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Abstract

Background

Adipose and hepatic metabolic dysfunctions are critical comorbidities that also aggravate

insulin resistance in obese individuals. Melatonin is a low-cost agent and previous studies

suggest that its use may promote metabolic health. However, its effects on some comorbidi-

ties associated with obesity are unknown. Herein, we investigated the hypothesis that mela-

tonin supplementation would attenuate adipose-hepatic metabolic dysfunction in high fat

diet (HFD)-induced obesity in male Wistar rats.

Materials and methods

Twenty-four adult male Wistar rats (n = 6/group) were used: Control group received vehicle

(normal saline), obese group received 40% high fat diet, melatonin-treated group received 4

mg/kg of melatonin, and obese plus melatonin group received 40% HFD and melatonin. The

treatment lasted for 12 weeks.

Results

HFD caused increased food intake, body weight, insulin level, insulin resistance and plasma

and liver lipid but decreased adipose lipid. In addition, HFD also increased plasma, adipose

and liver malondialdehyde, IL-6, uric acid and decreased Glucose-6-phosphate dehydroge-

nase, glutathione, nitric oxide and circulating obestatin concentration. However, these dele-

terious effects except food intake were attenuated when supplemented with melatonin.

Conclusion

Taken together, the present results indicate that HFD exposure causes adipose-hepatic

metabolic disturbance in obese animals, which are accompanied by oxidative stress and

inflammation. In addition, the present results suggest that melatonin supplementation
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attenuates adipose-hepatic metabolic dysfunction, accompanying obesity by suppression of

oxidative stress/inflammation-dependent mechanism and increasing circulating obestatin.

1. Introduction

Obesity has become a global epidemic in the twenty-first century. Overweight individuals aged

18 and above accounted for more than 1.9 billion people in 2016. Over 650 million adults in

this group were overweight or obese, 39% were overweight while over 13% of the group were

obese. Thus, obesity prevalence nearly tripled globally between 1975 and 2016. In 2020, 39 mil-

lion children under the age of five were overweight or obese [1]. Obesity is a multifaceted,

diverse disease influenced by hormones, nutritional consumption, sedentary lifestyles, physical

activity, genetics, and environmental variables [2, 3]. This metabolic disease is rising with

comorbidities, including non-alcoholic fatty liver disease (NAFLD) that reduce life quality and

expectancy, primarily due to cardiometabolic problems [4]. The pathogenesis of cardiometa-

bolic dysfunctions are low-grade systemic inflammation and insulin resistance caused by cyto-

kines. These cytokines are released by excess adipose tissue in the body, especially in the

visceral site [5–7].

In the quest for effective control of obesity, four hormones were discovered to have a link;

insulin, leptin, ghrelin and obestatin and the growth hormone secretagogue receptor (GHS-R)

[8]. Insulin is secreted in the pancreas by β-cells islets of Langerhans and has a variety of bio-

logical functions, such as body weight regulation and glucose homeostasis [9, 10]. However,

insulin resistance arises as a result of obesity and obesity-related dysfunctions including type 2

diabetes mellitus (T2DM) and cardiovascular disorders. Hyperinsulinemia, resulting from

either hypersecretion or reduced insulin clearance, is a symptom of obesity and can lead to IR

sensitivity [11, 12]. Leptin was the initial cytokine derived from adipose tissue linked with

energy balance [13]) and is an anorexigenic hormone produced mostly by adipose tissue. Lep-

tin synthesis and secretion into circulation are increased when fat depots expand in conjunc-

tion with a favorable energy balance [14]. It has been observed that obesity promotes

hyperleptinemia and leptin resistance [15]. Ghrelin initially identified as an endogenous ligand

of the growth hormone secretagogue receptor (GHSR1) is an orexigenic peptide. It is derived

primarily from the stomach and a peripheral signal that promotes food intake [16]. Obese peo-

ple have lower plasma ghrelin level and their meal-related ghrelin variations are similarly

affected [17]. A study showed that there was decreased ghrelin sensitivity after the administra-

tion of leptin, implying that the increased leptinemia observed in obesity is responsible for the

resistance of ghrelin [18].

Associated with the pathophysiology of obesity-related metabolic dysfunctions are hyper-

leptinemia and hyperinsulinemia, and body adiposity in obesity is relative to insulin and leptin

levels in the circulation. Ghrelin dysregulation can also occur in obesity and play a role in

mediating some of the pathological signs and symptoms [19]. Obestatin is a 23-amino acid

anorexic hormone, a peptide that is involved in appetite control and long-term energy regula-

tion together with ghrelin [20]. Ghrelin and obestatin are both derived from a single preprogh-

relin gene and produced by post-translation modification of preproghrelin but obestatin has a

distinct terminus [21]. Hence, it is reported to have opposite effect on food intake as ghrelin

[22]. It is an anorexigenic hormone that suppresses appetite and gastrointestinal motility and

modulates growth hormone and lipid metabolism [23, 24]. However, previous studies have

reported that obestatin acts as antagonist to the actions of ghrelin on appetite, food intake, gas-

tric emptying and the secretion of growth hormone [25, 26]. Zhao et al., also reported that

obestatin is reduced in obese humans [27].
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Melatonin is a hormone secreted by the pineal gland in the dark hours via the control of the

suprachiasmatic nucleus of the hypothalamus. It is associated with many physiological roles in

the central nervous system, sleep and wakefulness cycles, energy metabolism and thermoregu-

lation, immune and endocrine regulation among others [28]. Melatonin is the significant

mediator molecule in the incorporation of the cyclic environment and the circadian distribu-

tion of physiological and cognitive processes, as well as the optimization of energy hemostasis

and regulation of body weight, which are important for a healthy metabolism [29]. The islets

of Langerhans of the pancreas are important sites of the action of melatonin where it stimulates

the synthesis and secretion of insulin and glucagon synthesis in reference to the regulation of

energy metabolism. The melatonin receptors MT1 and/or MT2- facilitated the action of mela-

tonin decreasing the glucose-stimulated insulin secretion (GSIS) in the isolated pancreatic

islets and insulinoma beta cells in rats [30, 31]. Through the regulation of GLUT4 expression

or triggering the insulin signaling pathway, melatonin functions in potentiating central and

peripheral action of insulin. Thus, it induces, via its G-protein-coupled membrane receptors,

the phosphorylation of the insulin receptor and its intracellular substrates. It has also been

considered that melatonin’s association with all the physiological processes typical of the daily

activity-wakefulness/rest-sleep rhythm may impact body weight and possibly contribute to

energy homeostasis [28, 32]. However, information on the role of melatonin in obesity-associ-

ated adipose-hepatic metabolic dysregulation is lacking. The present study was therefore

designed to investigate the role of melatonin on adipose-hepatic metabolic perturbations in

obese male Wistar rats. The study in addition determined the probable involvement of

obestatin.

2. Materials and methods

2.1. Animals

All experimental protocols for this study were conducted in accordance with the National

Institutes of Health Guide for the Care and Use of Laboratory Animals and was approved by

the Institutional Ethical Review Board of Afe Babalola University, Nigeria (ABUADERC/10/

2020), and every effort was made to minimize both the number of animals used and their suf-

fering. Twenty-four male Wistar rats weighing 170–200 g were procured from the animal

house of the College of Health Sciences, Afe Babalola University, Nigeria. Rats had unrestricted

access to standard rat chow and tap water. After 2 weeks of acclimatization, the animals were

randomly assigned into four groups (n = 6 per group). Rats were maintained in a colony

under standard environmental conditions of temperature (22–26˚C), relative humidity (50–

60%), and 12-hour dark/light cycle.

2.2. Treatment

Control (CTL) received diet and distilled water (vehicle; po), Melatonin-treated group (MLT-

treated) received melatonin (4 mg/kg body weight; Sigma-Aldrich, St Louis, MI), Obese group

(OBS) received 40% high fat diet (HFD) and Obese with melatonin-treated group (OBS

+MLT-treated) received combination of high fat and melatonin daily. Animals were treated

with melatonin between 8:00–10:00 am and obesity was induced by exposing the animals to

40% HFD ad libitum as previously described [33] The administration lasted for 12 weeks. Ini-

tial and final body weights were determined, and body weight gain was estimated. In addition,

daily food and water consumptions were monitored for week 0 (initial) and week 12 (final) by

subtracting the left-over food and water after 24 h from the food and water that were intro-

duced to the animals. The changes in food and water consumptions were estimated by sub-

tracting the initial consumption from the final consumption.
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2.3. Sample preparation

After 12 weeks of administration, the animals were fasted overnight for 12 h. Thereafter, the

animals were anesthetized by intraperitoneal injection of 50 mg/kg b.w. of sodium pentobarbi-

tal. Cardiac puncture was used for the collection of blood into the heparinized tube and blood

was centrifuged at room temperature for 5 mins at 3000 rpm. Plasma was decanted and stored

frozen until when it was needed for the biochemical analysis.

2.4. Preparation of liver and adipose tissue homogenates

After weighing the liver and visceral fat, 100 mg section of each tissue was carefully removed

and homogenized with a glass homogenizer in phosphate buffer solution, centrifuged at 10000

rpm for 10 min at 4˚C.

2.5. Blood glucose and insulin resistance (IR)

Fasting blood glucose was determined with a hand-held glucometer (ONETOUCH1-Life-

Scan, Inc., Milpitas, CA, USA). Insulin resistance was estimated using the Homeostatic model

assessment for IR (HOMA-IR = fasting glucose (mmol/l) � fasting insulin (μU/l)/22.5) [34, 35].

2.6. Biochemical assays

2.6.1. Plasma insulin. The plasma level of insulin was determined with Rat ELISA kits

obtained from Calbiotech Inc. (Cordell Ct., El Cajon, CA 92020, USA) in compliance with the

manufacturer’s procedures and based on the direct sandwich technique in which two mono-

clonal antibodies are directed against separate antigenic determinants on the insulin molecule.

2.6.2. Obestatin. Obestatin concentration was determined in the plasma using Rat ELISA

kits obtained from Calbiotech Inc. (El Cajon, USA) in compliance with the manufacturer’s

assay procedure.

2.6.3. Lipid profile. Concentration of triglycerides (TG) and total cholesterol (TC) were

estimated in the plasma, liver and adipose tissue homogenates by standardized colorimetric

methods using reagents obtained from Fortress Diagnostics Ltd. (Antrim, UK).

2.6.4. Oxidative stress markers. Malondialdehyde (MDA) was determined from the

plasma, liver and adipose tissue homogenate by standard non-enzymatic spectrophotometric

method using assay kits from Randox Laboratory Ltd. (Co. Antrim, UK). This method was

carried out as previously described [35], whereas Glutathione (GSH) was determined using

non-enzymatic spectrophotometric method with assay kits obtained from Oxford Biomedical

Research Inc. (Oxford, USA). Glutathione was determined by spectrophotometric method

based on the oxidation of GSH in the sample by the sulfhydryl reagent 5,50-dithio-bis (2-nitro-

benzoic acid) (DTNB) to form the yellow derivative 50-thio-2-nitrobenzoic acid (TNB), mea-

sured at 412 nm. While Glucose-6-phosphate dehydrogenase (G6PD) activity was determined

from the plasma, liver and adipose tissue using standard spectrophotometric method with

assay kits obtained from Calbiotech Inc. (El Cajon, USA).

2.6.5. Interleukin-6 (IL-6), nitric oxide and uric acid concentration. Plasma, liver and

adipose tissue concentration of IL-6 was determined by the quantitative standard sandwich

ELISA technique using monoclonal antibody specific for these parameters with rat kits

obtained from Elabscience Biotechnology Inc. (Wuhan, Hubei, P.R.C., China). Nitric oxide

was assayed spectrophotometrically by measuring the accumulation of its stable degradation

products, nitrate and nitrite using kits from Oxford Biomedical Research Inc., (Oxford, UK).

This kit employs the NADH-dependent enzyme nitrate reductase for conversion of nitrate to

nitrite prior to the quantification of nitrite using Griess reagent—thus providing for accurate

PLOS ONE Melatonin attenuates adipose-hepatic dysmetabolism in obesity

PLOS ONE | https://doi.org/10.1371/journal.pone.0260546 December 8, 2021 4 / 15

https://doi.org/10.1371/journal.pone.0260546


determination of total NO production. Furthermore, uric acid uric concentration was esti-

mated by non-enzymatic colorimetric method using assay kits from Randox Laboratory Ltd.

(Co. Antrim, UK) and in compliance with the manufacturer’s assay procedures.

2.7. Statistical analysis

Shapiro-Wilk test was used to confirm the data distribution, and the data were normally dis-

tributed. All data were expressed as means ± SD. Statistical group analysis was performed

using the Graphpad prism 5. One-way ANOVA was used to compare the mean values of vari-

ables among the groups. Bonferroni’s test was used for post hoc analysis. Statistically significant

differences were accepted at p less than 0.05.

3. Results

3.1. Effects of melatonin on food intake, water intake and body weight in

HFD-induced obese rats

There was a significant increase (p<0.05) in food intake in obese and OBS+MLT-treated rats

compared to the control group. Supplementation with melatonin did not significantly decrease

the food intake as shown in OBS+MLT-treated rats compared with obese rats. In addition,

body weight was increased in obese rats when compared to the control group. However, mela-

tonin decreased the body weight. There was no alteration in water intake in all the experimen-

tal groups compared to the control group (Table 1).

3.2. Effects of melatonin on glucose homeostasis in HFD-induced obese

rats

There was a significant increase (p<0.05) in fasting plasma insulin but no alteration in blood

glucose in obese group compared to the control group. However, supplementation with mela-

tonin decreased the fasting plasma insulin in OBS+MLT group compared to the untreated

obese group. Similarly, insulin resistance was observed in the obese animals compared with

control animals. Administration of melatonin significantly reduced insulin resistance in OBS

+MLT group compared to the untreated obese group (Fig 1).

Table 1. Melatonin attenuates excess body weight but not food intake in HFD-induced obese animals.

GROUPS CTL MLT OBS OBS+MLT

Food intake (g/day)

Initial 25.22 ± 0.81 33.15 ± 2.30 30.59 ± 4.24 31.85 ± 2.27

Change 8.01 ± 2.71 5.33 ± 1.79 19.21 ± 3.77� 14.42 ± 0.35�

Water intake (mL/day)

Initial 32.62 ± 1.47 27.79 ± 3.16 26.63 ± 3.43 35.63 ± 3.43

Change 7.34 ± 2.52 5.44 ± 10.19 6.18 ± 5.44 5.86 ± 3.88

Body weight (g)

Initial 172.71 ± 6.41 174.93 ± 8.12 171.00 ± 6.65 171.43 ± 5.70

Gain 44.40 ± 6.70 36.67 ± 9.30 75.87 ± 4.72� 26.69 ± 3.62#

Data are expressed as mean ± SD. n = 6 and analyzed by one-way ANOVA followed by Bonferroni post hoc test. (�p<0.05 vs. CTL; #p<0.05 vs. OBS). Control (CTL);

Melatonin (MLT); Obesity (OBS).

https://doi.org/10.1371/journal.pone.0260546.t001
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3.3. Effects of melatonin on plasma, adipose and liver triglyceride and total

cholesterol in HFD-induced obese rats

There was a significant increase (p<0.05) in plasma and liver TG and TC but a decrease in adi-

pose triglyceride and total cholesterol in obese group compared to the control group. However,

supplementation with melatonin decreased the plasma and liver TG and TC and as well

increased the TG and TC concentrations in the adipose tissue of OBS+MLT group compared

to the untreated obese group (Fig 2).

Fig 1. Effects of melatonin on blood glucose (A), insulin (B) and insulin resistance (C) HFD-induced obese animals. Data are expressed as

mean ± SD. n = 6 and analyzed by one-way ANOVA followed by Bonferroni post hoc test. (�p<0.05 vs. CTL; #p<0.05 vs. OBS). Control (CTL);

Melatonin (MLT); Obesity (OBS).

https://doi.org/10.1371/journal.pone.0260546.g001

Fig 2. Effects of melatonin on plasma, adipose and liver triglyceride (A-C) and total cholesterol (D-F) in HFD-induced obese rats. Data are

expressed as mean ± SD. n = 6 and analyzed by one-way ANOVA followed by Bonferroni post hoc test. (�p<0.05 vs. CTL; #p<0.05 vs. OBS).

Control (CTL); Melatonin (MEL); Obesity (OBS); Total cholesterol (TC).

https://doi.org/10.1371/journal.pone.0260546.g002
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3.4. Effect of melatonin on malondialdehyde in HFD-induced obese rats

There was a significant increase (p<0.05) in plasma, adipose and liver MDA in obese group

compared to the control group. However, supplementation with melatonin decreased the

plasma, adipose and liver MDA in OBS+MLT group compared to the untreated obese group

(Fig 3).

3.5. Effect of melatonin on G6PD and GSH in HFD-induced obese rats

There was a significant decrease (p<0.05) in plasma, adipose and liver G6PD activity and glu-

tathione concentration in obese group compared to the control group. Nonetheless, supple-

mentation with melatonin increase the plasma, adipose and liver G6PD and glutathione

concentration in OBS+MLT group compared to the untreated obese group (Fig 4).

3.6. Effects of melatonin on IL-6 and uric acid concentration in HFD-

induced obese rats

There was a significant increase (p<0.05) in plasma, adipose and liver IL-6 and uric acid con-

centration in obese group compared to the control group. However, supplementation with

melatonin decrease the plasma and liver but not adipose uric acid concentration in OBS+MLT

group compared to the untreated obese group (Fig 5)

3.7. Effects of melatonin on nitric oxide concentration in HFD-induced

obese rats

There was a significant reduction (p<0.05) in plasma, adipose and liver nitric oxide concentra-

tion in obese group compared to the control group. However, supplementation with melato-

nin increased the plasma, adipose and liver nitric oxide concentration in OBS+MLT group

compared to the untreated obese group (Fig 6).

3.8. Effects of melatonin on obestatin level in HFD-induced obese rats

There was a significant decrease (p<0.05) in the level of plasma obestatin concentration in

obese animal when compared to the control animal. However, supplementation with melato-

nin significantly increased the obestatin level in animal with obesity (Fig 7).

Fig 3. Effect of melatonin on plasma, adipose and liver malondialdehyde (A-C) in HFD-induced obese rats. Data are expressed as mean ± SD. n = 6

and analyzed by one-way ANOVA followed by Bonferroni post hoc test. (�p<0.05 vs. CTL; #p<0.05 vs. OBS). Control (CTL); Melatonin (MLT);

Obesity (OBS).

https://doi.org/10.1371/journal.pone.0260546.g003
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Fig 4. Effects of melatonin on plasma, adipose and liver Glucose-6-phosphate dehydrogenase (A-C) and glutathione (D-F) in HFD-induced obese

rats. Data are expressed as mean ± SD. n = 6 and analyzed by one-way ANOVA followed by Bonferroni post hoc test. (�p<0.05 VS. CTL; #p<0.05

VS. OBS). Control (CTL); Melatonin (MLT); Obesity (OBS); Glucose 6 phosphate dehydrogenase (G6PD); Glutathione (GSH).

https://doi.org/10.1371/journal.pone.0260546.g004

Fig 5. Effects of melatonin on plasma, adipose and liver interleukin-6 (A-C) and uric acid concentration (D-F) HFD-induced obese rats. Data are

expressed as mean ± SD. n = 6 and analyzed by one-way ANOVA followed by Bonferroni post hoc test. (�p<0.05 VS. CTL; #p<0.05 VS. OBS).

Control (CTL), Melatonin (MLT), Obesity (OBS).

https://doi.org/10.1371/journal.pone.0260546.g005
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4. Discussion

The data from the present study demonstrated that melatonin reversed the adipose-hepatic

metabolic comorbidities associated with obesity in male Wistar rats by suppression of oxida-

tive stress, inflammation and increasing circulating obestatin. Earlier studies have demon-

strated a significant decrease in the level of obestatin in obese children [36], and the present

observation that revealed a significant decrease in the circulating levels of obestatin in obese

animals compared to control group is consistent with previous studies. In addition, Ren et al.,
reported that the levels of obestatin were significantly lower in obese subjects and correlated

Fig 6. Effects of melatonin on plasma, adipose and liver nitric oxide concentration (A-C) in HFD-induced obese rats. Data are expressed as

mean ± SD. n = 6 and analyzed by one-way ANOVA followed by Bonferroni post hoc test. (�p<0.05 VS. CTL; #p<0.05 VS. OBS). Control (CTL);

Melatonin (MLT); Obesity (OBS).

https://doi.org/10.1371/journal.pone.0260546.g006

Fig 7. Effects of melatonin on circulating obestatin concentration in HFD-induced obese rats. Data are expressed

as mean ± SD. n = 6 and analyzed by one-way ANOVA followed by Bonferroni post hoc test. (�p<0.05 VS. CTL;
#p<0.05 VS. OBS). Control (CTL), Melatonin (MLT), Obesity (OBS).

https://doi.org/10.1371/journal.pone.0260546.g007
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negatively with body mass index (BMI), insulin, glucose and insulin resistance [37]. However,

as revealed in the results of the present studies, in addition to decreased obestatin level, obesity

is also characterized with insulin resistance, hyperinsulinemia and excess body weight, which

are consistent with previous observations [23, 37]. Besides, the present results also showed an

increase in food intake in obese animals compared to the control group, which might contrib-

ute to excess body weight possibly due to reduced energy utilization resulting from insulin

resistance. As already demonstrated, HFD causes insulin resistance in experimental rodents

[38, 39].

Furthermore, compensatory hyperinsulinemia observed in obese rats might contribute to

normal blood glucose. However, evidence exists that hyperinsulinemia signals oxidative stress,

especially in combination with insulin resistance causing adipose tissue inflammation that

characterized obesity [40–42]. In addition, obesity is considered a syndrome of excessive vis-

ceral adiposity and is linked with metabolic dysfunctions. Metabolic dysfunctions are charac-

terized by cardiovascular and diabetes risk factors such as abdominal adiposity, hypertension,

reduction in high-density lipoprotein (HDL), increased triglycerides and glucose intolerance

[43]. In this study, there was a significant increase in plasma and liver TG and TC with corre-

sponding decrease in adipose TG and TC in obese group compared to the control group,

which might lead to hepatic lipotoxicity that triggered oxidative stress in obese animals as

shown by elevated hepatic lipid peroxidation (MDA) with a decrease in G6PD/GSH-depen-

dent antioxidant capacity. Previous studies have documented that a decrease in obestatin

could also contribute to increase in TC with consequent oxidative stress [44–46]. Therefore, in

this study obesity-induced hepatic oxidative stress is associated with a decrease in circulating

level of obestatin and excessive lipolysis that led to reduction in adipose TG and TC.

In addition, the present study showed a significant increase in plasma, adipose and liver IL-

6 and uric acid concentration and a significant reduction in plasma and adipose nitric oxide

concentration in obese group compared to the control group. These observations are consis-

tent with earlier studies, including a recent study from our laboratory animals which demon-

strates that metabolic related syndrome such as obesity causes inflammation in the metabolic

tissues, particularly the adipose and hepatic tissues [47, 48] and these are well documented

pathological features of non-alcoholic fatty liver disease [47, 49]. This therefore suggests obe-

sity as a predictor of fatty liver disease, which may become one of the common reasons for

liver transplantations by 2030 especially in developed countries [49, 50]. Other studies have

also reported that obestatin could be protective against oxidative stress and inflammation [51,

52]. Therefore, decrease level of obestatin might in part contribute to adipose/hepatic inflam-

mation that characterized obese animals compared to the control group.

Interestingly, this study also showed that melatonin supplementation reduced the body

weight of obese rats while elevating their levels of obestatin, though without a significant

decrease in food intake compared to the untreated obese group. The treatment with melatonin

also decreased the plasma and liver triglyceride and total cholesterol in OBS+MLT group com-

pared to the untreated obese group. In addition, the elevated fasting plasma insulin and insulin

resistance were reversed by melatonin supplementation, which might be due to increase in

insulin sensitivity as earlier reported by McHugh and Cheng that administration of melatonin

improves insulin sensitivity and insulin level [53]. This possibly improved glucose/lipid metab-

olism and thus prevents excess energy storage/visceral adiposity that constitutes excess body

weight gain. This observation seems similar to a number of studies that demonstrated

improved body composition following administration of melatonin [32, 39, 54]. Besides, mela-

tonin has also been reported to modulate cyclic adenosine monophosphate (cAMP) and cyclic

gaunosine monophosphate (cGMP levels), which regulate glucose and energy homeostasis

[55] corroborating that melatonin promotes body maintenance. Other studies have also
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shown that administration of melatonin prevented high glucose or lipid levels in pinealecto-

mized rats [56]. However, melatonin in addition to improving body weight, insulin sensitivity

also demonstrated antioxidant effect against hepatic and adipose oxidative stress with corre-

sponding decrease in lipid peroxidation and enhancement of G6PD/GSH-dependent antioxi-

dant barrier in obese animals compared to the untreated obese group. Likewise, the

administration of melatonin increased the plasma, liver and adipose nitric oxide concentration

and decreased the plasma and liver uric acid and IL-6 concentration with corresponding

decrease in adipose IL-6 in obese rats compared to the untreated obese group, suggesting that

treatment with melatonin mitigates inflammatory signals induced by insulin resistance/hyper-

insulinemia with consequent decrease in adipose/hepatic inflammation. In consonance with

previous study, melatonin acts as a free radical scavenger that eliminates reactive oxygen and

promotes the action and expression of endogenous antioxidants [26, 57]. Our results are also

consistent with a number of studies who have demonstrated anti-inflammatory, anti-prolifer-

ative and apoptotic properties of melatonin in experimental animals [58–60]. Nevertheless, the

present results are not without limitations in such that the molecular mechanisms underlying

the regulatory role of melatonin in obese animals, and the link between obestatin and other

biochemical parameters were not investigated. However, the present data provide a justifica-

tion for further study of molecular mechanisms, and the data perhaps, provide clinical insight

into the diagnosis and management of obesity-associated adipose-hepatic metabolic

comorbidities.

5. Conclusion

Taken together, the present results indicate that HFD exposure causes adipose-hepatic meta-

bolic disturbance in obese animals, which are accompanied by oxidative stress and inflamma-

tion. In addition, the present results suggest that melatonin supplementation attenuates

adipose-hepatic metabolic dysfunction, accompanying obesity by suppression of oxidative

stress/inflammation-dependent mechanism and increasing circulating obestatin.
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7. Lukács A., Horváth E., Máté Z., Szabó A., Virág K., Papp M., et al., 2019. Abdominal obesity increases

metabolic risk factors in non-obese adults: a Hungarian cross-sectional study. BMC Public Health, 19

(1), pp.1–8. https://doi.org/10.1186/s12889-018-6343-3 PMID: 30606151

8. Friedman J.M. and Halaas J.L., 1998. Leptin and the regulation of body weight in mammals. Nature,

395(6704), pp.763–770. https://doi.org/10.1038/27376 PMID: 9796811

9. Banting FG, Best CH, Macleod JJR. 1992. The internal secretion of the pancreas. Am J Physiol.

59,479

10. Schwartz M.W., Woods S.C., Porte D., Seeley R.J. and Baskin D.G., 2000. Central nervous system

control of food intake. Nature, 404(6778), pp.661–671. https://doi.org/10.1038/35007534 PMID:

10766253

11. Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, et al. 2000. Loss of insulin

signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol

Cell 6:87–97. PMID: 10949030

12. Farris W, Mansourian S, Leissring MA, Eckman EA, Bertram L, Eckman CB, et al. Partial loss-of-func-

tion mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid β-

protein. The American journal of pathology. 2004 Apr 1; 164(4):1425–34. https://doi.org/10.1016/

s0002-9440(10)63229-4 PMID: 15039230

13. Zhang Y., Proenca R., Maffei M., Barone M., Leopold L. and Friedman J.M., 1994. Positional cloning of

the mouse obese gene and its human homologue. Nature, 372(6505), pp.425–432. https://doi.org/10.

1038/372425a0 PMID: 7984236

14. Lehr S., Hartwig S. and Sell H., 2012. Adipokines: a treasure trove for the discovery of biomarkers for

metabolic disorders. PROTEOMICS–Clinical Applications, 6(1-2), pp.91–101. https://doi.org/10.1002/

prca.201100052 PMID: 22213627

15. Crujeiras A.B., Dı́az-Lagares A., Abete I., Goyenechea E., Amil M., Martı́nez J.A. et al., 2014. Pre-treat-

ment circulating leptin/ghrelin ratio as a non-invasive marker to identify patients likely to regain the lost

weight after an energy restriction treatment. Journal of endocrinological investigation, 37(2), pp.119–

126. https://doi.org/10.1007/s40618-013-0004-2 PMID: 24497210

16. Nakazato M., Murakami N., Date Y., Kojima M., Matsuo H., Kangawa K. et al., 2001. A role for ghrelin in

the central regulation of feeding. Nature, 409(6817), pp.194–198. https://doi.org/10.1038/35051587

PMID: 11196643

PLOS ONE Melatonin attenuates adipose-hepatic dysmetabolism in obesity

PLOS ONE | https://doi.org/10.1371/journal.pone.0260546 December 8, 2021 12 / 15

https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://doi.org/10.1016/j.gendis.2017.12.004
http://www.ncbi.nlm.nih.gov/pubmed/30258944
https://doi.org/10.1007/s00125-019-4919-9
https://doi.org/10.1007/s00125-019-4919-9
http://www.ncbi.nlm.nih.gov/pubmed/31451867
http://apps.who.int/iris/bitstream/10665/148114/1/9789241564854_eng.pdf
http://apps.who.int/iris/bitstream/10665/148114/1/9789241564854_eng.pdf
https://doi.org/10.1186/1758-5996-6-49
http://www.ncbi.nlm.nih.gov/pubmed/24684833
https://doi.org/10.1080/10408363.2017.1422109
http://www.ncbi.nlm.nih.gov/pubmed/29308692
https://doi.org/10.1186/s12889-018-6343-3
http://www.ncbi.nlm.nih.gov/pubmed/30606151
https://doi.org/10.1038/27376
http://www.ncbi.nlm.nih.gov/pubmed/9796811
https://doi.org/10.1038/35007534
http://www.ncbi.nlm.nih.gov/pubmed/10766253
http://www.ncbi.nlm.nih.gov/pubmed/10949030
https://doi.org/10.1016/s0002-9440%2810%2963229-4
https://doi.org/10.1016/s0002-9440%2810%2963229-4
http://www.ncbi.nlm.nih.gov/pubmed/15039230
https://doi.org/10.1038/372425a0
https://doi.org/10.1038/372425a0
http://www.ncbi.nlm.nih.gov/pubmed/7984236
https://doi.org/10.1002/prca.201100052
https://doi.org/10.1002/prca.201100052
http://www.ncbi.nlm.nih.gov/pubmed/22213627
https://doi.org/10.1007/s40618-013-0004-2
http://www.ncbi.nlm.nih.gov/pubmed/24497210
https://doi.org/10.1038/35051587
http://www.ncbi.nlm.nih.gov/pubmed/11196643
https://doi.org/10.1371/journal.pone.0260546
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