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Biological realism of dendritic morphologies is important for simulating electrical

stimulation of brain tissue. By adding point process modeling and conditional sampling

to existing generation strategies, we provide a novel means of reproducing the nuanced

branching behavior that occurs in different layers of granule cell dendritic morphologies.

In this study, a heterogeneous Poisson point process was used to simulate branching

events. Conditional distributions were then used to select branch angles depending on

the orthogonal distance to the somatic plane. The proposed method was compared to

an existing generation tool and a control version of the proposed method that used a

homogeneous Poisson point process. Morphologies were generated with each method

and then compared to a set of digitally reconstructed neurons. The introduction of a

conditionally dependent branching rate resulted in the generation of morphologies that

more accurately reproduced the emergent properties of dendritic material per layer, Sholl

intersections, and proximal passive current flow. Conditional dependence was critically

important for the generation of realistic granule cell dendritic morphologies.

Keywords: dendrite, morphology, computational modeling, granule cell, point process

INTRODUCTION

The electrophysiological properties and spiking behavior of neurons are significantly affected
by their dendritic morphologies (Mainen and Sejnowski, 1996; van Elburg and van Ooyen,
2010; Ferrante et al., 2013). Although the functional consequence of dendritic morphology
at the individual cell level has been well-studied (Cuntz et al., 2013), the functional
consequence of morphologies in a large network is not well-understood. Such large network
studies require the use of many morphologies to account for the naturally occurring
variations that exist among the population of each neuron type (van Pelt and Uylings,
2005). Numerous neural reconstructions exist that can be used for this purpose; digital
tracings of prepared tissue from various neuroanatomical studies have been collected and
made publicly available on online databases (Ascoli et al., 2007). However, the amount of
reconstructions currently available is insufficient to specify the full numbers of neurons in
a neural region and the particular morphologies that are included in these studies may not
fully represent the systematic changes in morphology that can exist along an anatomical
gradient within a neural region. To address these limitations, the field has made efforts to
create algorithms that generate additional dendritic morphologies either by simulating the
mechanisms through which dendrites grow or by measuring the distributions of key generative
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parameters from existing neural reconstructions and iteratively
sampling from the distributions to create new morphologies
(Torben-Nielsen and Cuntz, 2014).

Widely used generation tools such as L-Neuron (Ascoli
and Krichmar, 2000) are capable of implementing various
sampling algorithms, such as the Burke (Burke et al., 1992) or
Hillman (Hillman, 1979) algorithms, to createmorphologies with
morphometrics attuned to the desired neuronal type. Important
generative parameters—compartment diameter taper, daughter
ratios, and others—are first measured from real morphologies
using analytical tools (Scorcioni et al., 2008; Peng et al.,
2015). From these measurements, histograms are generated
and then fitted to probability distributions that describe
statistics such as the mean and variance. Afterwards, dendritic
morphologies are generated according to a flowchart decision
tree. At necessary decision points, values are independently
drawn from extracted distributions to construct the subsequent
section of the dendritic tree. This process is repeated until
a termination criterion is satisfied for all branches, usually
based on whether the diameter of the branch falls below a
certain threshold.

Though the existing algorithms have been successful in
recreating many of the morphological features of specific neuron
types, they can also generate unrealistic morphologies that
need to be removed through a screening process (Schneider
et al., 2012). This suggests that the rules underlying stochastic
generation algorithms can result in combinations of parameter
values that are not observed in the experimental datasets. A
potential contributing factor is the fact that these stochastic
sampling algorithms make a critical assumption that
parameters are independent and memoryless, or in other
words, a parameter does not depend on other factors or
parameters and does not depend on previous realizations of
the parameter.

There have been efforts to address this dilemma and add
some context sensitivity to generation algorithms (Lindsay
et al., 2007; Koene et al., 2009; Cuntz et al., 2010; Schneider
et al., 2014; Torben-Nielsen and De Schutter, 2014; Beining
et al., 2017; Kanari et al., 2018). Some of these, such as
NETMORPH (Koene et al., 2009), incorporate dependence
between variables by using trophic factors to influence branching
and branch angles. The trophic factors cause branches to
grow away from the soma and avoid other nearby branches
and branches of neighboring neurons (Nowakowski et al.,
1992; Samsonovich and Ascoli, 2003). However, this approach
is computationally intensive and requires all neurons to be
generated simultaneously within the desired three-dimensional
space. It also requires heavy parameter optimization for
the mechanisms of branching and elongation based on the
environmental factors (Segev and London, 2000; Scott and
Luo, 2001; van Pelt and Schierwagen, 2004; Jan and Jan,
2010).

Non-parametric approaches offer another promising
solution to capture the dynamics of dendritic branching
behavior while remaining agnostic to the exact mechanisms
by which it occurs. Previous work along these lines
by Torben-Nielson and colleagues used a kernel-based

algorithm to generate dendritic morphologies (Torben-
Nielsen et al., 2008). However, the authors further describe
the need for a “truly conditional sampling procedure,”
which would explicitly link the selection of parameter
values to other parameter values and to previously
selected values.

In this paper, we introduce a method for determining
dendritic branching using a heterogeneous point process. A
point process filter is used to determine the relations between
branching rate, spatial location, and the history of branching,
and the point process is incorporated into a modified Hillman
framework to generate a hybrid generation approach that can
account for dependencies between variables. We have named
this method SHAPED: Spatially Heterogeneous Assignment
of Parameters’ Estimated Distributions and have applied the
algorithm to generate realistic granule cell morphologies for
the rat dentate gyrus. We demonstrate that by incorporating
the heterogeneous nature of branching and branch orientation
in the models, the resulting morphologies more accurately
reproduce the emergent and functional properties observed
in real morphologies compared to morphologies generated by
algorithms that assume independence.

MATERIALS AND METHODS

Dendritic Branching as a Heterogeneous
Point Process
In granule cells, higher degrees of branching are observed in
the most proximal third of the molecular layer, which has been
attributed to a combination of the timing of the arrival of
association and commissural afferents to the dentate gyrus and
the maturity of the granule cell dendrites (Gottlieb and Cowan,
1973). Similar theories have been used to explain the higher
percentage of total dendritic material residing in the middle and
outer molecular third of granule cells (Rihn and Claiborne, 1990).

Ideally, the generation approach should capture the
differences between the inner, middle, and outer thirds of
the molecular layer, which are caused by the different quality and
timing of inputs. The simplest method would be to separately
measure the generative parameters for the dendrites in each
layer. However, categorizing dendrites into layers a priori
may not capture the appropriate changes in morphometric
parameters and would be unable to reveal any variation that
occurs within a layer. Discretizing the morphology using a
bin size would introduce an additional variable that must be
optimized with its own tradeoffs. For example, using smaller bins
would provide more resolution but reduce the statistical power
in each bin.

To circumvent this issue, we instead modeled the branching
rate variation as a heterogeneous Poisson process in which the
Poisson process describes dendritic bifurcation events (Figure 1).
To perform the estimation, we used a point process filter, a
discrete analog of the Kalman filter that has been successfully
implemented in neural decoding schemes to provide estimates
of neural firing rates (Shanechi et al., 2012), among other
applications. Here, we have applied the point process filter
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FIGURE 1 | The non-parametric algorithm models dendritic branching as a point process with discretized pathlength. The optimal estimate of the branching rate is

obtained and used to simulate point processes used in the generation of new morphologies.

to the dendritic branching problem, in which observations of
bifurcation events can be used to estimate the hidden state that
dictates the frequency of those bifurcations, i.e., a branching rate.

To formulate the morphology as a spatial point process, we
identified every possible terminal path in a given morphology,
from the soma to a dendritic tip. Each of these terminal paths
were divided into discrete intervals of size 1, where 1 was
selected to be small enough such that there was never more than
one bifurcation in the same interval. A point process was then
constructed based on the occurrence of a bifurcation event within
each interval, which was denoted with a 1 or 0 correspondingly.
To assist in defining the extent of the terminal path, the dendritic
tips were also treated as a bifurcation event and each point
process, therefore, was assigned a 1 as its last value. Once all point
processes had been prepared, we combined the point process
filter and smoother with an expectation-maximization algorithm
in order to simultaneously solve for the optimal branching rate
estimate (Figure 2) and the necessary model parameters, as
described by Smith and Brown (2003).

The state-space model used is an analog for a simplistic model
of neuronal firing rate. The state model for the hidden variable xk,
which is defined as the log of the branching rate,λk, is a first order
autoregressive Gaussian model with the state noise variance σ2.
The observation model is a discretized point process nk that
describes the number of bifurcation events that have occurred in
the interval (k1, k1+1), in which R is the total number of point
processes in the data set and N is the total number of bifurcations
in the point process.

xk = ρxk−1+εk

εk = N
(

0, σ 2
ε

)

λk = exp (µ+βxk)

The point process filter algorithm presented in Mendel (1995)
and Brown et al. (1998) was used to obtain an estimate of the
posterior density of the branching rate. This was done via a one-
step prediction and recursive non-linear filtering to obtain the
best estimate of xk|k.

xk|k−1 = ρxk−1|k−1

σ 2
k|k−1 = ρ2σ 2

k−1|k−1 + σ 2
ε

xk|k = xk|k−1+σ 2
k|k−1

R
∑

r=1

β
[

dNr (k1)−exp
(
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)

1
]

σ 2
k|k = −

[

−

(

σ 2
k|k−1

)−1
−

R
∑

r=1

β2exp
(

µ+βxk|k
)

1

]−1

In this application, the estimation can benefit from the inclusion
of the complete data, since the growth of dendrites is not
purely dependent on prior events but can change during later
remodeling. A fixed interval smoother takes advantage of this
extra information, and was used to obtain the smoothed state
prediction, xk|K.

xk|K = xk|k+Ak

(

xk+1|K−xk+1|k

)

Ak = ρσ 2
k|k

(

σ 2
k+1|k

)−1

σ 2
k|K = σ 2

k|k+A2
k

(

σ 2
k+1|K−σ 2

k+1|k

)

Estimation of the branching rate and optimization of the
parameters ρ, µ, β, and σ2 was performed recursively using the
expectation-maximization algorithm (Smith and Brown, 2003).

Dendritic Termination at the Hippocampal
Boundaries
Another problem of traditional algorithms for dendritic
morphology generation is that they commonly determine
where a branch terminates by evaluating whether the branch
diameter is smaller than a randomly drawn diameter threshold
(Hillman, 1979). This practice suffers in cases with either
extremely high or low variance in branch diameter and tapering
measurements. Issues with low variance in some older studies
can be compounded by the limited optical resolution available
for some morphology data sets, which can lead to little or no
taper being reported for dendrites because the differences were
too small to be captured. In these circumstances, diameter is a
poor indicator for branch termination.

As an alternative criterion for termination, we propose
establishing a terminal boundary that is defined by the anatomy
of the neural region, in our case the hippocampal fissure
(for suprapyramidal granule cells) or the pial surface (for
infrapyramidal granule cells). In the hippocampus, neuronal
dendrites have been observed to proceed from the cell body
layer to these boundaries, where the vast majority of all dendritic
processes are observed to terminate. This means that the
thickness of the hippocampus at a cell’s location affects how long
the dendritic arbor extends. This pattern of growth has been
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FIGURE 2 | Each terminal path of the real morphologies is converted into a point process along a normalized axis of pathlength from the soma. The point process

smoother provides the branching rate estimate shown on the right. The estimated branching rates are shown for two datasets: Rihn and Claiborne (1990) (black) and

Cannon et al. (1998) (gray), with both demonstrating a higher branching rate at distances closer to the soma.

well-observed in many hippocampal subregions, including both
CA3 (Gottlieb and Cowan, 1973) and dentate gyrus neurons
(Gallitano et al., 2016), and accounts for differences in total
dendritic length in the suprapyramidal blade and infrapyramidal
blade due to the natural differences in hippocampal thickness in
those regions.

To implement this new termination criterion, we first
measured the distribution of all terminal pathlengths in
the 43 morphological reconstructions of granule cells (Rihn
and Claiborne, 1990). At the beginning of the generation
step, a random value was selected from this distribution to
determine the approximate location of the outer molecular
layer with respect to the somatic location. This represents the
expected terminal pathlength of the generated morphology.
In a full simulation environment, the random selection can
then be informed by the intended location of the generated
neuron within the entire dentate structure in order to
create morphologies in which size is dependent on realistic
environmental constraints.

After the expected size of the arbor was determined,
we randomly selected the number of stems, which are the
dendritic branches immediately protruding from the soma
(Figure 3A), that the morphology would have based on the
measured distribution. This is notable because the number of
stems influences their starting orientation. For example, if the
morphology had only one stem, the stem would be oriented
directly upwards along the y-axis whereas multiple stems would
be oriented such that they were spaced evenly around the lateral
surface of a cone with its starting point at the soma and a
randomly selected half angle based on the data. Gaussian noise
was then added to the starting orientation of each branch so that
the stems were not perfectly equidistant. Each stem was finally
assigned a point process that would determine the locations of
their bifurcations. Heterogeneous point processes with variable
branching rates were achieved using spike thinning (Lewis and
Shedler, 1979), by which a homogeneous point process with bin
size delta was generated using the maximal branching rate, as
described in Brown et al. (2002) and the normalized branching
rate function was used to generate the probability that the
bifurcation was kept at each bin given its distance from the soma.

From the initial stems, we then performed a recursive growth
step. Every daughter branch from a bifurcation was assigned a
new point process and was then extended by a single bin that
corresponded to the next bin of its point process, given its current
distance from the soma. The diameter was determined by having
a set taper for the entirety of the branch. The orientation of the
compartment was influenced primarily by the direction of the
previous compartment, with an added random component of
Gaussian noise.

Branch Angles Based on Conditional
Histograms
To establish a reference frame for branch angles, each
morphology was registered to a standard coordinate plane. First,
the central axis of the morphology was determined by taking
the average vector of each terminal vector in a morphology. The
morphology was rotated until the central axis of the morphology
was aligned with the y-axis in the positive direction. At this point,
the terminal field of the morphology was defined as the ellipse
that fully enclosed the projection of all terminations onto the xz-
plane. Themajor andminor axes of the morphology were defined
as the major and minor axes of this ellipse. The morphology was
rotated around the y-axis such that the major axis aligned with
the x-axis, which completed registration.

The orientation of a branch was measured using two
quantities: the bifurcation amplitude and the bifurcation
azimuth. We first defined the primary and secondary daughter
branches for each bifurcation. The primary daughter branch was
the branch that grew in the direction most similar to the parent
branch, which was determined by comparing the angles formed
between each daughter branch and the parent vector. Deviation
of the primary daughter from the parent branch vector was
quantified as orientation noise. The bifurcation amplitude was
then defined as the angle between the vectors of the primary
daughter and the secondary daughter. Azimuth was defined as
the clockwise angle that the secondary daughter branch needed
to be rotated around the parent branch vector so that the branch
would be pointed toward the central y-axis (Figure 3B). Thus,
azimuth represents a branch’s orientation with respect to the
center of the morphology. For all branch angle problems, the
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FIGURE 3 | (A) Terminology for dendritic branching: (1) Soma (2) Stem (3) Bifurcation (4) Branch (5) Termination. The dotted lines represent Sholl radii. (B) Coordinate

system and branch angles defined. The dendrites grow toward the positive y direction. (1) Bifurcation Amplitude (2) Bifurcation Azimuth.

FIGURE 4 | Example dendritic morphologies from various generation approaches. (1) Reconstructions of real rat dentate gyrus granule cell dendrites. (2) SHAPED

morphologies. (3) L-Neuron morphologies. (4) Morphologies generated using a control version of SHAPED that applies a homogeneous branching rate at all points in

the arbor.

FIGURE 5 | 2D heatmaps displaying the conditional relationship between branch pathlength and distance from the soma. SHAPED is able to better capture the

non-linear relationship observed in the real granule cell population, which is not as evident in the L-Neuron or homogeneous rate populations.

branch vectors were defined by the start and end coordinates of
the branch.

The bifurcation amplitude and azimuth angles were
determined using 2D heatmaps (similar to Figure 5) that
described the conditional relationships between the branch
angles and parameters of interest, namely the location of the
bifurcation xz-plane. Whenever a bifurcation event occurred, the
x-coordinate and z-coordinate of the bifurcating compartment

would be used to access the appropriate conditional distribution
measured from the real data.

Measurement of Morphometrics and
Generation Procedure
The 3D reconstructions of 43 rat dentate gyrus granule cells

(Rihn and Claiborne, 1990) were used as the standard for
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granule cell dendritic morphology. This data is publicly available
on Neuromorpho.org (Ascoli et al., 2007). This dataset was
selected as it contained the largest number of exemplary
reconstructions of granule cells and is a highly cited authority
for both qualitative and quantitative descriptions of rat granule
cell dendritic morphology. Data from a single study were
used because the various datasets had moderate differences
in the morphometric distributions due to the differences in
experimental techniques, including animal age, target selection
of staining method, normalization protocol for tissue shrinkage,
and handling of cut dendrites. A second dataset (Cannon et al.,
1998) of 37 rat dentate gyrus granule cells was used to validate
the branching rate estimate characteristics observed in the
first dataset.

L-Neuron was used to generate a set of 50 granule
cell dendritic morphologies for comparison. To obtain the
morphometric parameters required for L-Neuron, L-Measure
(Scorcioni et al., 2008) was used to extract the mean, standard
deviation, and lower and upper bounds of the distributions
(Supplementary Table 1). These were used as the inputs for
the L-Neuron software, which generates dendritic morphologies
according to the Hillman algorithm. The Hillmanmodel involves
creating a branch with an initial diameter, selecting a pathlength
and taper for that branch from the appropriate distributions
determined by L-Measure, and then comparing the diameter
at the end of the branch to a threshold value to determine
whether or not the branch should bifurcate or not. If so,
two daughter branches are created with their initial diameter
some ratio of the parent branch’s end diameter, i.e., the
daughter ratio, at branch angles randomly selected from the
population distribution.

SHAPED was then used to obtain the branch rate estimate
from the real data and then generate 50 granule cell dendritic
morphologies using a modified Hillman algorithm. Our
software was used to obtain the morphometrics relevant
to SHAPED, such as the terminal point processes and
conditional branch angle distributions. The rest of the algorithm
follows a Hillman-like algorithm in which pathlength is
selected via the randomly generated heterogenous point
processes and the branch angles are assigned according to
the marginal distribution corresponding to the bins of the
x and z coordinates. Tapering is implemented in the same
manner as in the Hillman method, but is not used as the
termination criterion.

A final set of 50 granule cell dendritic morphologies were
generated using a control version of SHAPED that used the same
branching rate at all distances from the soma. This was referred to
as the homogeneous rate method. Generated morphologies from
all methods were screened to ensure the number of bifurcations
fell within a biologically realistic range based on the real granule
cell reconstructions. Additionally, the major and minor axes of
the ellipse formed by the dendritic tips from “birds-eye-view”
onto the xz-plane were measured. If the morphologies did not
conform to the biologically observed range of major and minor
axes, the morphologies were rescaled in the x and z directions
to better distribute the dendrites at the appropriate depths in
relative to the location of the soma.

TABLE 1 | The Root Mean Squared Error (RMSE) between different generation

algorithms and the real granule cell data set for various morphometric

distributions.

Distribution SHAPED L-Neuron Homogeneous

rate

RMSE for generative distributions

Branch pathlength 0.065 0.056 0.169

Azimuth 0.062 0.064 0.025

Bifurcation amplitude 0.047 0.099 0.052

RMSE for emergent distributions

Number of bifurcations 0.079 0.599 0.086

Total dendritic length 0.288 0.2 0.708

Branch order 0.171 0.395 0.262

Depth 0.128 0.556 0.165

Width 0.188 0.144 0.181

RMSE averages

Total average 0.145 0.256 0.208

Generative average 0.114 0.103 0.117

Emergent average 0.171 0.379 0.280

While the average RMSE for generative parameters is comparable for all generation

techniques, SHAPED has the least error in the distributions of emergent properties,

particularly the number of bifurcations, and branch order.

RESULTS

Fifty granule cell morphologies were generated using
three different methods: SHAPED, L-Neuron running an
implementation of the Hillman algorithm, and a control version
of SHAPED using a homogeneous branching rate. A visual
comparison of representative morphologies from each dataset is
seen in Figure 4.

Reproduction of Morphometric
Distributions
Table 1 presents the performance of the different generation
methods presented as the root mean squared error (RMSE)
between the generated morphometric distributions and
the distributions of the real granule cells. The SHAPED
morphologies are statistically more similar to the real granule
cell morphologies, with a lower RMSE for the 15 metrics queried.
In particular, the average RMSE for emergent properties was
15% lower for SHAPED than L-Neuron morphologies and 5%
lower than the homogeneous rate morphologies. Basic parameter
distributions were more comparable to the other methods, with
L-Neuron outperforming SHAPED slightly in being able to
capture the exact distributions.

The point process filter and smoother and EM algorithm
yielded the branch rate estimate in Figure 2. This was performed
on two datasets (Rihn and Claiborne, 1990; Cannon et al.,
1998) to confirm the branching dynamics were consistent for
rat granule cells. As expected, there is a higher branching
rate closer to the soma, which decays rapidly leading to a
lower branch rate near the dendritic tips. The dependence
of branch pathlength on the distance from the soma for the
different generation techniques was visualized in detail using a
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smoothed heatmap (Figure 5). Each column in the histogram
was normalized to generate the conditional probability mass
function for each distance. The plots demonstrate that SHAPED
is able to capture the heterogeneous branch rate that is present in
the reconstructions while L-Neuron does not.

The distributions for branch pathlength, bifurcation
amplitude, and bifurcation azimuth are compared in
Figure 6. All algorithms have similar results for the generative
distributions. For the Hillman approach, this is expected because
it samples directly from explicitly measured distributions, the
generative parameters must result in similar distributions. On the
other hand, SHAPED draws from a heterogeneous distribution,
yet the homogeneous evaluation of its generative parameters
result in a distribution similar to the reconstructions.

Screening plays an important role in ensuring that the
number of bifurcations observed in generated morphologies are
similar to the reconstructions in terms of mean and variance.
One advantage of SHAPED is that the starting distribution
for the number of bifurcations was appropriate such that the
post-screening distribution matches closely with that of the
real data, with 53% of generated neurons passing screening
criteria. In the L-Neuron morphologies, the starting distribution
was so far skewed that morphologies with an appropriate
number of bifurcations were only generated 8% of the time.
The larger proportion of SHAPED morphologies that passed
the screening indicates that this method better constrains the
morphologies to match the emergent properties than L-Neuron
or the homogeneous rate morphologies.

A Sholl analysis (Sholl, 1953), which counts the intersections
between the morphology and concentric spheres of increasing
radii, was performed (Figure 6C). Both the reconstructed and
SHAPED morphologies had a maximum of 14 intersections,
with a fairly comparable increase in intersections with increasing
distance from the soma. Most significantly, the SHAPED
morphologies, on average, have slightly lower degree of early
branching and a much steeper termination curve toward the
boundary layer of the morphologies, due to the strict termination
criterion. The L-Neuron morphologies show a much lower
maximum number of intersections and a shallower termination
curve, which corresponds to decreased branching rates in the
middle sections of the morphologies and a large variability in
dendrite termination lengths.

A direct comparison of the distributions for total dendritic
length (TDL) suggests that L-Neuron generates dendritic
morphologies with more realistic total dendritic lengths. The
morphologies generated with SHAPED resulted in greater
variance of TDL, with some morphologies having a TDL below
or above the biologically observed range. However, because
SHAPED captures the heterogenous branching rate, it is likely
that the distribution of dendritic length was affected. Both
the probability and cumulative distribution functions for total
dendritic length as a function of distance from the soma were
calculated (Figure 6C). The SHAPED morphologies best match
the distribution of dendritic length out of all the methods.
Functionally, this results in amore accurate distribution and total
number of spines along generated virtual neuronmodels. Overall,
both the generated and real data sets show a logistic increase in

total dendritic length, with a steeper increase than the L-Neuron
morphologies. This means that there is less branching in the L-
Neuron morphologies resulting in lower average total dendritic
lengths at each y-coordinate. Additionally, L-Neuron’s poor
termination criteria and resulting uneven branches/termination
fields translate to a slowed approach to the asymptote value when
compared to Claiborne and generated morphology sets.

Reproduction of Passive Electrical
Properties
The passive electrical properties of the morphologies were
assessed by calculating the equivalent resistance between a
location on the morphology and the soma. The equivalent
resistance between the same point and the morphology distal to
that point was also computed. The proportion of the resistance
that led to the soma indicated the fraction of the current that
would flow toward the soma. The equivalent resistance was
calculated by modeling each branch as a resistor and combining
them in series and parallel. The resistance for each branch was
assumed to be identical, so the calculated proportion compares
the complexity of the morphology proximal to the chosen
location to the complexity of the morphology distal to the chosen
location. For each morphology, 100 points randomly distributed
across the dendritic arbor were evaluated. The distributions
of these measurements were fitted to a quadratic regression.
SHAPED performed best out of the three generation techniques
demonstrating that it was better able to capture the passive
electrical properties of the real dendritic arbors, with an r2

= 0.359, on par with the regression line fitted directly to the
Claiborne set (Figure 7).

DISCUSSION

Though significant efforts have been made to collect and make
available morphological reconstructions of neurons via databases
such as NeuroMorpho.org, there are still too few reconstructions
that can be used to represent the full variability that exists in
the morphology for a neuron type whether it is the result of
differences in the anatomical environment and/or the natural
variability within a single anatomical environment. Morphology
generation is a method to bootstrap the existing data and create
additional morphologies. The current work introduces several
improvements to current stochastic methods for generating
dendritic morphologies. The most significant contribution was
to model branching as a heterogeneous point process and to
use the point process framework to both measure the changes
in branching rate as a function of distance from the soma and
to generate new branches using the estimated heterogeneous
rate. The results demonstrate that a taper-based bifurcation
algorithm and a homogeneous point process are insufficient
to properly recreate the distribution of dendritic material
in a morphology. Without a heterogeneous representation of
branch rate, the amount of dendritic material per layer is
underestimated. This has several functional implications. To
define connectivity in neuronal networkmodels, the convergence
of one presynaptic population upon a postsynaptic neuron
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FIGURE 6 | Comparison of distributions between the real (blue), SHAPED (green), L-Neuron (red), and homogeneous rate (pink) morphologies for (A) generative

parameters explicitly used in the Hillman generation algorithm, (B) emergent properties observed in the finished morphologies, and (C) the evolution of emergent

properties with increasing distance from the soma. Top: the cumulative distribution function of total dendritic length. Bottom: Sholl analysis.

FIGURE 7 | (A) For 100 points on each morphology, the fraction of current that would passively flow toward the soma is determined by simplifying all branches above

and below the compartment into two impedances. (B) The resulting proximal current fractions are plotted against the normalized distance from the soma and then fit

with a quadratic regression line. (C) The regression lines for different morphology populations are finally compared, calculating r2 to determine how much of the real

dataset each fit is able to explain. (r2 values: Real = 0.359; SHAPED = 0.359; L-Neuron = 0.350; Homogeneous Rate = 0.335).

FIGURE 8 | (A) The average number of spines each µm away from the soma. This was calculated by multiplying the probability density function of the total dendritic

length per µm by spine density values for the inner, middle, and outer thirds of the dentate gyrus molecular layer obtained from literature. The normalized RMSE for

the different techniques were as follows: SHAPED = 0.825, L-Neuron = 1.513, Homogeneous = 1.726. (B) The total relative current that would flow toward the soma

under uniformly distributed synaptic inputs. The normalized RMSE for the different techniques were as follows: SHAPED = 0.884, L-Neuron = 2.613, Homogeneous

= 1.582.
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is estimated by understanding the dendritic layer to which
presynaptic axons are located, the total dendritic length within
the layer, and the spine density in the layer (Trommald and
Hulleberg, 1997; Yu et al., 2019a). For a given generated
morphology and a known spine density, the total dendritic length
within the layer must be appropriate else the number of spines
estimated for the layer will be incorrect. To demonstrate this,
the number of spines per µm was determined by multiplying
the dendritic length added per µm by the spine density values
from literature (Crain et al., 1973; Desmond and Levy, 1985;
Hama et al., 1989) for each third of the molecular layer. This
was then multiplied by the proximal current fraction to yield
the total relative current that would be experienced at the
soma assuming uniformly distributed inputs of unit strength
around the dendritic arbor (Figure 8). Our results indicate that
SHAPED well-preserves the distribution of dendritic length
across layers and therefore better preserves the number of
connections present in each layer. Additionally, we have shown
that the passive electrical properties are impacted which affect
the distribution and propagation of currents throughout the
morphology. Thus, both local dendritic computations and
the input-output transformations performed by the neuron
are better preserved by the morphologies generated by our
proposed method. Notably, the morphologies generated using
a homogeneous branching rate also improved the reproduction
of biologically realistic distributions, but these changes were
mostly due to the changes in termination criterion and screening
process and therefore were most impactful in reproducing
the behavior at distances far away from the soma. However,
using the mean branching rate throughout the entirety of the
dendritic arbor resulted in an underestimation of branching rate
close to the soma, which severely impacted the homogeneous
rate generation from producing morphologies with biologically
accurate emergent properties. Though unexplored in this work,
this may have further implications for predicting responses
to extracellular electrical stimulation and local field potentials.
These results indicate that heterogeneities in morphological
parameters need to be considered when generating morphologies
and, in particular, the heterogeneities in branch rate must not
be ignored.

Although SHAPED represents a major improvement on
previous algorithms, it still does not perfectly recreate the
distributions measured from the reconstructions. A large portion
of the differences in the distributions of generative parameters
due to the SHAPED algorithm can be attributed to the
overestimation of small branch pathlengths. This is likely due
to the recounting of identical branch pathlengths that occur
early in the terminal paths. An appropriate modification of the
state observation variance, in which the variance is increased
closer to the soma due to fewer unique observations, would
be a possible improvement. A complete reworking of the
state-space model could provide a better fit for the data and
would involve the incorporation of history components (Barbieri
et al., 2001; Frank et al., 2001) that would inform bifurcation
probability based on previous bifurcations in the same terminal
path or bifurcations occurring on neighboring terminal paths.
The availability of additional morphologies would also aid the

performance of the algorithm. The 43 Claiborne granule cells
were a relatively low number of morphologies, but we decided to
use morphologies from a single study to avoid any inconsistency
in tissue preparation or tracing methodology.

The point process filter is able to measure dependencies
between variables in a highly generalizable manner. Provided
a sufficiently large training set, a wide variety of dendritic
branching behavior can be achieved using this approach with
minimal modification. The point process filter provides a
more elegant means of capturing multiple different branching
behaviors that occur along the length of the dendrite while
avoiding the need to arbitrarily define and parameterize multiple
anatomical zones. An even more sophisticated solution would
likely be necessary to implement a truly generalizable algorithm
to handle the branching angles of different cell types, but
this could potentially be informed by the establishment of
various trophic factors for self-avoidance and somatotropism as
demonstrated in Memelli et al. (2013). All of this can potentially
be incorporated into the state-space model framework.

The SHAPED algorithm can generate new morphologies that
preserve, to a large extent, the morphological and functional
properties of the reconstruction data sets from which properties
are measured. Furthermore, it is able to generate morphologies
that can conform to any anatomical boundary that may exist in a
neural region. These features are especially important during the
construction of large-scale, three-dimensional networkmodels of
neural systems, which are powerful tools for both investigating
emergent network behavior and examining the mechanisms
by which microcircuitry performs its computation (Bezaire
and Soltesz, 2013; Markram et al., 2015; Hendrickson et al.,
2016; Arkhipov et al., 2018; Yu et al., 2019a,b). Due to the
importance of morphology on the input-output properties
of individual neurons, it can be presumed the variability in
morphology will have further consequences at the large-scale. In
addition, a realistic three-dimensional morphology is important
in simulating the neuronal response to stimulation modalities
that vary in space, e.g., extracellular electrical stimulation and
drug diffusion. Future work will be aimed at establishing to what
extent biologically realistic aspects of morphologies contribute to
the overall response of simulated networks.
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