatory interactions. Consequently, and in line with our results,
the galactose network displays a key feature of biological systems:
large changes in fitness are possible as a result of only a few muta-
tions. Moreover, the fact that galactose metabolic enzymes can make
up to almost 10% of total cellular protein29, signifies why such tight
regulation of the galactose network is important for yeast cells20.

In light of the evolutionary history of yeast, the above ‘‘decoup-
ling’’ result also suggests that the regulatory network of the galactose
network has been exposed to multiple objective functions during
evolution. Depending on the environmental conditions (one can
think of, for instance, the availability of multiple carbon sources),
other objective functions than considered in this work, could be
important. This is in agreement with experimental observations from
multiple organisms, for which it was shown that metabolism oper-
ates close to the boundary of a solution space defined by multiple
(competing) objective functions40–42.

This work also indicates the slow response-time of gene networks
as a likely limitation of their functioning (Figure 5), which was also
found experimentally in yeast2. Typically, the response-time of a
molecular network scales with the degradation-rate of all the pro-
teins, leading to an interesting trade-off that is hard to overcome by
cells: fast response-times require short-lived proteins that can be
achieved either by targeted degradation mechanisms or high protein
turnover at steady state, which is energetically costly and likely fitness
decreasing if organisms compete for growth rate or biomass yield. It
is unclear at this stage how cells cope with this trade-off; whether they
have evolved for small changes in enzyme levels or whether they
prefer suboptimal states to prepare for future changes in environ-
ments.

Methods
Description of the galactose network in yeast. Metabolic network. The metabolic
network consists of four metabolic enzymes: galactose permease (gal2p),

galactokinase (EC 2.7.1.6, gal1p), galactose-1-phosphate uridylyltransferase (EC
2.7.7.12, gal7p) and UDP-galactose 4-epimerase (EC 5.1.3.2, gal10p). Gal2p is
involved in the transport of extracellular galactose (Galout) inside the cell, resulting in
intracellular galactose (Galin). Galin is phosphorylated by gal1p yielding galactose-1-
phosphate (Gal-1P). Gal-1P is converted into glucose-1-phosphate (Glc-1P) by the
action of the two dimeric proteins gal7pd and gal10pd using a UDP-moiety as
co-substrates.

Transcription and translation. The level of transcription induction is dependent on
galactose induction via the sensorial protein gal3p, but also depends on the number of
binding sites for gal4pd. The number of gal4pd binding sites assumed in the model are
(based on21): one for GAL3 and GAL80, two for GAL7, four for GAL1 and GAL10 and
five binding sites for GAL2. The degradation rate, for genes and proteins, is the net
result of two components: intrinsic degradation and dilution due to cell growth.

Control network. The control network is based on the following regulatory interac-
tions: (i) gal4p binds to DNA as a dimer (gal4pd); (ii) gal80p dimerises (gal80pd) and
forms a complex with gal4pd; (iii) gal3p binds to Galin and forms active gal3p
(gal3p*); (iv) gal3p* and gal80p form a complex. Overall, resulting in a decrease in the
gal80pd when galactose concentration increases.

Description of the mathematical model. The mathematical equations of the model
are based on Atauri et al.21. The unit for concentration is molecules per cell (m/c); to
convert from m/c to mM we used 2.38 mL of cell volume per gram of cell dry weight26

and a cell dry weight of 15 3 10212 gram per haploid cell43. The following minor
modifications to the model have been made:

. The reaction catalysed by galactokinase has been shown to be inhibited by it’s
product, Gal-1P44, this was implemented using the rate equation: vgk~

kcat gal1p

1z
Gal{1P

KIU

Galin

Kmgk 1z
Gal{1P

KIC

� �

1z
Gal{1P

KIU

zGalin

, with KIU519.1 (mM); KIC5160

(mM) as reported by22.
. To simulate the environmental perturbations, we have varied external galactose

from 0.01 to 100 mM. This wide range has some implications for other model
properties, such as the growth rate and degradation rates. To account for these, we
have made the degradation rate growth rate dependent. This was done using the
Monod equation, relating the growth rate, m (hr21) to the external galactose
concentration (mM), with a Monod-constant, Ks 5 3 mM (estimated value)
and mmax50.4 (hr21). The latter was based on25 who reported values of 0.47
and 0.4 (hr21) for the yeast strains S. cerevisiae BY4716 and RM11-1a growing
on galactose, respectively.

. The degradation rates of all genes and proteins in the model are equal to the
summation of two components: intrinsic degradation of the corresponding RNA
and proteins, and the other the dilution rate that accounts for cell growth. The
latter process we have made galactose dependent using the Monod-equation.

. In the original model, within the control network, two subclasses are defined:
control and structural variables. The genes (and corresponding proteins) GAL3
and GAL80 are classified as control genes (or control proteins). And GAL2, GAL1,
GAL7 and GAL10 genes (or proteins) are considered as structural genes (or
structural proteins). Originally, a single parameter value describing the rates of
degradation, initiation or the binding affinity of gal4pd to the promoters were
used for the entire subclass. Here, we have introduced separate parameters for
every single reaction in the regulatory gene network. Resulting in a total number
of 54 parameters in the gene network, that were used as variables in the fitting
procedure (see Supplementary Table 1).

. We have not taken cooperative binding of genes with multiple binding sites for
gal4pd into account.

Optimisation of the metabolic pathway. We start from a mathematical model of the
metabolic network in terms of ordinary differential equations:

d
dt

m t,pm,eð Þ~Nm
: vm m t,pm,eð Þ,pm,eð Þ ð1Þ

The vector m contains the concentrations of the metabolic intermediates and t
denotes time. The vector pm is the parameter vector that contains all kinetic para-
meters and a characterisation of the environment. The matrix Nm and the vector vm

denote the stoichiometric matrix and the rate vector of the metabolic network,
respectively. The rate vector contains the kinetic description of all the r metabolic
reactions in terms of (enzyme) rate equations deriving from biochemistry, e.g. a
Michaelis-Menten equation. The vector e contains the enzyme concentrations. We
consider the metabolic network at steady state: ṁ t,pð Þ~0. Next, we perform a
constrained optimisation of metabolic network performance:

max vi eð Þ~J eð Þ
subject to : e [ Rrz

Nm
: vm m,pm,eð Þ~0

eT : 1~R

ð2Þ

Or, equivalently,
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min eT : 1~R

subject to : e [ Rrz

Nm
: vm m,pm,eð Þ~0

vi eð Þ~J eð Þ

ð3Þ

Fitting of the gene network. The outcome of these optimisation problems is a vector of
enzyme concentrations e6 that achieves the optimum. R denotes the total protein
(resource) concentration. As we will perform these optimisations over a range of
different environmental conditions, we will write this optimum as a function of a
parameter, s [ p, i.e. e6(s) and s [ S. Substitution of e6(s) in the steady state condition
for the metabolic network allows for the determination of the metabolite concen-
trations in the optimal state, m6(s); i.e. by solving Nm ? vm(m6(s), p, e6(s)) 5 0 for
m6(s). From the vector of optimal metabolite concentrations we select the concen-
trations of the signalling metabolites that communicate with the gene network and
denote the resulting vector by mo

c sð Þ, i.e. mo
c sð Þ [ mo sð Þ. As a result of the metabolic

network optimisation we obtain for every value of s the tuple mo
c sð Þ, eo sð Þ

� �
. The

identification of the gene network is achieved by parameter fitting of a gene network
model. The gene network model is described in terms of ordinary differential equa-
tions,

d
dt

x t,pg ,mo
c sð Þ

� �
~Ng

:vg x t,p,mo
c sð Þ

� 	
,pg ,mo

c sð Þ
� �

ð4Þ

The vector x denotes the concentrations of all the intermediates in the gene network,
e.g. concentrations of transcription factors, mRNA and proteins. The metabolic
enzymes are either all the produced proteins by the gene network or only a subset of
them. Hence, e6 is component (sub vector) of x. The identification of the gene
network can be expressed as the following optimisation problem where kinetic
parameters of the gene network, pg, are being optimised,

min
ð

s[S

Xr

i~1
1{

eo
i sð Þ

ei pg

� �
0
@

1
A2

ds

subject to : Ng
: vg x,pg ,mo

c sð Þ
� �

~0

ð5Þ

Hence, we here assume that the structure of the gene network is known and we only
estimate kinetic parameters of the gene network. The method can in principle also be
extended to identify gene network structure that achieves optimal metabolic gene
expression. Note that the integration over s [ S will often be carried out as a sum over
instances in S. We will denote the parameter vector that denotes the best fit by po

g .
The entire dynamic system where the metabolic and gene network are coupled is

given by,

d
dt

m tð Þ
x tð Þ

� �
~

Nm 0

0 Ng

� �
:

vm m tð Þ,pm sð Þ,eð Þ

vg x tð Þ,po
g ,mc tð Þ

� � !
ð6Þ

Here we made the occurrence of the environmental parameter s in the parameter pm

explicit.

Sensitivity analysis. In the sensitivity analysis all parameters of vector po
g are varied

two-fold up and down. The scaled slope of the effect of perturbing gene parameter p,
on gene network function, f, was calculated according to

d ln f
d ln p

~
fpert{fref

fref



ppert{pref

pref
ð7Þ

where ‘ref ’ corresponds to the unperturbed scenario, and ‘pert’ corresponds to the
perturbation. To allow for comparison of parameter importance for different gene
network functions we re-scaled all the slopes as calculated with equation 7, such that
their minimum and maximum values lie between 21 and 1 and plotted them
accordingly to a colour scheme as shown in Figure 6. For all gene network functions
an external galactose concentration of 5 mM was used, except for the flux response
time, here the external galactose concentration was increased from 0.5 to 5 mM.

Gene network functions. The response time of the metabolic steady state flux upon a
perturbation in external galactose was quantified by calculating the time-constant t
(unit: time). To calculate t, the response function of the relative steady state flux, was
fitted to the function: 1 2 ae2t/t, where, t stands for time, a is a dimensionless
parameter (equal to J(t 5 ‘)/J(t 5 0); not further used in our analysis) and t
represents the response-time constant for which we calculate the parameter sensi-
tivities.

The coefficient of variation (CV) is taken as a measure for noise in molecular
species. The CVs were calculated using the linear-noise approximation (LNA). LNA
assumes a Gaussian distribution for the probability density function of the molecular
numbers at steady state (ÆnæS). In steady state LNA, the covariance matrix Ædndnæ can
be derived from the following fluctuation dissipation theorem45,

N
Lv

L nh i dndnh iz dndnh i N
Lv

L nh i

� �T

zNDvNT~0 ð8Þ

It contains the Jacobian matrix N Lv
L nh i, the rate vector v and the stoichiometric

matrix N. A diagonal matrix is denoted by Dv, with the elements of vector v as

diagonal elements. The CV of species X is defined as CVX~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V AR Xð Þ

�
Xh i2

q
, where

V AR(X) is the variance of species X as calculated using equation 8 and ÆXæ is the mean
concentration of X which is calculated by solving the system of ordinary differential
equations.
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