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Evaluation of focus and deep 
learning methods for automated 
image grading and factors 
influencing image quality 
in adaptive optics ophthalmoscopy
Danuta M. Sampson1,2, David Alonso‑Caneiro1,3, Avenell L. Chew1, Jonathan La1, 
Danial Roshandel1, Yufei Wang4, Jane C. Khan5,6, Enid Chelva6, Paul G. Stevenson7 & 
Fred K. Chen1,5,8*

Adaptive optics flood illumination ophthalmoscopy (AO-FIO) is an established imaging tool in the 
investigation of retinal diseases. However, the clinical interpretation of AO-FIO images can be 
challenging due to varied image quality. Therefore, image quality assessment is essential before 
interpretation. An image assessment tool will also assist further work on improving the image quality, 
either during acquisition or post processing. In this paper, we describe, validate and compare two 
automated image quality assessment methods; the energy of Laplacian focus operator (LAPE; not 
commonly used but easily implemented) and convolutional neural network (CNN; effective but more 
complex approach). We also evaluate the effects of subject age, axial length, refractive error, fixation 
stability, disease status and retinal location on AO-FIO image quality. Based on analysis of 10,250 
images of 50 × 50 μm size, at 41 retinal locations, from 50 subjects we demonstrate that CNN slightly 
outperforms LAPE in image quality assessment. CNN achieves accuracy of 89%, whereas LAPE 
metric achieves 73% and 80% (for a linear regression and random forest multiclass classifier methods, 
respectively) compared to ground truth. Furthermore, the retinal location, age and disease are factors 
that can influence the likelihood of poor image quality.

Adaptive optics flood illumination ophthalmoscopy (AO-FIO) allows imaging of the cone photoreceptor cells 
in the living human retina. However, clinical interpretation of the AO-FIO images remains challenging due to 
limited resolution of the systems and varied quality of images obtained. For example, the rtx1 AO flood illumi-
nation camera (AO-FIO, Imaging Eye, Orsay, France), the only commercially available instrument, is unable to 
resolve rod or cone photoreceptor outer segments within 2° from the center of the fovea. Moreover, as a result 
of the Stiles-Crawford effect, large variation in cone reflex intensity in the AO images is commonly observed, 
which also impacts on the quality of the information provided by the system1, 2. In addition, AO-FIO image 
quality can be reduced by defocus and the presence of cellular debris or other cell types (e.g., retinal pigment 
epithelium cells) in the photoreceptor layer due to acceptance of out-of-focus back-reflected light that reduces 
signal to noise ratio3, 4. Therefore, caution in AO-FIO image interpretation is required and further improvement 
in our assessment of image quality measurement is essential to support clinical measurements.
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The challenge in image interpretation, distinguishing between good and poor image quality, and more impor-
tantly, the type and severity of the disease, is common to all ophthalmic imaging modalities. Significant progress 
has been made in establishing protocols for image analysis by reading centers. Traditionally, a trained reader 
would first grade the quality of the image and then search for specific signs of retinal pathology following a set 
of standardized protocol for detecting and grading disease activity5. However, with the increasing number of 
retinal imaging modalities, prevalence of retinal disease and number of clinical trials in retina, there is also a 
concurrent increase in demand for retinal image analysis by expert human graders6. Thus, there is a clinical 
unmet need for a more efficient and cost-effective image grading process. One solution is to develop automatic 
or semi-automatic methods to support image grading in population screening, routine clinical care and clinical 
trials. These methods for retinal image quality assessment can be based on ‘standard’ image analysis methods 
such as convolution of the template histogram with the image histogram computing a quality index, or more 
recently deep learning algorithms7–9. Although deep learning methods have been applied to images of cone 
photoreceptors for the automatic segmentation of the cone patterns, including in healthy10, 11 and disease12 
images, the application of this algorithm to automatically assess image quality has not previously been explored.

In our previous work, we had investigated the use of focus measure operators to quantify AO-FIO image qual-
ity by measuring focus/defocus value of the image13. We had tested fifteen operators on data acquired at different 
focal depths and different retinal locations from healthy volunteers. The outcome of that study demonstrated 
differences in focus measure operator performance in quantifying AO-FIO image quality and led us to choose 
the energy of Laplacian (LAPE) operator as an optimal quality indicator for this imaging modality. However, the 
lack of a standard reference of image quality made it impossible for us to assess how good the LAPE operator 
was compared to ground truth of image quality classification and how its threshold should be set to separate 
adequate from inadequate image quality.

In this paper, detailed analysis of LAPE is undertaken to quantitatively assess its performance in evaluating 
AO-FIO image quality against ground truth. Owing to its relatively simple implementation, the LAPE is an 
attractive candidate for automated image quality assessment as it could be easily incorporated into real-time AO-
FIO image processing. In this work, we also introduce and test a deep learning algorithm, called a convolutional 
neural network (CNN), that is commonly used as an effective tool for image classification. Both methods are 
compared to the ground truth established by manual graders.

Moreover, we investigate the relationship between image quality and patient-, or eye related- parameters, 
such as: subject age, axial length, refractive error, disease status, fixation stability and retinal location, to better 
understand which of these factors may influence the quality of AO-FIO images.

Methods
Study subjects.  All research procedures described in this work followed the tenets of the Declaration of 
Helsinki. The research protocol was approved by Human Ethics, Office of Research Enterprise, The University 
of Western Australia (RA/4/1/7662, RA/4/ 1/7226, RA/4/1/5455 and RA/4/1/7457). In this retrospective study, 
AO-FIO images from the Lions Eye Institute (Perth, Australia) retinal camera image database were examined. 
Images from 28 healthy subjects (healthy controls), 11 patients with distortion and scotoma from previous mac-
ular surgery (DSM group) and 11 patients with retinal toxicity from hydroxychloroquine (HCQ group) were 
used for analysis. Subject demographics are summarized in the Table 1. Clinical records were reviewed for reti-
nal diagnosis as determined by a retinal specialist (FKC).

Inclusion criteria for all subjects included absence of media opacity, spherical refractive errors of less than − 6 
diopters (D) of myopia, less than + 4 D of hyperopia, and ability to give informed consent. Eyes included in the 
healthy group had best-corrected visual acuity of greater than 80 letters on the Early Treatment Diabetic Retin-
opathy Study (ETDRS) chart. Subjects in the DSM group had distortion and/or scotoma elucidated on Amsler 
grid testing. HCQ toxicity diagnosis was based on a history of HCQ intake, pericentral visual field defect, and 
typical optical coherence tomography and multifocal electroretinography features. Axial length measured with 
IOL Master500 (Carl Zeiss Meditec, Dublin, CA, USA), refractive error measured with autorefractor (Ark1, 
Auto Ref/Keratometer; Nidek, Gamagori, Japan) and fixation stability measured with microperimetry (MAIA, 
Centervue, Padova, Italy) were also recorded.

Adaptive optics retinal camera.  Retinal photoreceptor images were acquired using flood illumination 
adaptive optics ophthalmoscopy (AO-FIO) (rtx1, Imagine Eyes, Orsay, France). Each AO-FIO image acquisition 
consists of 40 consecutive AO-FIO frames recorded over 4 s. The visibility of the cone photoreceptors reflex is 
improved by the increased signal-to-noise ratio of the AO-FIO image reconstructed from co-registration of indi-
vidual AO-FIO frames using a cross-correlation method (registration of X/Y translation and rotation) and aver-

Table 1.   Demographic characteristic of eligible subjects. † Bivariate contour ellipse area, 63% derived from 
MAIA microperimetry. DSM; distortion and scotoma from macular surgery group, HCQ; hydroxychloroquine 
toxicity group, SD; standard deviation.

Subjects No of patients No of images Mean Age (SD) [years]
Mean axial length (SD) 
[mm]

Visual acuity (SD) 
[letter score]

Refractive error (SD) 
[Dioptres]

Fixation stability† (SD) 
[degree2]

Healthy 28 5,740 55 (17) 24.0 (0.9) 90.1 (4.8) 0.0 (1.8) 1.1 (1.3)

DSM 11 2,255 62 (18) 23.3 (1.0) 82.8 (8.3) − 0.5 (1.1) 1.2 (1.3)

HCQ 11 2,255 59 (7) 23.1 (0.8) 87.2 (4.9) 0.9 (1.8) 2.9 (4.2)
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aging. The raw images, which show artefacts due to eye blinking and saccades, are automatically eliminated by 
the acquisition software during this registration process. Unless specified, this post-processed AO image (after 
alignment and averaging) is the one used for further analysis in this report. The final AO image corresponds to a 
square region of the retina traversing 4° × 4° of visual field (750 × 750 pixels, oversampled to 1500 × 1500 pixels). 
On the retina, the linear dimensions are approximately 1.2 × 1.2 mm. The resolution of the system limits the abil-
ity to distinguish cone photoreceptor structures that are 2 µm or less14. Therefore, the images acquired from this 
system are not suitable for visualizing cone photoreceptor outer segments within 2° from the foveal center nor 
the outer segments of the rod photoreceptor cells.

Adaptive optics image capture and processing protocol.  A total of 20 consecutive single images 
with 1° to 2° of overlap were acquired from each participant. For visualization purposes, the overlapping single 
AO images were stitched together to reconstruct a wide-field AO montage by using the MosaicJ plugin for ImageJ 
(Laboratory for Optical and Computational Instrumentation, Madison, WI). The location of the foveal center in 
the wide-field AO montage was determined through alignment with a single horizontal spectral domain optical 
coherence tomography (OCT) scan and a high quality near infrared image using Adobe Photoshop CS6 (Adobe 
Systems, Inc., San Jose, CA). The images were corrected for magnification error related to axial length (AL) using 
the modified Littmann’s method described by Bennett et al.15, q = 0.013063× (AL − 1.82) where q represents 
the magnification factor. For more details, refer to Chew et al.16 Regions of interest (ROI) were chosen from reti-
nal loci along the vertical and horizontal meridians. These ROIs were spaced 1° apart between 1° and 10° from 
the foveal center along each meridian (Fig. 1A). Each ROI was divided into five overlapping sampling windows 
measuring 50 × 50 µm (approx. 65 × 65 pixels). These were extracted using custom software.

The ground truth reference standard dataset.  AO-FIO images were classified into three categories 
(Fig. 1 B-J). These were defined as follows: category 1—more than 5% of the image truncated category 2—less 
than 5% truncation but the remaining image had no visible/resolvable cones in at least one quadrant of the 
image; category 3—less than 5% truncation with the remaining image showing visible cones in all quadrants of 
the image. Those images in categories 1 and 2 are considered as unacceptable for clinical use or image analysis 
due to missing features in the image (category 1) and poor image quality (category 2), whilst category 3 are con-
sidered as acceptable for quantitative analysis. Image category 1 is introduced to prevent the analysis of images 
at the edge of the mosaics, which could happen if ROI is selected and cropped automatically from the series of 
mosaics of different sizes.

All AO-FIO images (10,250 images from 50 participants, Table 1) were graded by three graders (DMS—
expert, four-year experience with AO-FIO data; JL—intermediate, two-year experience; DR—beginner, 6 months 
experience) using the categories defined above. Each grader was given a short tutorial on the grading system rein-
forced by a range of illustrative cases (i.e. example images) for all three categories. These cases were excluded from 
analyzed dataset. Each grader performed the assessment independently using a custom graphic user interface, 

Figure 1.   (A) AO-FIO mosaic overlaid on fundus SLO images with marked regions of interest (numbered 
purple squares). The cones are counted in five sampling windows per locus, each of 50 × 50 µm. The middle 
window (Mid) is located exactly at the center of the locus, and Top Left (TL), Top Right (TR), Bottom Left (BL), 
and Bottom Right (BR) are shifted and partially overlapped with Mid (see example at the bottom of A). Example 
with a set of representative images for each category: Category 1 (B–D), Category 2 (E–G), Category 3 (H–J). 
Images of category 1 are from the edge of AO-FIO mosaics, whereas 2 are associated with poor image quality or 
the presence of vessels in the AO-FIO mosaic.
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developed in Matlab (MathWorks, Massachusetts, United States). Images were displayed in a sequential rand-
omized order, and the grader had to select the corresponding category buttons (1, 2 or 3) to confirm the grade. 
Graders were masked to focus operator value, biometric data, subject condition (health/disease, age), image 
location in the retina and the results of the other graders.

The ground truth reference grade (the “ground truth”) used for the validation of automatic image quality 
assessment methods was based on the consensus from real-time discussion between the three graders in cases 
of disagreement between two or three graders. The expert grader facilitated discussion and was trying to give 
opinion as the last one to not influence less-experienced graders. We used the process of adjudication described 
by Krause et al. to reduce manual grading errors17.

Manual graders’ performance.  All images (10,250 images from 50 participants, Table 1) were used to 
investigate the distribution of images per category amongst different graders. The agreement between graders 
prior to consensus and a reference standard was investigated using a subset of images (5535 images from 27 
participants, Supp. Table 3). This is the same dataset used to evaluate the performance of LAPE and CNN against 
a reference standard. This ensures a fair comparison while assessing the agreement between graders, LAPE and 
CNN performance on exactly the same dataset to avoid any bias.

Energy of Laplacian focus operator performance.  The energy of Laplacian focus operator (LAPE) 
enables to quantify image quality by measuring focus/defocus value of the image. Briefly, the input image is first 
normalized for brightness and later convolved with a Laplacian kernel. After, the energy (sum of squared inten-
sity values) of the characterized image is computed and single number per image is extracted18. In case of ours 
AO-FIO images the LAPE focus value ranges from 0 to 75. The global LAPE was measured for each 50 × 50 µm 
image (10,250 images from 50 participants, Table 1). This value was used to investigate the average LAPE value 
for each image category and the distribution of images per image grade category amongst different LAPE groups. 
Figure 2 shows examples of images and LAPE values associated with each of them.

Furthermore, to be able to validate the LAPE performance against a ground truth and the CNN methods, we 
applied and compared two different multiclass classifier algorithms; these help to identify to which of the three 
image categories (1,2,3) a LAPE value (0–75) belongs. First, a method based on linear regression was applied. 
The linear regression model aims to predict a value based on a linear combination of inputs; in our case, only a 
single input feature is given so the value is based on a linear scaling of the input. This value is then rounded to 1, 
2, or 3, giving the class of the input. We also used a random forest classifier with 1,000 trees in the “classification” 
mode 19 (with the “ranger” engine)20. The random forest is a popular machine learning algorithm that, for a set of 
predictors, will predict the probability of falling into each of the classifications. It prepares the probability curves 
by predicting image classification over a sequential range of LAPE scores from 0 to 75 in 0.1-unit increments and 
applying Loess smoothing in the ggplot2 R package21. Estimated LAPE thresholds are set at the intersection of 
the probability curves, noting that at the 50% point, the model reports equal probability of being in a category 
and is classified into each of the 3-image categories.

Both models were trained on 4715 images from 23 patients, a subset of the 50 patients, (Supp. Table 1) to 
maximize overall accuracy and then validated using the remaining 5535 images from 27 participants (Supp. 
Table 3). LAPE thresholds to predict cut-offs for each of the image classifications were estimated using the 
Tidymodels collection of packages in R22. Model performance was assessed with tenfold cross-validation on the 
training data23 and reported through confusion matrices and accuracy of the methods—the percentage of how 
often the classifier was correct. Estimated LAPE thresholds are set at the intersection of the probability curves 
between image categories (i.e. image classification was made when the associated probability of assignment to 
an image category was greater than 50%).

Convolutional neural network performance.  A convolutional neural network (CNN) is a form of neu-
ral network often used for a range of image analysis tasks, including image classification. CNNs are built of 
many layers, normally arranged in a particular order (convolution → activation → subsampling blocks), which 
progressively builds a larger model of the image as a whole. Within the convolutional layers, neural networks 
learn a number of “filters”, each based on linear combinations of the input to extract a particular image feature. 
These filters are tuned to create the correct output for a given input.

To suit the network size, the AO-FIO images were trimmed to the central 65 × 65 pixels if larger or mirrored if 
smaller24. The network used was a CIFAR network modified to accept a 65 × 65 sample. Similar architectures have 
been applied to OCT boundary classification24. The network architecture is shown in Supp. Figure 1. The CNN 
network was trained on a dataset as summarized in Supp. Table 1. Also, a small part of this training dataset was 
used to validate the model, which facilitates assessment of how well the network is trained and ensures the learn-
ing is generalizing well. The network was then evaluated on the validation dataset presented in Supp. Table 3. This 
is the same dataset used to evaluate the performance of manual graders and LAPE against a reference standard.

Factors affecting image quality.  We use logistic regression on the data set in Table 1 to ascertain the 
impact of subject age, axial length, refractive error, fixation stability, disease status and location in the retina on 
the likelihood of poor image quality (category 2). We didn’t include images from category 1 into the analysis 
since they represent images with insufficient features.

Statistical analysis.  Subject demographics were summarized by their mean and standard deviation (SD). 
Cohen’s kappa (κ) statistic was used to calculate agreement between graders25. The proportions of acceptable 
and unacceptable images, based on adjudicated manual grading scores and LAPE values are presented separately 
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for subjects in each study group: healthy, DSM and HCQ. To evaluate the ability of LAPE to differentiate dif-
ferent manual grades, the mean and median of LAPE for each of the 3 manual grading groups were calculated 
and compared using the Kruskal–Wallis test. Efficiency of the manual grading, LAPE and CNN were measured 
against a reference standard and displayed by a confusion matrix. The accuracy of each method is defined by the 
percentage of how often the classifier was correct.

Results
Manual graders performance.  Overall, there was substantial agreement between each pair of graders, 
as well as between each grader and the reference standard scores (κ equal or greater than 0.673) for all three 
study groups. The highest agreement was observed in DSM group images (κ equal or greater than 0.883). The 
results are summarized in Supp. Table 4. While considering the combined three groups, 85% of the manual 
quality grading had complete agreement between the 3 graders. The highest agreement was in defining category 
1 images (Suppl. Table 5). Following adjudication of images with grading discrepancy there were 2,052 (20%), 
5,728 (56%), and 2,470 (24%) images assigned the “ground truth” categories of 1, 2 and 3 respectively (Supp. 
Table 5). As presented in Fig. 3, the three graders, 1—an expert, 2—an intermediate, and 3—a beginner, achieved 
overall accuracies of 97%, 87% and 89% respectively, compared to the “ground truth”.

Figure 2.   AO-FIO images and their LAPE values. Each row shows images from 2, 4, 6, and 8 degrees from the 
fovea respectively. Each image is 50 × 50 µm size.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16641  | https://doi.org/10.1038/s41598-021-96068-2

www.nature.com/scientificreports/

LAPE performance.  LAPE values increased with improving manual-graded image category in all three 
study groups (from category 1 to 3, Kruskal–Wallis test, p < 0.001, Supp. Table 6). However, the range of LAPE 
values overlapped considerably between manual grading groups, in particular for categories 2 and 3 (Supp. 
Tables: 6, 7).

When tested against the ground truth, LAPE linear regression model achieved an overall accuracy of 73% 
as demonstrated by the confusion metric (Fig. 3). LAPE ranges for each category were found to be for category 
1: < 8; category 2: between 8 and 35; category 3: LAPE > 35.

The LAPE random forest model against the ground truth achieved an overall accuracy of 80% as demonstrated 
by the confusion metric (Fig. 3). LAPE ranges for each category were found to be for category 1: < 7; category 2: 
between 7 and 38; category 3: LAPE > 38.

CNN performance.  The CNN performed better than the LAPE linear regression model, with better values 
through the entire confusion matrix (Fig. 3). The overall accuracy of the CNN was 89%. Like the regression 
model, the majority of error results from confusion between categories 2 and 3.

Factors affecting image quality.  Logistic regression suggested that images of patients with retinal dis-
ease were 5.2 times more likely to be categorized as bad image quality (image category 2) than those from healthy 
subjects (OR of healthy vs diseased of 0.19, 95% CI: 0.09 to 0.43), keeping other factors consistent. For every 
increased degree distance from the fovea, the odds of obtaining a poor-quality image increased by an odds ratio 
of 1.03 (95% CI: 1.01 to 1.03). The odds ratio of a patient producing poor quality image increased by a ratio of 
1.03 (95% CI: 1.00 to 1.06) for each year increase in age. There was no evidence to suggest an association between 
axial length (OR: 1.16, 95% CI: 0.73 to 1.83), spherical equivalent (OR: 1.10, 95% CI: 0.82 to 1.46), best corrected 
visual acuity (OR: 0.98, 95% CI: 0.92 to 1.05), and fixation stability given by parameter BCEA63 (OR: 1.03; 95% 
CI: 0.81 to 1.31). As demonstrated in Fig. 4A, the frequency of images graded as category 2 is high and is similar 
for all retinal locations, with higher frequencies of good quality images occurring at retinal loci between 2° and 
6° from the foveal centre. Figure 4B demonstrates the frequency of image category 2 per subject. Approximately 
80% healthy subjects and 90% of patients with the retinal disease had half or more images category 2, in the 
group of images category 2 and 3. Images category 1 were excluded from this analysis.

Discussion and conclusions
The development of automated grading systems for AO-FIO image quality are needed to facilitate accurate large 
volume image-grading of AO-FIO images. The result in this report is based on a robust ground truth grading 
method as demonstrated by the substantial inter-grader agreement in our simple 3-category manual grading 
system.

Figure 3.   Confusion metrices showing the performance of LAPE, CNN and manual graders against a reference 
standard. Accuracy of the method is defined by percentage of how often the classifier was correct (green values).
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CNN performed well when compared with manual grading results, achieving an overall classification accuracy 
of 89% when tested on a dataset of 5,535 images. Previously published reports on using CNN for classification of 
normal or mild vs moderate or severe diabetic retinopathy have achieved accuracies in the range of 90%, using 
large data sets of 80,000 to 120,000 images26, 27. Lam et al. introduced an automatic diabetic retinopathy grad-
ing system capable of classifying images based on disease pathologies from four severity levels. Their algorithm 
achieved 95% evaluation accuracy using 35,000 images with 5 class labels (normal, mild, moderate, severe, end 
stage)9. The performance of deep learning methods, like the one used in this study, is known to improve with 
increasing number of images. Therefore, the performance of the proposed CNN can be improved further with 
increasing the size of AO-FIO datasets.

We could not find any report that describes the use of the focus operator (LAPE) as an automated method 
for image grading. Our results showed that the focus operator applied to 5,535 images obtained a classification 
performance of 73% (linear regression classification model) and 80% (random forest classifier), which indicates 
that precision of performance can be improved with the choice of a more complex algorithm to solve the clas-
sification problem. However, in both cases obtained results are less accurate than the CNN.

The cause of poor image quality in AO-FIO images is mostly associated with the presence of retinal disease, 
retinal location and age. The quality of AO-FIO images can be degraded by defocus. Further degradation of image 
quality can occur in diseased eye when defocused light is reflected back from cellular debris or other cells types 
(e.g. retinal pigment epithelial cells) in the outer retinal layers, thus reducing signal to noise ratio. It is also the 
case that although photoreceptor cells may appear structurally intact, a loss of function of these cells may impair 
its wave-guiding properties and this can have a deleterious impact on image sharpness28. Other factors thought 
to influence the reflectivity of the photoreceptor outer segments include time of day, natural physiological varia-
tion within cells, photocurrent dynamics inducing refractive index changes, and the coherence properties of the 
projected light29–31. Additionally, rapid eye movement and wavefront aberrations that have been unaccounted for 
in the device may also contribute to reductions in image quality, hence presenting significant challenges to the 
clinical interpretation of AO-FIO images32, 33. For example, Chew et al. have reported exclusion of approximately 
40% of images due to image quality in their analyzed data set16. Debellemaniere et al. had to exclude at least one 
eye from 46.9% of subjects due to poor AO image quality in their study of patients taking hydroxychloroquine 
without any evidence of maculopathy34. Furthermore, Feng et al. reported that in their study of AO-FIO images 
of healthy subjects aged 14 to 69, the images from 52.7% were excluded due to image quality35. We showed a 
similar frequency of images belonging to categories 2 (unacceptable for evaluation), being 50–60% at retinal loci 
spanning 2° to 6° from the foveal center. Image rejection rate was even higher for retinal loci at 7° and 8° (75%), 
9° (95%) from the foveal center (Fig. 3). Further investigation will be required into the robustness of the methods 
with regard to the number of valid images required in order to make a valid classification.

There are a number of limitations in our study. Images taken for the analysis had only a narrow range of retinal 
disease diagnoses and the imaging was performed by clinicians with varying levels of experience in operating 
the AO-FIO instrument. Therefore, further evaluation is required in a larger and more diverse cohort of patients. 
We didn’t measure the intra-individual variation of our manual grading and we didn’t investigate its impact on 
the quantitative AO-FIO measurements and their repeatability.

The proposed AO-FIO image automated grading system could be incorporated into AO-FIO image acquisi-
tion software to determine image quality and inform users when acquisition should be repeated or the image 
interpreted with caution. Similar solutions have already been applied in commercial optical coherence tomog-
raphy/angiography devices and have been well received.

Figure 4.   (A) Frequency of image category 2 (based on ground truth) at each retinal location in healthy 
subjects (blue), patients with distortion and scotoma from macular surgery (DSM group, green) and 
hydroxychloroquine toxicity (HCQ group, orange). Images more than 10° from foveal centre were excluded 
from the analysis due to the low number of images available for grading. (B) Proportion of subjects assigned 
image category 2.
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The current limitation of the proposed grading system is its inability to categorize causes of impaired cone 
visualization; it is unknown whether the poor image quality is due to retinal disease, imaging artifact, or perhaps 
a combination of both. Retinal pathology is an unlikely explanation in our cohort since patients in both DSM and 
HCQ groups had only mild structural damage and complete loss of cone photoreceptor cells was not expected. 
However, further studies are required to distinguish between cone loss due to retinal pathology and inability to 
resolve cones due to poor image quality. This might increase the applicability of the modality to the evaluation of 
a range of retinal pathologies. Nevertheless, our proposed methodology at least allows us to reduce the number 
of images that should be revised by a clinician or researcher to decide if one should proceed with qualitative or 
quantitative analysis. Following Gale et al.’s recommendation we also suggest correlation between AO-FIO images 
and other retinal imaging modalities, including optical coherence tomography and fundus autofluorescence, 
to increase confidence in the AO-FIO results.3,4 AO-FIO is a powerful imaging modality, which also presents 
its own challenges in data interpretation. Further improvement in automatic image grading methods has the 
potential to increase the utility of this imaging modality in clinical practice.

In summary, we have demonstrated that our CNN classifier outperforms a defocus measurement classifier 
using the LAPE values (random forest multiclass classifier method and a linear regression) in AO-FIO image 
quality assessment (accuracy: 89% vs 84% vs 73%). However, further improvement of the algorithm and/or 
increase in size of the training dataset should be undertaken to achieve a better performance to match results 
obtained by expert level grader (accuracy: 97%). Retinal location and age are the only parameters that impact on 
the frequency of poor-quality images. We recommend limiting the collection of AO-FIO images to retinal loci 
between 2° and 6° from the foveal center to maximize the frequency of obtaining analyzable images.

Data availability
All relevant data are within the paper. The CNN/LAPE algorithm can be available upon request.
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