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 Asian rice,  Oryza sativa  is a cultivated, inbreeding species that feeds over half of the world ’ s 

population. Understanding the genetic basis of diverse physiological, developmental, and 

morphological traits provides the basis for improving yield, quality and sustainability of rice. 

Here we show the results of a genome-wide association study based on genotyping 44,100 

SNP variants across 413 diverse accessions of  O. sativa  collected from 82 countries that 

were systematically phenotyped for 34 traits. Using cross-population-based mapping 

strategies, we identifi ed dozens of common variants infl uencing numerous complex 

traits. Signifi cant heterogeneity was observed in the genetic architecture associated with 

subpopulation structure and response to environment. This work establishes an open-source 

translational research platform for genome-wide association studies in rice that directly 

links molecular variation in genes and metabolic pathways with the germplasm resources 

needed to accelerate varietal development and crop improvement.         
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 U
nderstanding the genetic basis of physiological, devel-
opmental and morphological variation in domesticated 
Asian rice ( Oryza sativa ) is critical for improving the quality, 

safety, reliability and sustainability of the world ’ s food supply. 
Human population growth, particularly in developing countries 
where rice is the main source of caloric intake 1 , coupled with climate 
change and the intensive water, land and labour requirements 
of rice cultivation 2 , creates a pressing and continuous global need 
for new, stress tolerant, resource-use effi  cient, and highly produc-
tive rice varieties. To assist in this endeavour, the scientifi c commu-
nity has created a wealth of genomic and plant breeding resources, 
including high-quality genome sequences 3,4 , dense SNP maps 5 – 7 , 
extensive germplasm collections 6,8,9  and public databases of genomic 
information 5,6,10,11 . 

 Despite the availability of these scientifi c resources, most of 
what we know about the genetic architecture of complex traits in 
rice is based on traditional quantitative trait locus (QTL) linkage 
mapping using bi-parental populations. While providing valuable 
insights 12 , the QTL approach is clearly not  ‘ scalable ’  to investigate 
the genomic potential and tremendous phenotypic variation of the 
more than 120,000 accessions available in public germplasm reposi-
tories. Genome-wide association study (GWAS) mapping makes 
it possible to simultaneously screen a very large number of acces-
sions for genetic variation underlying diverse complex traits. An 
extra advantage of the GWAS design for rice is the homozygous 

nature of most rice varieties, which makes it possible to employ 
a  ‘ genotype or sequence once and phenotype many times over ’  
strategy, whereby once the lines are genomically characterized, 
the genetic data can be reused many times over across diff erent 
phenotypes and environments. 

 Here we present a genome-wide association study in a global 
collection of 413 diverse rice ( O. sativa ) varieties from 82 coun-
tries using a high-quality custom-designed 44,100 oligonucleotide 
genotyping array. For these varieties, we systematically phenotyped 
34 morphological, developmental and agronomic traits over two 
consecutive fi eld seasons. Our mapping strategy evaluated varia-
tion both within and among four of the major subgroups of rice, 
revealing signifi cant heterogeneity of genetic architecture among 
groups, as well as gene-by-environment eff ects. Unlike previous 
GWAS studies in rice 5 , purifi ed seed stocks of the rice strains and 
all the genotypic and phenotypic information generated over the 
course of this study are publicly available, creating a valuable, open-
source translational research platform that can be rapidly expanded 
through community participation to enhance the power and 
resolution of GWAS in rice.  

 Results  
  Diversity panel and genotyping array   .   A rice diversity panel 
consisting of 413 inbred accessions of  O. sativa  collected from 82 
countries ( Fig. 1 ;  Supplementary Data 1 ) was genotyped using an 
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    Figure 1    |         Population structure in  O. sativa . ( a ) The large pie chart summarizes the distribution of subpopulations in the 413  O. sativa  samples in our 

diversity panel, and the smaller pie charts on the world map correspond to the country-specifi c distribution of subpopulations sampled (note: large 

countries such as China, India and the US were divided into several major rice growing regions). The size of the pie chart is proportional to the sample size 

and colours within each pie chart are refl ective of the percentage of samples in each subpopulation. Seeds representing each subpopulation are displayed 

with and without hull in the centre, with 1   cm scale bar. ( b ) Principal component analysis was used to provide a statistical summary of the genetic data, 

and the top four principle components are illustrated in the bottom panels.  
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Aff ymetrix single nucleotide polymorphism (SNP) array containing 
44,100 SNPs (hereaft er referred to as the 44   K chip). With a genome size 
of  ~ 380   Mb (ref.   13), this custom-designed genotyping chip 
provides high quality data (less than 4.5 %  missing data), with 
 ~ 1 SNP per 10   kb across the 12 chromosomes of rice (Methods; 
 Supplementary Data 2 ). Th e diversity panel was evaluated for 34 
traits related to plant morphology, grain quality, plant develop-
ment and agronomic performance using fi eld-grown plants with 
replications within and between years ( Supplementary Table S1 ; 
 Supplementary Data 3 ).   

  Population structure and linkage disequilibrium estimation in 
rice   .   Using principle component analysis (PCA) 14  to summarize 
global genetic variation in the diversity panel, we observed clear, 
deep subpopulation structure in this collection of germplasm 
( Fig. 1a ). Th e top four principal components (PCs) explained 
almost half of the genetic variation ( Fig. 1b ). Th e fi ve subpopula-
tions  indica ,  aus ,  temperate japonica ,  tropical japonica  and  aromatic  
formed clear clusters based on the top four PCs, and were well 
diff erentiated from each other, with pairwise Fst (F-statistic) values 
ranging from 0.23 – 0.53. Th is is in agreement with previous fi ndings 
where global germplasm collections have been used in combina-
tion with much smaller numbers of SNP or simple sequence repeat 
(SSR) genotypes 8,15 – 17 . Because the array was designed to assay vari-
ation in all  O. sativa  groups, most SNPs are shared or polymorphic 
across subpopulations ( Table 1 ). 

 We examined allele sharing across the panel by calculating  ‘ iden-
tity by state ’  coeffi  cients among all pairs of accessions ( Fig. 2a ). We 
fi nd that whereas allele sharing clearly tracks subpopulation ances-
try as identifi ed by the PCA analysis, there is also a substantial 
number of admixed accessions, highlighting the complex history 
of rice varieties grown throughout the world 16 . Excluding the small 
sample of aromatic accessions, the mean observed identical by state 
(IBS) sharing is greatest between the closely related  tropical japonica  
and  temperate japonica  accessions (0.80), followed by  indica  and 
 aus  (0.64), with relatively little IBS sharing between the two major 
subspecies,  Indica  and  Japonica  (0.47) ( Fig. 2a ). Th e fact that most 
of the admixture occurs within (rather than between) subspecies 
underscores the existence of genetic and cultural barriers to genetic 
exchange between these two major groups of Asian rice, despite 
documented cases of targeted  Japonica-Indica  introgression medi-
ated by artifi cial selection 18,19 . 

 Th e amount of genomic variation tagged by our SNP array was 
calculated by measuring the pairwise SNP linkage disequilibrium 
(LD) among the 44   K common SNPs. On average, LD drops to 
almost background levels around 500   kb – 1   Mb, reaching half of 
its initial value at  ~ 100   kb in  indica , 200   kb in  aus  and  temperate 
japonica , and 300   kb in  tropical japonica  ( Supplementary Fig. S1 ). 
Given that our average inter-marker distance is 10   kb, we expect 
to have reasonable power to identify common variants of large 
eff ect associated with our traits of interest, even if we have not 
queried the causal variant for association in the domesticated 
varieties.   

  Phenotypic variation   .   Th e phenotypes we examined in our GWAS 
can be classifi ed broadly into six categories: plant morphology-

related traits; yield-related traits; seed and grain morphology-
related traits; stress-related phenotypes; cooking, eating and nutri-
tional-quality-related traits; and plant development, represented by 
fl owering time, which we measured in three geographic locations 
that diff ered in day-length and ambient temperature. Canonical 
correlation analysis demonstrated that phenotypes within a cate-
gory are oft en correlated, ranging from a low of     −    0.41 between 
brown rice seed width and brown rice seed length, to a high of 
0.9 between hulled and dehulled seed morphology ( Fig. 2b ; 
 Supplementary Fig. S2 ). 

 For all the phenotypes evaluated in this study, we observed global 
similarities among members of the same subpopulation, consistent 
with the domestication and breeding history of these varieties. Cor-
relation coeffi  cients between accession pairs across all phenotypes 
were signifi cantly higher for accession pairs from the same subpop-
ulation than from diff erent subpopulations ( P     <    2.2e    −    16, one-sided 
Mann – Whitney  U -test) (lower triangle of  Fig. 2a ). Consistent with 
this observation, the top four PCs (based on the 44   K SNPs men-
tioned above) explained a large proportion of phenotypic variation, 
with values ranging from 20 – 40 %  ( Supple mentary Table S1 ). In the 
case of rice grain, morphological and cooking-quality traits are key 
to varietal identity and have been under strong diversifying selec-
tion by humans in diff erent parts of the world 18 – 21 . Physical grain 
characteristics in rice are salient because they serve as indicators of 
local and regional eating prefe rences in a crop that, unlike wheat or 
maize, is consumed largely as whole kernel. Traits such as fl owering 
time and disease resistance are also strongly correlated with region 
and environment, meaning that genotypic, phenotypic and envi-
ronmental variation in  O. sativa  are all correlated to some degree, 
posing signifi cant challenges for GWAS.   

  Th e strong confounding eff ect of population structure   .   Th e 
results of our genome-wide association scans are summarized in 
 Supplementary Figures S3 – S36  where we show SNP-trait associa-
tions discovered in the diversity panel as a whole, as well as in each 
subpopulation individually. As can be seen in the quantile – quan-
tile plots ( Fig. 3a ;  Supplementary Figs. S3 – S36 ), the distribution 
of observed     −    log10  P -values from the na ï ve analysis (no popula-
tion structure adjustment) departed quite far from the expected 
distribution under a model of no association (that is, the  P -values 
should lie on the diagonal line), with signifi cant infl ation of 
nominal  P -values leading to a high level of false positive signals. 
Use of a modifi ed mixed model strategy 22 – 24  allowed us to con-
sider diff erent levels of population structure and relatedness in our 
diversity panel. Th is eff ectively eliminated the excess of low  P -values 
for most traits, but it also likely eliminated true positives. Th is is a 
common problem seen in other systems as well; for example, geo-
graphic coordinates correlate closely with fl owering time in plants 24 . 
For this reason, we believe a combination of na ï ve and population 
structure-adjusted hits, coupled with subpopulation-specifi c analy-
ses in rice, is the most thoughtful way to identify potential variants 
for follow up. 

 Using the mixed model 23  to analyse the associations between 
34 phenotypes and 44   K SNP genotypes evaluated in our 413 
 O. sativa  rice lines, we successfully identifi ed both known asso-
ciations (for example, enrichment in a priori candidate genes and 

  Table 1      |    Polymorphism summary of Affymetrix 44   K SNPs in each subpopulation. 

       Aus      Indica      Tropical japonica      Temperate japonica      Aromatic / GroupV   

   Private SNPs  822  1,851  398  376  77 
   Polymorphic SNPs  23,270  30,449  24,813  14,688  12,059 
   MAF    >    =0.05  18,012  20,259  13,051  7,775  12,039 

     Private SNPs are unique to one specifi c subpopulation; Polymorphic SNPs are considered to be those that segregated in one specifi c subpopulation, irrespective of whether they also segregate in 
another subpopulation (they could also be polymorphic or fi xed in other subpopulations). MAF, minor allele frequency.   



ARTICLE

4 

NATURE COMMUNICATIONS  |    DOI:  10.1038/ncomms1467 

NATURE COMMUNICATIONS  |  2:467  |    DOI:  10.1038/ncomms1467   |  www.nature.com/naturecommunications

© 2011 Macmillan Publishers Limited. All rights reserved.

previously reported QTLs from rice and other species) as well as 
new candidate loci in the rice genome. Detailed results for each of 
the 34 phenotypes can be found in the  Supplementary Data 3  as well 
as online in the Gramene database ( www.gramene.org ) and on our 
project website ( www.ricediversity.org/44kgwas ).   

  Trade off s between the mixed model and na ï ve model   .   Plant 
height is an important developmental and yield-related trait. Dozens 
of genes regulating plant height in rice have been identifi ed previously 
including dwarfi ng mutants 25 , QTLs 12 , orthologues from other plant 
species, and genomic targets of fi ne-mapping experiments related 
to harvest index and yield 12,26 . Both the na ï ve and the mixed model 

consistently detected strong signal linked to the Green Revolution 
semi-dwarf gene,  SD1 , on chromosome 1 ( Fig. 3d ). Interestingly, 
several SNPs near other height-controlling genes such as  OsBAK1  
on chromosome 8 (ref.   27),  DGL1  on chromosome 1 (ref.  28 ) were 
only detected by the na ï ve approach ( Fig. 3d ). Th is suggests that, in 
the case of rice, the mixed model may overcompensate for popu-
lation structure and relatedness, leading to false negatives. Th ere-
fore, the many mapping resources derived from crosses between 
parents belonging to diff erent subpopulations and  Oryza  species 
will be needed to complement GWAS, helping to reduce the rate of 
false positives and false negatives 24 , yielding QTLs that cannot be 
identifi ed by mapping within subpopulations 29 .   
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(1-IBS, identifi ed by state) clustering with the tree shown on the right. The upper diagonal shows the IBS-sharing between individuals (values rescaled 
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  Genetic heterogeneity across subpopulations   .   In our diversity 
panel,  aromatic  varieties had the longest mean panicles (30   cm), 
 temperate japonica  had the shortest (21   cm),  aus  and  indica  had 
intermediate panicle length, and the greatest range of panicle length 
was observed among  tropical japonica  varieties ( Fig. 4a ). 

 To determine whether diff erent networks of alleles were 
associated with trait variation in the diff erent subpopulations, we 
per formed GWAS on each subpopulation independently and in the 
panel as a whole, and compared results. As summarized in  Figure 
4a,b , the genetic architecture of panicle length diff ers signi fi cantly 
among subpopulations and diff erent GWAS peaks are observed 
when the subpopulations are analysed individually or when 
the diversity panel is analysed as a whole. For example, in the 
 indica  population, we see clusters of highly signifi cant SNPs near 
 OsTB1  [ TEOSINTE BRANCHED1  (ref.  30 )],  SLR1  [ SLENDER RICE1  
(ref.  31) ] and  OsBRI1  [syn.  DWARF61 , or  BRASSINOSTEROID-
INSENSITIVE1  (ref.  32 )], in the  aus  subpopulation we observe 
signi fi cant SNPs near  FZP  [ FRIZZY PANICLE  33 ] and  SSD1  [ SWORD 
SHAPE DWARF1  (ref.  34 )], and in the  tropical japonica  popu lation, 
we see SNPs near  OsLIC [LEAF AND TILLER ANGLE INCREASED 
CONTROLLER  35 ] and  MOC1  ( MONOCLUM 1  (ref.   36)). 

 From these results, we conclude that diff erent networks of 
genes regulate panicle length in diff erent subpopulations and 
propose that subpopulation-derived genetic heterogeneity is a 
general pattern in  O. sativa . Th is suggests that the  Indica  and 

 Japonica  varietal groups should be properly treated as true sub-
species for association analyses, and helps explain why crosses 
between members of divergent subpopulations, as well as between 
cultivated and wild species, oft en give rise to transgressive off -
spring 37 . We also demonstrate that the subpopulations of  O. sativa  
contain alleles with vastly diff erent eff ect-size on many traits of 
interest (that is, allele eff ects that are in the opposite direction to 
mean subpopulation diff erences for those traits). Th is conforms 
to the general mechanism that explains the production of 
extreme, or transgressive, phenotypes at both the species level and 
below 37,38  and suggests a blueprint for harnessing natural vari-
ation to liberate transgressive phenotypes in the context of plant 
improvement.   

  Genotype by environment eff ects   .   To investigate how environmen-
tal variation aff ected the performance of GWAS, we evaluated fl ow-
ering time in three diff erent environments and compared results. 
One experiment was conducted during 2007 in the fi eld in Stuttgart, 
Arkansas, USA (34 ° 4 ′ ) under long-day conditions ( ~ 14 – 12   h during 
May – September); one was conducted in the fi eld in Faridpur, 
Bangladesh (23 ° 5 ′ ) under  ~ 12 – 13   h days (January – May); and the 
third was conducted in the greenhouse in Aberdeen, Scotland, UK 
(57 °    9 ′ ) across a nine-month period during which the days became 
very long and then very short (a range of  ~ 18 – 6   h during the 
period spanning March – December). Th e GWAS peaks explained 
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between 5 – 50 %  of the phenotypic variation for fl owering time in 
each environment ( Supplementary Data 4 ). As seen in  Figure 5a , 
10 genomic regions were associated with candidate genes for 
fl owering time under one or more daylengths while only the 
 HEADING DATE 1  ( HD1 ) region on chromosome 6 was detected 
in more than one environment. 

 Th e most signifi cant signal was observed under very long days 
in Aberdeen around  HD1 , the major photoperiod-sensitivity 
locus, (synonym:  SE1 , or  OsCONSTANS ,  OsCO ) on chromosome 6 
(ref.  39 ). A well-defi ned peak in the same location was observed 
under long days in Stuttgart, AR when either the entire diversity 
panel or the  temperate japonica  subpopulation was analysed. Th e 
signifi cant SNPs detected in Aberdeen covered an extensive region 
of  ~ 2.3   Mb around  HD1 , corresponding to a  ‘ mountain range ’  as 
described by Atwell  et al.  40  Th e  ‘ mountain range ’  distribution may 

be due to the presence of several linked genes that contribute to 
fl owering time across the region, and / or to the presence of multiple 
alleles at the  HD1  locus, along with multiple introgression events 
that have been documented within a 5.5   Mb region around the 
 HD1  gene 41 . In domesticated species like rice, loci that are critical 
to both local adaptation and yield performance are oft en the targets 
of both natural and artifi cial selection, leading to complex forms of 
allele sharing and admixture in diverse varieties. 

 Some varieties were highly sensitive to daylength and others, 
mostly  temperate japonica  accessions, were insensitive to photo-
period and fl owered at similar times across the three environ-
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   Figure 5    |         Genome-wide association scan for fl owering time. 
( a ) Genome-wide  P -values from the mixed model for fl owering time in 

three geographic locations are shown in the three panels. Association 

analysis in each subpopulation is shown in each row of the matrix.  X  axis 

indicates the SNP location along the 12 chromosomes, with chromosomes 

separated by vertical grey lines;  y  axis is the     −    log 10  ( P  value) from each 

method. Candidate genes previously shown to determine fl owering time 

near peak SNPs are shown along the top, rice genes are in red,  Arabidopsis  

homologues are in black. SNPs with  P  value     <    1 × 10     −    4  are indicated by 

coloured dots. SNPs within 200   kb range of known rice fl owering time 
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ments. When photosensitivity (the ratio of days-to-fl owering across 
pairs of environments) was used as a derived trait for GWAS, 
the most signifi cant SNPs ( P     <    10     −    6 ) were consistently found near 
 HD1 , followed by a region on chromosome 7 containing homo-
logues of  Arabidopsis  genes known to regulate the circadian rhythm 
[that is,  TIME FOR COFFEE, TIC  42 ] and light sensing [ PLASTIC 
MOVEMENT IMPAIRED 15 ,  PMI15  43 ] ( Fig. 5b ), which have not 
previously been shown to be associated with natural variation for 
fl owering time in rice. 

 We also demonstrate the eff ect of genotype by environment 
(GxE) interaction for fl owering time by comparing GWAS results 
over two years in the same location in Stuttgart, Arkansas ( Sup-
plementary Fig. S37 ). In this case, we observe extensive year-to-
year variation between 2006 and 2007, mostly due to the diff erent 
weather patterns experienced during the two growing seasons. Sev-
eral GWAS peaks associated with candidate genes are signifi cant in 
only a single year. Th e  HD1  locus was signifi cant in 2007, but not 
in 2006, though it was signifi cant using the average fl owering time 
from two years. 

 Although the genetic complexity and low heritability of fl ower-
ing time as well as several other traits evaluated here in fi eld grown 
plants ( Supplementary Figs S37 – S40 ) tend to confound the inter-
pretation of GWAS results, this study provides an opportunity to 

look carefully at a range of ecologically and agronomically impor-
tant traits evaluated under natural growing conditions and compare 
GWAS results with prior QTL and mutant studies to better under-
stand plant growth and development 44,45 .   

  Gene linkage or pleiotropy   .   A matrix summarizing the QTL 
regions associated with all traits, as well as the percent of the pheno-
typic variation explained by signifi cant SNPs for each trait, can be 
found in  Figure 6 . For many traits, the maximum-eff ect locus falls 
within a 200   kb region containing a previously identifi ed functional 
gene (as highlighted in  Fig. 6b  and summarized in  Supplementary 
Data 4 ). When our results are compared with those of Huang  et al.  5 , 
the same known genes showed clear signal for the same phenotypes 
(for example,  GS3  and  qSW5  for grain length and width,  SSII-3  
and  Waxy  for alkaline spreading value and amylose content,  Rc  for 
pericarp colour). Th e signifi cant SNPs in our study explained up to 
58 %  of the variance compared with values up to 68 %  reported by 
Huang  et al.  5  In addition, we evaluated traits not previously docu-
mented and identifi ed known genes associated with those traits (for 
example,  SD1  for plant height,  OsMADS13  for fl owering time and  
Pi-ta  for blast resistance). Th is demonstrates that our 44   K SNP array 
is capable of capturing the major common variants responsible for 
critical agronomic traits. 
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   Figure 6    |         Summary of trait associations across genomic regions and percentage of variance explained by signifi cant locus. ( a ) Each row represents 

a trait, and each column corresponds to a genomic region containing multiple SNPs that are signifi cantly associated with a trait. Signifi cance is colour-

coded based on the  P  value of the association. ( b ) The  x  axis represents the trait, the  y  axis shows the contribution ( % ) of signifi cant loci. Candidate genes 

detected within 200   Kb region of signifi cant loci are labelled on top of the maximum effect locus.  
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 In several cases, the same SNPs were signifi cantly associated 
with multiple traits. Th is could be the result of pleiotropy or closely 
linked genes (local LD) 46 . For example, we observed SNPs at 31   Mb 
chromosome 4 that were signifi cantly associated with both rice blast 
disease resistance and fl ag leaf width, and SNPs associated with 
rice blast disease resistance, amylose content and fl owering time 
at 4.2 – 4.6   Mb on chromosome 6. Th ese associations were also sup-
ported by Canonical correlation analysis based on traits measured 
in Arkansas ( Supplementary Fig. S2 ,  r     =        −    0.3 for blast resistance 
and fl ag leaf width,  r     =        −    0.31 for blast resistance and fl owering time, 
 r     =    0.37 for amylose content and fl owering time). Similar trait asso-
ciations have been previously reported in these and other regions 
in rice 47 – 49 . Linkage among favourable alleles is a strong determi-
nant of phenotypic value under both natural and artifi cial selec-
tion, a fact long appreciated by plant breeders. Validation studies 
involving joint linkage and association mapping, coupled with fi ne-
mapping to identify the exact genes and alleles underlying our 
GWAS hits, will be required to more clearly understand the relation-
ship between these candidate genes and the phenotypes observed 
in our panel 46 , as well as to provide breeders with the appropriate 
genomic tools needed to break deleterious linkages and liberate 
valuable alleles in this region.    

 Discussion 
 Th e deep population structure of  O. sativa  and its importance in 
explaining the heterogeneity of genetic architecture associated with 
most complex traits in rice underscores the value of using a world-
wide diversity panel to untangle the genotype — phenotype associa-
tions in the species. As demonstrated by our study, no single GWAS 
design or analysis method is suffi  cient to unravel the complex genet-
ics underlying natural variation in  O. sativa.  Th e na ï ve approach has 
high false positive rates, and, although the mixed model success-
fully reduces infl ation of  P -values, it oft en masks true QTLs that are 
strongly correlated with population structure. In cases where alleles 
segregate across multiple subpopulations, the mixed model has the 
best power to fi nd them. However, when alleles segregate in only 
one subpopulation, or totally diff erent alleles are present in diff er-
ent subpopulations, the na ï ve approach detects strong signals in the 
cloud of other, false signals, while the mixed model approach misses 
them entirely. As demonstrated by the IBS and Fst estimates, both 
divergence and heterogeneity among subpopulations is characteris-
tic of the genomic pattern observed in rice. Subdividing the diver-
sity panel to analyse subpopulations independently, using the mixed 
model, appears to provide a reasonable solution to this problem. 

 Given our marker density and sample size, this study is ade-
quately powered to fi nd alleles of large eff ect that are common across 
populations, but a larger panel coupled with higher density of SNPs 
would empower us to detect more QTLs of small eff ects. It is note-
worthy that some of the strongest signals are quite far from known 
candidate genes. Th is may be due, in part, to ascertainment bias 
where our best tag-SNP for a candidate gene is relatively far from 
the predicted locus, or we may be tagging previously undiscovered 
loci that happen to map near a known candidate. SNPs in high LD 
and with similar allele frequencies would give similar  P -values in 
association. Th e SNPs used in our study were discovered by array-
based re-sequencing of 20  O. sativa  accessions across  ~ 100   Mb of 
the genome 6 . Genetic variation discovered from deep next-genera-
tion sequencing in a larger number of accessions is likely to provide 
improved estimates of LD decay and more highly resolved views 
of local LD patterns in each subpopulation. Likewise, the integra-
tion of transcriptome data will improve our ability to detect moder-
ate strength and rare alleles, as well as to begin to dissect the GxE 
eff ects and provide better resolution for the hits found in this study. 
Recent work by Nicolae 50  suggests that many trait-associated SNPs 
are likely to be eQTLs, and, in the case of fl owering time, there 
is abundant molecular evidence showing that gene expression 

levels contribute directly to trait variation 44 . Th us, the trajectory of 
GWAS in rice is similar to advances in human genetics, where 
initial studies employed several hundred and then thousands 
of individuals for common alleles, and subsequent work has been 
necessary to fi nd associations with either rare alleles or alleles of 
smaller eff ect 51 . 

 Our results demonstrate that diff erent traits have diff erent 
genetic architectures. Th is refl ects the relative strength of environ-
mental and human selection, with corresponding impacts on the 
phenotypic contribution of maximum eff ect and the total number 
of signifi cant SNPs. In some cases, a few genes in a pathway may 
lead to major changes in adaption, such as  HD1 . In other cases, 
humans may exert selection in diff erent directions on the same 
gene(s), such as seed length ( GS3 ) 52  amylose content 21 , and aroma 19 . 
Where domestication-related loci are involved, we oft en see SNPs 
with large eff ect that are shared across diff erent populations 53 , and 
while they clearly distinguish  O. sativa  from its wild ancestors, these 
SNPs of large eff ect are oft en diffi  cult to detect in  O. sativa , because 
they are nearly fi xed in cultivated material. Other SNPs, even those 
with only small eff ects, may be clearly identifi able within individual 
populations. Th e subpopulation-specifi c allele distribution explains 
why crossing wild and domesticated rice, or one subpopulation with 
another results in transgressive variation in the progeny 37 . 

 Both linkage drag and pleiotropic eff ects of a target gene 
can be either benefi cial or troublesome in the context of plant 
breeding 54,55 , and it is helpful to understand the underlying genetic 
cause of multiple trait associations. In the case of blast resistance, 
many late-maturing, tropical  indica  varieties that are resistant to 
blast disease are used as donors to introduce disease resistance 
into susceptible, early maturing  temperate japonica  varieties 16 . 
However, undesirable traits such as late fl owering or inappropri-
ate grain quality, may be co-introduced along with the disease 
resistance 48 . Th e use of a broad diversity panel in GWAS not only 
serves to map associations between traits and DNA polymorphisms 
but also allows us to unravel the origin of genetic correlations 
among phenotypic traits, that is, pleiotropy versus genetically linked 
genes, and facilitates the selection of donors with combinations 
of traits that are likely to be adaptive and selectively advantageous 
for breeding in target environments. 

 We note that the rice diversity panel presented here represents 
an immortalized germplasm resource that is accompanied by both 
genotypic and phenotypic information ( Supplementary Figs S3 –
 S36 ). Th e seeds are publicly available through the Genetic Stocks 
 Oryza  center in Stuttgart, AR ( http://www.ars.usda.gov/Main/docs.
htm?docid=8318 ) or the International Rice Germplasm Collection 
at International Rice Research Institute in the Philippines ( http://
irri.org/our-science/genetic-diversity/get-and/or-submit-seeds ). 
Th is enables people around the world to leverage the results of this 
project as the basis for continued association mapping without 
incurring any genotyping expense. Th e purifi ed lines from this study 
can be used to generate MAGIC or NAM populations 56  to validate 
GWAS results and to further dissect the complex interaction among 
genes and environments that underlies quantitative variation in rice. 
Th e genotypic dataset and information about the 44   K SNP chip 
are publicly available ( www.ricediversity.org/44kgwas  and  www.
gramene.org ) and can be used to design more targeted SNP assays 
for immediate use in variety identifi cation, seed-purity testing, link-
age analysis, pedigree confi rmation and molecular breeding 57,58 . 

 Our work highlights experimental design strategies and chal-
lenges involved in fi nding genes underlying phenotypic variation 
and is relevant to other species initiating GWAS, especially those 
with deep population structure. By launching this GWAS platform, 
we aim to deepen our understanding of natural variation and its 
phenotypic consequences, and to open the door to more effi  cient 
utilization of the enormous wealth of diversity available in rice 
germplasm repositories around the world.   
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 Methods  
  SNP array development and SNP selection   .   We selected 44,100 SNPs from 2 data 
sources: SNPs from the  Oryza SNP project, an oligomer array-based re-sequenc-
ing eff ort using Perlegen Sciences technology 6  and BAC clone Sanger sequencing 
of wild species from OMAP project 59 . Priority was given to SNPs with the least 
amount of missing data across the 20 SNP discovery accessions in the  Oryza SNP 
project. SNPs were selected to tag all 159,879 high quality SNPs in the  Oryza SNP 
data (Intersection set) with criteria of  r  2     =    1 and a conservative tagging window size 
of 50   kb. To further fi lter the SNPs, Blast was performed using the 33   bp sequence 
fl anking each SNP to remove any SNPs that mapped to more than 1 location in 
the genome with fewer than 2 mismatches. Also, SNP targets were removed if 
there were SNPs detected within 15   bp of the target in the low-quality Union set 
(359,000 SNPs) in the  Oryza SNP dataset. Th is yielded 31,663 tagging SNPs. We 
then selected 8,437 SNPs from a pool of SNPs from the Intersection and Union sets 
of the  Oryza SNP data and another 4,000 SNPs from the OMAP dataset to fi ll in 
any gaps     >    20   Kb between the tagging SNPs. Th is generated a well-distributed SNP 
array providing  ~ 1 SNP every 10   kb along the 12 chromosomes of rice. Th e micro-
array data has been deposited in the NCBI dbSNP Database under the accession 
codes 469281739 to 469324700.   

  Target probe preparation and 44   K SNP array hybridization   .   Rice genomic 
DNA was extracted from young green leaf tissue following  Qiagen   plant 
DNeasy protocol . Th e probe was generated using the  BioPrime DNA labeling kit  
( Invitrogen ,  Cat. No: 18094-011 ), and hybridization conditions were based on the 
Aff ymetrix SNP 6.0 protocol. Approximately 750    μ g to 1    μ g of rice genomic 
DNA was labelled overnight at 25    ° C using 3 vol of the BioPrime DNA labelling 
reactions. Th e labelled DNA was ethanol precipitated, resuspended in 40    μ l H 2 O, 
and then added to the Aff ymetrix SNP 6.0 hybridization cocktail. We did not 
include Human Cot-1 DNA because of the small size of the rice genome and the 
fact that it has a much smaller proportion of repetitive DNA compared with 
human or other mammals for which the assay was originally optimized.   

  SNP genotype calling   .   Genotypes are called using our program ALCHEMY, 
which was designed to provide improved performance in small sample sizes and 
for inbred populations with very low levels of heterozygosity 60 . SNPs with low 
quality (that is, low call rate and allele frequency) across all samples were removed 
from the dataset and 36,901 high-performing SNPs (call rate     >    70 % , minor allele 
frequency     >    0.01) were used for all analyses. Of these SNPs, inbred samples had a 
median call rate of 95.9 %  and pairwise concordances between technical replicates 
yielded     >    99 %  average pairwise concordance and     >    92 %  average call rate.   

  Plant materials   .   Th e Rice Diversity Panel consists of 413 Asian rice ( O. sativa ) 
cultivars, including many landraces, which originated from 82 countries, repre-
senting all the major rice-growing regions of the world 15 . Th e panel contains 87 
 indica , 57  aus , 96  temperate japonica , 97  tropical japonica , 14  groupV / aromatic , and 
62 highly admixed accessions. All accessions were purifi ed for two generations 
(single seed descent) before DNA extraction. In all, 20 of these 413 accessions were 
purifi ed as part of the  Oryza SNP project 6 . Six cultivars (Azucena, Moroberekan, 
Nipponbare, Dom-Sofi d, IR64, M-202) were purifi ed separately, once by Ali  et al.  15  
and once as part of the  Oryza SNP panel. Further information for each accession 
(accession name, accession number, country of origin and subpopulation ancestry 
based on PCA) is given in  Supplementary Data 1 .   

  Phenotypic evaluation and correlation among individuals   .   Rice accessions 
were evaluated in the fi eld at Stuttgart, Arkansas during the growing season 
(May – October) in 2006 and 2007. Two replications per year were grown in a 
randomized complete block design in single-row plots of 5   m length with a spacing 
of 25   cm between the plants and 0.50   m between the rows. A brief description 
of each trait, its acronym, and evaluation methodology are summarized in 
 Supplementary Table S1 . Phenotypic correlations between individuals were 
calculated based on all phenotypes used in our study.   

  Estimation of LD decay in rice   .   Th e amount of genomic variation tagged by our 
SNP array was calculated by measuring the pairwise SNP linkage disequilibrium 
(LD) among the 44   K common SNPs (with MAF    >    0.05) using  r  2 , the correlation in 
frequency among pairs of alleles across a pair of markers. For all pairs of autosomal 
SNPs,  r  2  was calculated using the --r2 --ld-window 99999 --ld-window-r2 0 com-
mand in PLINK 61 . Of the more than 44,100 SNP variants we assayed, we found 
34,454 ( ~ 78 % ) with minor allele frequency     >    0.05 across the  O. sativa  panel. When 
calculated across the entire  O. sativa  panel, LD is small at short distances ( r  2     <    0.45 
at 5   kb) but then decays more slowly, and still shows substantial residual LD at a 
distance of 2   Mb, refl ecting the deep subpopulation structure ( Supplementary 
Fig. S2 ). Within each subpopulation, we calculated  r  2  between all pairs of SNPs 
where both SNPs had     <    20 %  missing data and MAF  ≥  5 % .   

  Population structure   .   Principal component analysis was done using EIGEN-
SOFT 14 . PC1 separates the samples into two main subspecies-  Indica  and  Japonica  
and explains 34 %  of the genetic variance whereas PC2 separates  indica  from  aus  
and explains 10 %  of the variance. We fi nd that PC3 separates the two  japonica  

groups into temperate and tropical components ( ~ 6 %  of the variance), and 
PC4 identifi es the  aromatic  group as a clear and distinct gene pool ( ~ 2 %  of the 
variance). (1- IBS) values were used as the distance between individuals to con-
struct the hierarchical clustering tree using complete linkage method in  Figure 2a .   

  Genome-wide association   .   Association analyses were performed with and with-
out correcting for population structure. A mixed model approach implemented 
in EMMA 22  was used to correct the confounding of population structure. Th e 
relatedness matrix, measured as the genetic similarity between individuals and 
IBS values (that is, proportion of times a given pair of accessions had the same 
genotype across all SNPs), was used to estimate random eff ects. For all samples, 
SNPs and the top four PCs were used as fi xed eff ects; for association analysis within 
each subpopulation, only SNPs were used as fi xed eff ects in the model. For analyses 
without confounding, simple linear regression or logistic regression was used for 
continuous and binary traits, respectively. All statistical model details are described 
in the  Supplementary Method . Unless explicitly mentioned, when two-year data 
were available, mean values across replicates and years of phenotypes were used in 
association analysis throughout the paper. To examine the eff ect of  ‘ year ’  on GWAS 
results, we introduced  ‘ year ’  as a covariate in the mixed model, along with the SNPs 
and 4 PCs. We graphed the correlation between  P -values using the two-year-phe-
notypic mean and using  ‘ year ’  as a cofactor in the model for fl owering time and 
fl ag leaf length ( Supplementary Fig. S41 ). When examining GxE eff ects across loca-
tions, only 2007 fl owering time data from Arkansas was used for consistency with 
single-year data from the other locations. Candidate genes near hits were extracted 
from the literature. Rice homologues of Arabidopsis fl owering time genes were 
extracted from the Gramene Database ( www.gramene.org ).   

  Phenotypic variance contribution of signifi cant loci   .   To obtain signifi cant loci 
from EMMA for each phenotype, all signifi cant SNPs within 200   Kb were consoli-
dated into one lowest  P -value SNP to remove linkage disequilibrium. Large LD 
regions such as  Hd1  were also consolidated into one single, most signifi cant SNP. 
Only continuous traits were considered for variance contribution estimation. SNP 
contribution to the phenotypic variance was estimated using ANOVA with the R 
package; statistical model details are provided in the  Supplementary Method .                        
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