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Abstract

Background: Lung cancer has high morbidity and mortality across the globe, and lung adenocarcinoma (LUAD) is
the most common histologic subtype. Disordered lipid metabolism is related to the development of cancer.
Analysis of lipid-related transcriptome helps shed light on the diagnosis and prognostic biomarkers of LUAD.

Methods: In this study, expression analysis of 1045 lipid metabolism-related genes was performed between LUAD
tumors and normal tissues derived from the Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) cohort. The
interaction network of differentially expressed genes (DEGs) was constructed to identify the hub genes. The
association between hub genes and overall survival (OS) was evaluated and formed a model to predict the
prognosis of LUAD using a nomogram. The model was validated by another cohort, GSE13213.

Results: A total of 217 lipid metabolism-related DEGs were detected in LUAD. Genes were significantly enriched in
glycerophospholipid metabolism, fatty acid metabolic process, and eicosanoid signaling. Through network analysis
and cytoHubba, 6 hub genes were identified, including INS, LPL, HPGDS, DGAT1, UGT1A6, and CYP2C9. High
expression of CYP2C9, UGT1A6, and INS, and low expressions of DGAT1, HPGDS, and LPL, were associated with worse
overall survival for 1925 LUAD patients. The model showed that the high-risk score group had a worse OS, and the
validated cohort showed the same result.

Conclusions: In this study, a signature of 6 lipid metabolism genes was constructed, which was significantly associated
with the diagnosis and prognosis of LUAD patients. Thus, the gene signature can be used as a biomarker for LUAD.
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Background
Lung cancer is the most commonly diagnosed cancer
(11.6% of the total cases) and the leading cause of cancer-
related death (18.4% of the total cancer-related deaths) in
the world [1]. Among lung cancer subtypes, adenocarcin-
oma is the most common histologic subtype of lung cancer
in both men and women [2]. In a study published in 2020

in China, it was reported that in the recent 10 years, the
percentage of lung adenocarcinoma (LUAD) increased sig-
nificantly with a decrease in squamous carcinoma [3]. The
increasing incidence of lung adenocarcinoma (LUAD) has
also been reported to be associated with air pollution-
related factors [4–6]. In previous studies, it was reported
that PM2.5 increased the pro-inflammatory lipid
metabolism in the lung and was associated with lipid alter-
ations [7, 8]. The importance of alterations related to lipid
metabolism is starting to be recognized, and the increase in
de novo lipogenesis has considered a new hallmark in many
aggressive cancers [9]. Lipid metabolism has been reported
to be associated with many types of cancers, including
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pancreatic, hepatic, and colorectal cancer [10–12]. Cancer
cells exhibit strong lipid and cholesterol uptake. Excess
lipids and cholesterol in cancer cells are stored in lipid
droplets (LDs) [13, 14]. LDs have been found in lung cancer
cells [15]. Moreover, in a previous study, it was reported
that some lipid-related phenotypic indices were associated
with non-small cell lung cancer (NSCLC). Lipid profiles of
blood plasma exosomes were used for the early detection of
the prevalent NSCLC [16]. Epidemiological data indicated
that a certain number of lung cancer patients with high
high-density lipoprotein cholesterol (HDL-C) and low-
density lipoprotein (LDL) and low-density lipoprotein re-
ceptor (LDLR) levels had better survival rates in patients
[17, 18]. Compared with healthy subjects, NSCLC patients
showed significant increases in levels of phosphatidylcho-
line (PC) and phosphatidylethanolamine (PE) [19]. Other
lipid metabolism indicators associated with LUAD include
sphingomyelins, phosphatidylinositols, phosphatidylserines,
phosphatidylethanolamine, phospholipids, and phosphat-
idylcholine [20]. The requirement of cancer cells for meta-
bolic intermediates for macromolecule production is
overwhelming. Fatty acid oxidation (FAO) can help gener-
ate ATP to support the membranes formation, energy stor-
age, production of signaling molecules by coordinating the
activation of lipid anabolic metabolism [21]. Regulation of
the lipid metabolism to LUAD is still being explored, and
identifying the underlying lipid-related mechanism of the
LUAD phenotype will help increase clinical interventions.
To explore the lipid metabolism related to regulatory

networks and pathways, an integrated bioinformatic
method was used to construct a transcript-wide profile,
and a signature of lipid-related genes was analyzed to ex-
plore the potential biomarkers for diagnosis and prognos-
tic value of LUAD in terms of lipid metabolism disorder.

Materials and methods
Patients and datasets
From 519 LUAD tissues and 58 normal tissues, mRNA
expression data and clinical information were downloaded
from The Cancer Genome Atlas (TCGA, https://cancer-
genome.nih.gov/) database using the R package TCGAbio-
links [22]. The ensemble ID of TCGA samples was
annotated with human genes GRCh38/hg38. To validate
the availability of the final prediction model, mRNA ex-
pression data and clinical information from 117 LUAD
patients were downloaded from the Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/
geo) (GSE13213) using the R package GEOquery [23].

Identification of lipid metabolism-related differentially-
expressed genes
After using lipid-specific keywords (fatty acyls, glyceroli-
pids, glycerophospholipids, sphingolipids, sterol lipids,
prenol lipids, saccharolipids, and polyketides), 21 lipid

metabolism-related pathways and five lipid metabolism-
related gene sets were collected from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) website
(http://www.kegg.jp/blastkoala/) [24] and the Molecular
Signatures Database (MisDB) website (https://www.gsea-
msigdb.org/gsea/msigdb/index.jsp) [25], respectively
(Additional file 1). After removing overlapping genes, a
total of 1045 lipid metabolism-related genes were ob-
tained. Lipid metabolism-related differentially expressed
genes (DEGs) between LUAD tissues and normal tissues
were screened through R package edgeR [26]. The pa-
rameters set for differential expression analysis were
false discovery rate (FDR) < 0.05 and |log2 fold change|
(logFC) > 1.

Bioinformatic analysis
The R package clusterProfiler was used to further ex-
plore the biological significance of lipid metabolism-
related DEGs [27]. In GO and KEGG analysis, FDR <
0.05 was considered a significant enrichment. Next,
DEGs containing gene identifiers and corresponding
FDR values and logFC values were uploaded into the
IPA software (Qiagen, Redwood City, CA, USA). The
“core analysis” function included in the software was
used to interpret the DEGs.

Interaction network generation and hub genes analysis
An interaction network of differentially-expressed lipid
metabolism-related genes was built using the Search
Tool for the Retrieval of Interacting Genes (STRING,
http://string-db.org/) database [28]. The combined score
of ≥0.4 was the cut-off value. Cytoscape software (ver-
sion 3.6.0) was used to visualize networks [29]. Accord-
ing to 12 ranking methods in cytoHubba [30], an APP in
Cytoscape, the top ten genes of each method were se-
lected for analysis of overlapping genes, and genes with
the highest number of overlaps were used as hub genes
and potential biomarkers.

The expression level analysis of hub genes
The differences in mRNA expression of hub genes be-
tween LUAD tissues and normal tissues were verified
using the Gene Expression Profiling Interactive Analysis
(GEPIA) (http://gepia.cancer-pku.cn/index.html) [31]
and ONCOMINE (http://www.oncomine.org) websites.
Gene correlation analysis for hub genes was performed
using GEPIA.

Survival analysis
OS analysis of hub genes was employed by Kaplan-
Meier Plotter (http://kmplot.com/analysis/), and in-
cluded clinical data and gene expression information
from 719 LUAD patients from GEO and TCGA database
[32]. Subsequently, information on the number of cases
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along with median values of mRNA expression levels,
the hazard ratio (HR) with a 95% confidence intervals
(CI), and log-rank P-values were extracted from the
Kaplan-Meier Plotter webpage. Log-rank P-values < 0.05
were considered statistically significant.

Prediction model
Based on the selected hub genes, the nomogram package
of R (“rms”) [33] was used to develop a model to evalu-
ate the prognosis of TCGA-LUAD patients. Using the
formula of the nomogram, the prognosis score was cal-
culated for each patient. Based on this score, and using
the median classification method, patients were divided
into a low-risk score group and a high-risk score group.
The prognosis score was validated by the patients’ actual
prognosis outcome. To investigate whether the expres-
sions of six genes and prognosis score could be inde-
pendent factors for OS, multivariate Cox regression
analysis was performed, including gender, tumor stage,
age, and smoking status. Next, expression data of hub
genes and clinical information of 117 LUAD patients
were downloaded from a different data set (GSE13213),
and calculated the prognosis score of each patient by
using the formula of the nomogram. Next, patients were
divided into two groups, and survival analysis was per-
formed to validate the availability of this model.

Results
Identification and functional analysis of lipid metabolism-
related DEGs
A total of 217 lipid metabolism-related DEGs were iden-
tified from the TCGA-LUAD cohort. A volcano plot was
constructed to reveal significant DEGs (Fig. 1a), and a
heatmap was created to show the hierarchical clustering
analysis of the DEGs (Fig. 1b). For the overall under-
standing of 217 lipid metabolism-related DEGs, GO
terms and KEGG pathway enrichment analysis were
conducted using the clusterProfiler package, while ca-
nonical pathways analysis was performed by IPA. The
results of KEGG pathway enrichment showed that DEGs
were significantly enriched in arachidonic acid metabol-
ism, metabolism of xenobiotics by cytochrome P450, gly-
cerophospholipid metabolism, and steroid hormone
biosynthesis. In contrast, GO terms analysis showed that
genes were significantly enriched in the fatty acid meta-
bolic process, glycerolipid metabolic process, fatty acid
derivative metabolic process, and steroid metabolic
process (Fig. 1c). The genes in each KEGG pathway and
GO term are presented in Additional file 2. IPA identi-
fied significant canonical networks associated with the
DEGs. IPA showed that the top canonical pathways as-
sociated with common DEGs including eicosanoid sig-
naling, FXR/RXR activation, and atherosclerosis
signaling (Fig. 1d). Combining the results of the three

functional analyses showed that DEGs mainly over-
lapped in glycerophospholipid and steroid metabolism.
Furthermore, non-overlapping pathways provided add-
itional information indicating further exploration of the
role of lipid metabolism in LUAD.

Interaction network construction and cytoHubba analysis
Lipid metabolism-related DEGs were analyzed by the
STRING tool. Ultimately, an interaction network with 216
nodes and 1140 edges was established and visualized in
Cytoscape (Fig. 2). According to 12 ranked methods in
cytoHubba, 6 hub genes were identified by the overlap of
the top 10 genes (Additional file 3). Moreover, these genes
were related to Insulin (INS), Lipoprotein Lipase (LPL),
Hematopoietic Prostaglandin D Synthase (HPGDS), Diac-
ylglycerol O-Acyltransferase 1 (DGAT1), UDP Glucurono-
syltransferase Family 1 Member A6 (UGT1A6), and
Cytochrome P450 Family 2 Subfamily C Member 9
(CYP2C9).

The expression level analysis of hub genes
DEG results of hub genes are presented in Table 1. The
data showed that CYP2C9, UGT1A6, INS, and DGAT1
were upregulated, while HPGDS and LPL were downreg-
ulated in TCGA-LUAD tissues compared to normal tis-
sues. To verify the expression results of hub genes,
GEPIA and ONCOMINE databases were used. In
GEPIA databases, HPGDS and LPL were significantly
downregulated in LUAD samples (Fig. S1). In addition,
correlation analysis showed that LPL and DGAT1 (r =
0.15; P < 0.01), UGT1A6 and HPGDS (r = − 0.11; P =
0.02), and HPGDS and DGAT1 (r = − 0.09; P < 0.05) were
significantly correlated (Additional file 4). Meta-analysis
of 6 hub genes of lung cancer was performed by ONCO-
MINE databases, and showed that UGT1A6 and DGAT1
were upregulated, while HPGDS and LPL were downreg-
ulated (Fig. S2).

Survival analysis of hub genes
In this study, the relationship between mRNA expres-
sion of hub genes and clinical outcome was examined
using the Kaplan-Meier plotter. The results showed that
high expression of CYP2C9 [HR = 1.50 (1.19–1.90), P <
0.01], UGT1A6 [HR = 1.61 (1.26–2.06), P < 0.01], and
INS [HR = 1.46 (1.15–1.85), P < 0.01], and low expression
of DGAT1 [HR = 0.78 (0.62–0.98), P = 0.04], HPGDS
[HR = 0.58 (0.45–0.73), P < 0.01], and LPL [HR = 0.54
(0.43–0.69), P < 0.01], were associated with a worse OS
for 719 LUAD patients (Fig. 3).

Prediction model based on survival-related hub genes
and validation
Based on the Cox regression model, a nomogram was
built to predict the prognosis of TCGA-LUAD patients,
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using mRNA expression of the six survival-related hub
genes (CYP2C9, DGAT1, UGT1A6, INS, HPGDS, and
LPL) (Fig. 4a). The concordance index of the nomogram
was 0.61. Subsequently, the prognosis score of each pa-
tient was calculated, which showed that patients in the
high-risk score group had a worse OS of 3 years [HR =
1.88 (1.09–3.25), P = 0.02] (Fig. 4b). A total of 486

patients with complete information, including gender,
tumor stage, age, and smoking status were included for
the multivariate Cox regression analysis. Except for
HPGDS and LPL, the HR of CYP2C9, DGAT1, UGT1A6,
and INS was not significant. In addition, the risk score
calculated from the six-gene signature was an independ-
ent prognostic factor (Fig. S3). The model was validated

Fig. 1 Identification and functional analysis of lipid metabolism-related DEGs. a Volcano plot of lipid metabolism-related genes, b Heatmap
analysis of lipid metabolism-related DEGs, c GO and KEGG pathway enrichment analysis by clusterProfiler, d functional and signaling pathway
enrichment by IPA. In a and b, red, white, and blue represent higher expression levels, no expression differences, and lower expression
levels, respectively
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and demonstrated that patients in the high-risk score
group had a worse OS [HR = 1.91 (1.02–3.50), P = 0.04]
(Fig. 4c).

Discussion
Metabolic changes have been widely observed in a
variety of cancer cells [34]. Among the metabolisms
involved, the lipid metabolism widely participated in
the regulation of many cellular processes, including
cell growth, proliferation, differentiation, survival,
apoptosis, inflammation, motility, membrane homeo-
stasis, chemotherapy response, and drug resistance
[35]. In several recent studies, some components of
PM2.5 have been reported as risk factors of lung can-
cer [36–38], because the PM2.5 components pro-
moted pulmonary injury by modifying lipid
metabolism [7] and might be involved in the develop-
ment of lung cancer. However, studies on the

association between lipid metabolism and lung cancer
regarding transcriptome-wide analysis are limited. In
this study, a LUAD cohort was used to generate a
transcriptome-wide profile that included 217 lipid-
related genes. The enrichment biological pathway
found in LUAD patients included fatty acids, glycero-
lipids, and glycerophospholipids and were the primary
driving enrichment biological function reported [39].
Furthermore, arachidonic acid metabolism, PPAR sig-
naling pathway, insulin resistance, eicosanoids signal-
ing, and other pathways have also been reported in
cancer [40–44].
The results indicated that LUAD-related lipid metab-

olism was associated with nicotine, estrogen biosyn-
thesis, melatonin, and atherosclerosis. Similar to PM2.5,
nicotine may promote LUAD development by regulating
disordered lipid metabolism. The interaction between
estrogen biosynthesis and lipid metabolism may be one
of the high-risk factors for LUAD, and is consistent with
the observation that LUAD incidence is rising in women,
and that the incidence rate among women was higher
than that among men [2]. Lipid and cancer-related genes
have been shown to be enriched in atherosclerosis and
cancer [45]. For the long-term survival of LUAD pa-
tients, their health management should be managed by
oncologists and cardiologists.
The network of genes was constructed and identi-

fied six hub genes related to lipid metabolism and

Fig. 2 Genes interaction network of lipid metabolism-related DEGs. Red, white, and blue nodes represent upregulated genes, no expression
differences genes, and downregulated genes, respectively. The magnitude of the degree is positively correlated with the size of a node

Table 1 DEG results of hub genes

logFC P FDR

CYP2C9 1.027946 0.001961 0.004128

UGT1A6 3.382161 4.80E-31 6.74E-30

INS 1.773607 2.42E-07 8.55E-07

DGAT1 1.041643 4.93E-14 3.24E-13

HPGDS −1.19395 6.18E-18 5.18E-17

LPL −1.96376 5.62E-83 2.01E-81
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LUAD. CYP2C9, a drug target in lung cancer, can in-
hibit the occurrence of lung cancer by acting on cyto-
chrome P450, thereby regulating tumorigenesis [46,
47]. LUAD patients with a lower expression of
CYP2C9 have a better prognosis than those with a
higher expression of CYP2C9. UGT1A variants may
play a minor role in the risk of other types of lung
cancer [48]. LUAD patients with a lower expression
of UGT1A6 have a better prognosis than one those
with a higher expression of UGT1A6. DGAT1 cata-
lyzes the final step in triglyceride synthesis [49], and

LPL is a key lipolytic enzyme that plays a crucial role
in the catabolism of triglycerides in triglyceride-rich
particles [50]. Both are involved in triglyceride synthe-
sis, and triglycerides combined with HPGDS have
been reported to have therapeutic potential in allergic
inflammation [51]. Serum triglyceride concentrations
were reported to be involved in the pathogenesis of
lung cancer [52]. INS encodes insulin and plays a
vital role in the regulation of carbohydrate and lipid
metabolism. LUAD patients with a lower expression
of INS have a better prognosis. The regulation of

Fig. 3 Survival analysis of hub genes. LUAD patients were subdivided into high/low gene expression groups based on the median expression
level of each gene in LUAD tissues. a OS analysis of CYP2C9, b OS analysis of UGT1A6, c OS analysis of INS, d OS analysis of DGAT1, e OS analysis
of HPGDS, and f OS analysis of LPL
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triglyceride synthesis, insulin, and inflammatory con-
trol may be an effective intervention of LUAD pa-
tients. Based on those six genes, CYP2C9, DGAT1,
UGT1A6, INS, HPGDS, and LPL, a risk model was
constructed, including that LUAD patients from two
cohorts with a lower risk score had a better
prognosis.

Study strengths and limitations
The main strength of the study is the establishment
of a lipid metabolic transcriptome-wide profile of
LUAD and a gene signature that is significantly asso-
ciated with the diagnosis and prognosis of LUAD pa-
tients. Limitations of this study include the following:
1) The data field information of these two cohorts is
limited. Therefore, covariables related to LUAD might

be missed and caused bias; 2) The internal mechan-
ism of the six lipid-related genes is not illuminated
clearly. In the future, a well-designed study based on
the results is warranted.

Conclusions
In summary, a lipid metabolic transcriptome-wide pro-
file of LUAD patients was generated and showed that
lipid metabolic pathways were correlated with LUAD. A
signature of six lipid metabolic genes was significantly
associated with the diagnosis and prognosis of LUAD
patients. Taken together, this gene signature can be used
as a biomarker for LUAD to guide the prevention of the
occurrence of LUAD and improve the prognosis of
LUAD patients.

Fig. 4 Prediction model based on survival-related hub genes and validation. a Nomogram of 6 survival-related genes, b survival analysis between
the high-risk score group and low-risk score group, and c validation of the model

Li et al. Lipids in Health and Disease          (2020) 19:222 Page 7 of 9



Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12944-020-01390-9.

Additional file 1:.

Additional file 2:.

Additional file 3: Table S1. Hub genes for lipid metabolism-related
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Additional file 5: Figure S1. Expression level analysis of 6 hub genes in
GEPIA databases. Red and gray represent cancer and normal, respectively.
(A) CYP2C9, (B) UGT1A6, (C) INS, (D) DGAT1, (E) HPGDS, and (F) LPL. * P <
0.05.

Additional file 6: Figure S2. Meta-analysis of 6 hub genes of lung can-
cer in ONCOMINE databases.

Additional file 7: Figure S3. Forrest plot of the multivariate Cox
regression analyzis in TCGA-LUAD. (A) Risk score, (B) CYP2C9, (C) UGT1A6,
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