
Citation: Graf, A.; Woodhams, A.;

Nelson, M.; Richardson, D.D.; Short,

S.M.; Brower, M.; Hoehse, M.

Automated Data Generation for

Raman Spectroscopy Calibrations in

Multi-Parallel Mini Bioreactors.

Sensors 2022, 22, 3397. https://

doi.org/10.3390/s22093397

Academic Editor: Anna Chiara De

Luca

Received: 6 March 2022

Accepted: 27 April 2022

Published: 28 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Automated Data Generation for Raman Spectroscopy
Calibrations in Multi-Parallel Mini Bioreactors
Alexander Graf 1 , Angus Woodhams 2, Michael Nelson 3, Douglas D. Richardson 3 , Steven M. Short 3,
Mark Brower 3 and Marek Hoehse 1,*

1 Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Goettingen, Germany;
alexander.graf@sartorius.com

2 Sartorius Stedim TAP, York Way, Royston SG8 5WY, UK; angus.woodhams@sartorius.com
3 Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA; michael.nelson@merck.com (M.N.);

douglas.richardson14@merck.com (D.D.R.); steven.short@merck.com (S.M.S.);
mark_brower@merck.com (M.B.)

* Correspondence: marek.hoehse@sartorius.com

Abstract: Raman spectroscopy is an analytical technology for the simultaneous measurement of
important process parameters, such as concentrations of nutrients, metabolites, and product titer
in mammalian cell culture. The majority of published Raman studies have concentrated on using
the technique for the monitoring and control of bioreactors at pilot and manufacturing scales. This
research presents a novel approach to generating Raman models using a high-throughput 250 mL
mini bioreactor system with the following two integrated analysis modules: a prototype flow cell
enabling on-line Raman measurements and a bioanalyzer to generate reference measurements with-
out a significant time-shift, compared to the corresponding Raman measurement. Therefore, spectral
variations could directly be correlated with the actual analyte concentrations to build reliable models.
Using a design of experiments (DoE) approach and additional spiked samples, the optimized work-
flow resulted in robust Raman models for glucose, lactate, glutamine, glutamate and titer in Chinese
hamster ovary (CHO) cell cultures producing monoclonal antibodies (mAb). The setup presented in
this paper enables the generation of reliable Raman models that can be deployed to predict analyte
concentrations, thereby facilitating real-time monitoring and control of biologics manufacturing.

Keywords: Raman spectroscopy; mini bioreactor; process development; mammalian CHO cell
culture; process analytical technology (PAT)

1. Introduction

Protein-based biologics are becoming increasingly complex in terms of molecular
attributes and the cell culture process required to manufacture them. A number of process
development and technical transfer stages are required to optimize the product titer and
critical quality attributes (CQAs) of biotherapeutics, before they can be delivered to patients.

Automated mini bioreactor systems have proven their potential for process optimiza-
tion and development in several studies, as they are designed to have similar geometry to
those found in pilot and commercial scale bioreactors [1]. These platforms have also been
shown in scale-up studies to generate comparable cell growth and protein titer profiles up
to the 3000 L scale [2,3]. Furthermore, the technology has been proven via several studies
to have comparable performance to benchtop bioreactors [3–5] and has also been shown to
be a qualified scale-down model (SDM) for commercial scale mAb production [6]. Thus,
the process development is made much faster and, in turn, significantly shortens the time
to clinic and consequently time to market.

Critical process parameters (CPPs), such as nutrient and metabolite concentration and
protein titer in the cell culture, are mostly detected off-line, requiring regular sampling of
the bioreactor. The need to routinely sample the bioreactor, which is typically restricted to
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trained laboratory staff, is both time- and labor-intensive. Additionally, the risk of bioreactor
contamination during sampling is a common concern [7]. Finally, off-line sampling typically
occurs at 24-h testing intervals, rendering direct process control of the measured analytes
within relatively tight action limits not possible.

Raman spectroscopy is a well-suited PAT tool to nondestructively measure cell culture
analytes in-situ, using immersion probes or flow cells. This vibrational technique uses
a laser to generate monochromatic light that will scatter when interacting with complex
biological samples. The inelastic scattered light yields structural information regarding
the covalent bonds of the interrogated molecules with high molecular specificity and
robustness. Raman spectroscopy has been widely adopted in biomanufacturing as a mul-
tipurpose analytical technique [8] for real-time monitoring of cell culture performance
parameters, such as glucose, glutamine, glutamate, lactate, viable cell density (VCD) and
product titer [9–12]. Additionally, Craven et al. [13], Berry et al. [14] and Rowland-Jones
and Jaques [15] have monitored glucose via on-line Raman measurement, and Matthews
et al. [16] have used Raman lactate measurements with feedback control to maintain glucose
and lactate, respectively, at constant concentrations in CHO cell cultures. A study by Berry
et al. [17] exemplified that Raman spectroscopy can be used to maintain glucose at low
concentration levels in CHO cell cultures, which in turn reduced glycation in the mAb
product from ~9% to 4%.

In-line Raman spectroscopy is mainly used with pilot and manufacturing bioreac-
tors, due to scale limitations of the spectroscopic devices. More recently, preliminary
studies suggest that this technique has the potential to be integrated in micro bioreactors
(15 mL working volume) via automated routines to simultaneously measure multiple
metabolites [15,18]. Presently, the largest barrier to the proof of this concept is the lack of
an integrated reference system (e.g., glucose measurement used to construct the Raman
calibration model), which in turn requires the use of off-line referencing systems that intro-
duce model error as a result of the mismatch between the time of spectral acquisition and
the reference measurement. Therefore, mini bioreactors featuring a robust, scalable, and
fully integrated sampling and spectroscopic platform with automated solutions for liquid
management, data acquisition, data alignment, and data export offer significant benefits.
This minimizes manual intervention, de-risks bioreactor contamination, and mitigates the
extensive work to compile calibration datasets that can otherwise be read by multivariate
data analytics software. With this approach, a cost-efficient spectroscopy implementation
is combined with the benefits of automation and data management, resulting in an efficient
system for data generation and model building.

The creation of a robust Raman spectroscopy model that is applicable to production
scales relies on the deployment of calibration models that correlate spectral signals with ana-
lytical measurements. As reviewed by Tulsyan et al. [19], constructing a quantitative model
involves several critical steps. Initially, well-characterized spectral and analytical datasets
are collected for cell culture parameters of interest, either from experiments in small-scale
(benchtop) bioreactors or larger scale production bioreactors. Data pre-processing is sub-
sequently performed to improve the signal-to-noise ratio and/or to reduce disturbances
and to minimize equipment variations from the probe heads or spectrometers. In the
penultimate step, these data are modeled using multivariate statistical methods, such as
orthogonal partial least squares (OPLS), to correlate the spectral data to the parameter(s) of
interest. Finally, the model is utilized for monitoring and control applications.

Good scientific practice for robust Raman model building relies on testing multiple
cell culture parameters, ideally utilizing a design of experiments (DoE) approach, to obtain
statistically relevant data. This includes challenging the model using independent datasets
(i.e., those not used to construct the model) to determine if unknown correlations or trends
are compromising performance. This is of particular importance for upstream bioprocesses,
as nearly all analyte trends correlate with other analytes or with batch maturity. Ideally,
this is accomplished by varying the process analyte conditions, such that the analyte targets
fluctuate independently from one another. However, this may not always be practical
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and can be augmented with spiking studies, where pure analytes of interest are added to
the bioreactor to build in the required spectroscopic dynamic range. The latter results in
step changes of single analyte trends only being valid for the spiked analyte alone. Thus,
producing a well-fitted, predictive Raman spectroscopy model can be time-consuming and
costly in terms of the required media, reagents and staff resources, which ultimately can
have a deleterious impact on commercialization timelines for biologics, such as monoclonal
antibodies (mAbs).

In a typical example of a standard workflow for Raman model building, one study
ran 37 separate production runs of a fed-batch bioprocess, ranging from a 2 L shake flask
up to a 5000 L bioreactor [11]. They acquired measurements at 12 different (time) points
across each run for a total of 444 data points to construct their Raman model. This kind
of study is not only time-consuming but is also very expensive, particularly at larger
scales (media costs alone are around €100,000 for a 2000 L run). Furthermore, executing
model building runs in production environments is almost impossible, as induced process
variations would require the batch to be discarded due to suboptimal quality attributes
for the end biological product. Therefore, a robust Raman model is currently achieved by
monitoring dozens of production runs and arbitrary (smaller) variations of in-specification
batches, with considerable value being introduced when unfortunate out-of-specification
events occur during routine manufacturing.

Utilizing a small-scale bioreactor setup enables the use of sound experimental design
methodologies to induce variations at acceptable costs, while one run consisting of twenty-
four bioreactors yields a larger and more robust design space compared to many more
large-scale production batches, consisting of only arbitrary variations. If this model can be
transferred to larger scales (e.g., by adding a few points from larger scales), the robustness
of the low effort small-scale bioreactor model is made available for applications across
all scales.

This study describes the implementation of a prototype Raman flow cell in a 250 mL
mini bioreactor system, ultimately paving the way to monitor and control key process
and product attributes during small-scale cell culture manufacture. The system described
herein enables automated bioreactor sampling and reference measurements paired with
on-line Raman spectroscopy, which facilitates robust model building through the analysis
of induced process variations, according to DoE principles and automated spiking experi-
ments. The prototype Raman spectroscopy probe head connected to the flow cell utilizes an
optical interface that can also be found in single-use bioreactors at 50 to 2000 L scale, which
facilitates the scalability of the Raman model. The application of this PAT tool across the
scales has the potential to rapidly deliver high quality data during process development,
which could later be applied to commercial manufacturing for on-line monitoring and
control of large-scale bioreactors.

2. Materials and Methods
2.1. Experimental Setup, Raman Spectroscopy Integration Prototype and Reference Measurements

An automated 250 mL bioreactor system with 24 vessels (Ambr® 250 High Throughput,
Sartorius, Royston, UK) was equipped with an integrated analysis module, including
a prototype Raman flow cell, to enable automated spectroscopic Raman measurements
and with an integrated cell culture analyzer to enable reference measurements. The liquid
handling capability of the analysis module was extended by adding a prototype optical
flow cell (1 mm path length, sapphire windows, ~40 µL volume) (Figure 1). The entrance
to the flow cell was connected to the sample cup, while the exit port was diverted to
a waste bottle.

Culture samples from the mini bioreactors were analyzed using an integrated Bioprofile®

FLEX2 (Nova Biomedical Corporation, Waltham, MA, USA) automated cell culture analyzer
with an External Sample Module (ESM), which managed and transferred samples (0.5 mL)
for pH, pCO2, pO2, VCD, glucose, glutamine, glutamate, lactate, and ammonium analysis.
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Figure 1. Experimental setup: schematic diagram of the automated 250 mL mini bioreactor system
(Ambr® 250 high throughput, Sartorius, Royston, UK) with a prototype Raman flow cell (path length
1 mm; internal volume ~40 µL) integrated into the Ambr® analysis module, enabling automated
Raman spectroscopy and an integrated reference measurement system (BioProfile FLEX2, Nova
Biomedical Corporation, Waltham, MA, USA).

Titer reference data were generated upon the completion of the experiment, by analyz-
ing refrigerated cell-free bioreactor samples from select process days via Protein A affinity
high performance liquid chromatography (ProA HPLC).

A prototype optical probe head was connected to the flow cell and HyperFlux PRO
Raman Spectroscopy system (Tornado Spectral Systems, Toronto, ON, Canada). The latter
was also connected to an Ambr® 250 system for the automated generation of Raman spectra.
The Ambr® 250 software was modified to allow instrument control of the Raman spectrom-
eter (start/stop measurement) and the transfer of spectral data from the spectrometer to
the bioreactor control software. These data were then merged with relevant bioreactor data
(e.g., vessel number, sample ID, batch ID, sampling time, batch age, and reference data)
and jointly exported as a CSV file for statistical analysis and model building.

2.2. Cell Lines and Media

A Chinese hamster ovary (CHO) cell line expressing an IgG4 monoclonal antibody
(mAb) was used for the cell culture experiments. The cells were expanded and subsequently
cultured in proprietary, chemically defined basal media. Starting from a cryo-vial thaw, the
cells were serial passaged into consecutively larger shake flask cultures, until a desired cell
count was achieved to inoculate the 250 mL bioreactors at the specified seeding densities.

2.3. Cell Culture and Data Acquisition Process

To produce statistically relevant data for robust Raman Spectroscopy model building,
a run was performed in the Ambr® 250 high throughput mini bioreactor system (Sartorius,
Royston, UK), utilizing 24 mini bioreactors at a working volume of 180–250 mL. As for
the standard settings, the bioreactors were operated at a 36.5 ◦C, 400 rpm stirring speed,
and a dissolved oxygen (DO) of 30% air saturation for 14 days. The pH was controlled
between 6.8 and 7.1, with CO2 sparging to decrease the pH and the addition of an NaOH
base to increase the pH as needed. Proprietary, chemically defined feed media were added
throughout the run, based on the daily metabolite readings in the reactors. The feed
regimen was based on a combination of continuous and bolus feeds, as described in the
work by Manahan et al. [6].
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For the process run, a design of experiments (DoE), analogous to the one that was
used during standard commercial process development, was replicated for this case study
(Figure 2A). The process parameters of initial cell density, daily glucose feed target, pH
setpoint, and DO setpoint were controlled and deliberately varied in sixteen vessels, while
the remaining eight vessels were kept at the standard process settings mentioned before for
control replicates. Automated reference measurements were carried out using an integrated
Bioprofile® FLEX2 as previously described. This experimental setup was chosen in order to
demonstrate that Raman data generation can be accomplished in tandem with a standard
commercial process development experiment, to take advantage of the wide range of
metabolite and product titer profiles generated from the experimental design. In general,
the presented approach is also feasible in other experimental set-ups, such as OFAT trials.
However, this may result in lower variations within some of the analytes and lead to
inferior model performance or the need of additional runs.

Figure 2. Experimental design and data acquisition of Ambr® 250 runs to generate Raman spectra
and reference analyte data. (A) In 16 DoE vessels, inoculation density, as well as glucose, pH and
dissolved oxygen setpoint were varied, while process settings were kept constant in the 8 Golden
Batch vessels, which served as control replicates. (B) Schematic diagram illustrating automated data
acquisition and duration. Notably, the time gap between the FLEX2 reference measurement and
Raman spectroscopy of the non-spiked sample is only 5 min. (C) Schematic diagram illustrating that
automated spiking leads to increased model robustness and validity.

Sequentially, during this high-throughput study, Raman spectra were periodically
acquired from bioreactor samples both before and after being spiked (spiking from day
six onwards), with known concentrations of key analytes (Figure 2B,C; Table S1). A total of
48 samples (24 unspiked and 24 spiked) were collected on a daily cadence and analyzed
via Raman spectroscopy. All the spectroscopy related liquid handling was automated and
performed overnight to not interfere with the standard daily sampling and control, as well
as feeding. For spiking, one sample per vessel (140 µL) was taken and mixed with one
volume of one of the following analytes: glucose, lactate, glutamine, or glutamate (nominal
spiking volume 20–60 µL of analyte stock solution), as well as purified “mAb1” protein
product (generated from previous experiments), according to the scheme shown in Table S1.
The spiked samples were mixed in a microwell plate directly before analysis via Raman
spectroscopy. As the spiking solution is composed of a different matrix to the bioprocess
sample, the addition of high amounts of the stock solution may lead to a significant change
in the spectrum compared to the unspiked sample and in turn, lead to more outliers or
offsets, but neither were observed (Figure S1A) in Supplementary Materials. Two stock
solutions, one lower and one higher in concentration, were prepared for each analyte to
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generate an equally distributed range. The precise concentrations of stock solutions varied
for each analyte, depending on the normal process range between 4 and 32 g/L. Spiking
studies were used to break the correlations between the different analytes of interest, as well
as with batch maturity. Since the spiking of one analyte at a time leads to the decrease in all
the other analytes, this could possibly introduce new correlations. To minimize this effect,
high stock solutions as well as different combinations of stock concentration and spiking
volumes were utilized. As previously reported by Rowland-Jones, Graf et al., the positive
effects of breaking correlations are far stronger than any newly introduced ones [18].

The sampling scheme consisted of one reference measurement per vessel, followed by
the acquisition of spectra from an unspiked sample, and finally from the spiked sample, as
shown in Figure 2B.

The FLEX2 reference measurements were used to align with spectra from the unspiked
samples. The concentrations of the spiked samples were automatically calculated by the
Ambr® software, using both the reference value of the unspiked sample combined with
the concentration and volume of the added stock solution. To minimize errors that stem
from the liquid handling system, the systematic offset of the pipetting at the relevant
volumes was determined in advance and used for these calculations (Table S1). If necessary,
different amounts of air in the sample, e.g., due to foaming, could be programmed into the
liquid handling system. Within this study, foaming was not a source of disturbance, just as
changing viscosities within the samples, e.g., due to increasing cell counts.

The reference measurements for the mAb1 protein titers were more limited, since
the integrated FLEX2 had no protein titer assay. Therefore, an additional unspiked set
of samples from each bioreactor was taken on every second day over the duration of the
cultivation and one further set of spiking samples just on day four. For this analyte, the
spectra were captured directly after sampling automatically, similar to before, while all titer
reference data were generated upon the completion of the experiment, by analyzing the
refrigerated cell-free bioreactor samples via ProA HPLC. To align the spectra and reference
values, the latter were first manually normalized to the highest value and then matched by
vessel number and timepoint to the corresponding spectrum within SIMCA 16 (Sartorius
Data Analytics AB, Umea, Sweden).

Overall, the single run produced a theoretical total of 528 Raman spectra from 24 ves-
sels measured daily without spiking and including the additional spectra of the spiking
samples from day six onwards.

2.4. Raman Spectroscopy Measurement

All measurements were acquired using a HyperFlux PRO Raman Spectroscopy sys-
tem (Tornado Spectral Systems, Toronto, ON, Canada), equipped with a 785 nm laser for
excitation set at 495 mW. As previously described, the system was controlled by the Ambr
software. Here, the overall measurement time per sample was set to 5 min, which was
comprised of an average of five separate 1 min spectra taken from one sample (calculation
within the Ambr software (BioPAT Spectroscopy Data Manager, Sartorius, Royston, UK)).
Each 1 min spectrum was, in turn, averaged from x spectra measured at a set integra-
tion/exposure time It within the spectrometer control software. The increase in fluores-
cence throughout the run required a reduction in It to not risk sensor saturation. Thus, the
averaging (avg) was adapted by the operator accordingly, to guarantee an acquisition time
of 1 min in all cases (e.g., It = 0.2 s, avg = 300; It = 1 s, avg = 60). Maintaining the overall
acquisition time similar ensures that the signal to noise ratio within each spectrum stays
identical; therefore, the spectrum can be recalculated to the initially longer exposure time
without a loss of sensitivity. The design of the measurement chamber was optimized to
block any direct incoming ambient light; however, a dark scan was performed prior to each
sample measurement to mitigate the impact of any variations in ambient light that might
have strayed into the sample chamber.
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2.5. Multivariate Raman Model Construction

Orthogonal partial least squares (OPLS) regression models were developed from
acquired Raman spectra which were correlated to standard reference measurements per-
formed using the integrated FLEX2 bioanalyzer or the ProA HPLC for the mAb titer.
Spectral and reference data were first aligned within the Ambr® software in an automated
fashion, followed by averaging five spectra from each sample (each spectrum having a total
acquisition time of one minute) to improve the signal-to-noise ratio.

Initially, before data pre-treatment, the raw spectra were scanned to exclude aberrant
measurements (e.g., due to an empty measurement chamber), by checking the overall
intensity and that of the water bands in particular. Due to the different levels of fluorescence
background, all spectra were then baseline-corrected with an asymmetric least-squares
algorithm [20] (Figure S2B), as this correction method proved to be superior to the standard
pre-treatment with standard normal variate (SNV) and first derivative analysis. The water
band at 1650 cm−1 was utilized to normalize all spectra, and therefore correct the potential
variations that were not caused by the process itself, but to other confounding factors
(Figure S2C). Examples for these disturbances are small air bubbles still present in the
measurement chamber, or differences in the optical sampling volumes, due to varying cell
densities. As described in several studies, the Raman water signal can be exploited for this
task very reliably [10,18,21]. As the sample mainly consists of water, small peaks from other
analytes that may be present in this region can be neglected. All pre-treatments were done
in Python 3 with the help of the numpy, pandas, and rampy module and similar modules
for these pre-treatments can also be found in R.

After pre-treatment, the spectra and reference data were transferred to SIMCA 16 Mul-
tivariate Data Analysis software (Sartorius Data Analytics AB, Umea, Sweden). A PCA
model was built to identify the possible outliers outside the Hoteling’s T2-boundaries in the
score plot, which might have been missed in the previously mentioned investigation. Any
remaining outliers were identified at a later stage of model building, using the observed vs.
predicted plot after verification with their distance to the model (DmodX) value. While
a completely empty measurement chamber is easy to detect, these additional outliers can
stem from several minor reasons. These causes include sub-optimal sample transfer into
the measurement chamber and, therefore, some amount of air or tiny air bubbles is still
present, which obscures the measurement. Depending on the ratio and position of the
air in relation to the laser focus, in some cases, this can be corrected by the water band
normalization. Other reasons for outliers can be miss-measurements of reference analytics,
or falsely calculated analyte concentrations after spiking, due to bad mixing of the sample.
In summary, the overall number of outliers stayed well below 5%.

Quantitative models for the different analytes of interest were generated with the
help of an OPLS algorithm. The X-block consisted of the spectral variables that were
mean-centered, while the Y-block was composed of the scaled (unit variance) reference
measurements. OPLS, instead of classic PLS, was chosen, as it increases the model in-
terpretability while maintaining the same predictive power. This increase is achieved by
removing variance in the X-Block (i.e., the spectra), which has no correlation to the varia-
tion in the Y-Block (i.e., the reference data) or in mathematical terms, removing systematic
variation in X that is orthogonal to Y. This results in a model that consists of one predictive
component (as one model is built for each Y-variable separately) and a number of orthog-
onal components that can differ in each model [22,23]. Each model is, thus, denoted by
1 + x principal components. To further reduce the impact of the correlations between the
analyte trends and batch maturity, the spectral regions for each analyte were matched to
those that were found to be unique to the analyte of interest in previous trials [18] (Table S2).
In this case, DoE studies with mixtures of the main analytes were performed to determine
the unique spectral regions of interest for each analyte. Additionally, these lab trials using
a simplified system (accurate concentrations in buffer/water) are good indicators of the
maximum achievable performance of the technique. Lower prediction errors in cell culture
than in the lab DoE are an indicator for in-process correlations that help to decrease the
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prediction error; however, models with this prediction error profile bear the risk of model
failure, as future changes to the process may invalidate these correlations that the model
is highly dependent on. Even though model building relies on the user’s experience,
especially when it comes to overfitting, certain (statistical) tools can be used as a basis
for selecting an optimal model. The goodness of fit (R2) and goodness of prediction (Q2)
should be as high as possible, while simultaneously minimizing the difference between
them. Differences larger than 0.3 can indicate either the presence of outliers in the dataset,
which may have sufficient justification to be omitted from the dataset, or that the model
is overfit, requiring one or more model components to be removed in order to enhance
accuracy and long-term robustness [23].

Several performance metrics, such as the root mean square error evaluation (RMSEE)
and the root mean square error of cross-validation (RMSEcv), are essential markers for
the estimation of model error. While the RMSEE shows how well the model performs,
the RMSEcv indicates how well the model can predict future datapoints, given that this
data does not deviate significantly from the original dataset. Both of these error values
should be as low as possible, while simultaneously minimizing the difference between
them, as larger divergences between the two metrics indicates the overfitting of the model
to the available data. The two values are calculated as follows, with n being the number
of samples in the model, yi denoting the observed reference value, and ycal, and yCVpred,
representing the predicted values from the model and cross-validation, respectively:

RMSEE =

√
∑

(yi − ycal)
2

n
(1)

RMSEcv =

√√√√
∑

(
yi − yCVpred

)2

n
(2)

The cross-validation (CV) groups must be consciously selected for the RMSEcv to be
a reliable measure of model performance. For example, the selection of a high number
of CV groups results in a lower number of samples that are left out of testing during the
cross-validation routine, ultimately serving as a weaker challenge to the model under
consideration. The reader is directed to a study by Eriksson et al. [23] for additional
information on how cross-validation works and its associated advantages and limitations.

Consequently, the trial dataset was split into four CV groups according to their vessel
number. Therefore, complete batches were left out of the sub-models of the cross-validation
routine. The selection of four CV groups was determined to be a good compromise
between omitting too many samples (leading to highly inaccurate CV models) and leaving
out too few samples (therefore not stressing the model enough) to obtain dependable
RMSEcv values. Additionally, cross-validation with full batches can also be understood as
an average of four external datasets yielding a better overview of the model performance
when challenged with fully independent datasets, as opposed to using a single external
test set with 75% of batches and predicting the remaining 25% of vessels.

3. Results and Discussion
3.1. Data Generation with the Experimental Prototype

For a fully automated sample analysis, an Ambr® 250 was modified to integrate
both a FLEX2 metabolite analyzer and a HyperFlux PRO Raman Spectroscopy system,
equipped with a second-generation prototype probe head and a novel micro-volume flow
cell (Figure 1). The analyte concentrations, measured via the integrated FLEX2, were used
as the reference points for the development of the predictive Raman model. Multiple
actions were required to complete the analysis of the cell culture samples, including (i) the
withdrawal of a sample from the mini bioreactor via the automated liquid handler, (ii) the
distribution of the sample to the FLEX2 analysis module via the External Sample Module
(ESM), (iii) the release of the sample into the analysis module (AM) sample cup, (iv) the
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discard of the residual sample into the ESM waste, and (v) a cleaning cycle with standard
washing liquids to prevent sample carry over.

Antibody titer reference measurements were generated via an off-line ProA HPLC
analysis of the clarified daily sample retains.

The wavelength axis of the spectroscopy instrument was first calibrated with a mercury-
argon lamp (HG-1, Ocean Optics, Orlando, FL, USA). The white light spectrometer calibra-
tion (also referred to as y-calibration or intensity calibration) included the complete optical
path by back illumination via a separate fiber connection of the probe head, connected to
a tungsten halogen light source (HL-2000, Ocean Optics, Orlando, FL, USA). Reference
samples were automatically taken and measured by the integrated FLEX2 system imme-
diately prior to the Raman measurement. The analysis of a cell culture sample from each
mini bioreactor for Raman measurements involved the liquid handler withdrawing and
releasing the sample into the AM sample cup. With the help of an integrated syringe pump,
the sample was transferred to a flow cell for Raman measurements. To prevent sample
carryover, the sample was discarded following spectral analysis and a cleaning cycle was
initiated with standard AM washing liquids.

The spiked samples required manual manipulation by the robotic liquid handler. First,
a cell culture sample (~250 µL) was dispensed into a microwell plate. Then, a certain
volume of stock solution was aspirated in a tip, followed by the aspiration of 140 µm of the
cell culture sample in the same tip. Next, the cell culture sample and stock solution were
mixed in a different well by pipette aspiration and release, and finally transferred to the
sample cup for delivery to the flow cell for spectral analysis.

The acquired spectra from the unspiked samples were time-aligned with FLEX2
measurements to merge the two datasets. The concentration of spiked samples was au-
tomatically calculated in the Ambr® system software, using the reference value of the
unspiked sample and accounting for the spike itself (i.e., volume addition and stock so-
lution concentration). The careful integration of the software and hardware components
yields negligible time differences between the reference and spectral measurements, which
ultimately increases the accuracy and selectivity of the models compared an application
capable of using only off-line reference measurements (e.g., those acquired via a reference
analyzer that may or may not reside in the same physical location as the spectrometer).

One single run of the experimental setup described in this paper produced a total
of 528 Raman spectra from 24 vessels (16 DoE and 8 Golden Batch vessels) measured
twice a day (same sample unspiked and spiked) for 14 days. Those spectra, together with
the simultaneously acquired reference data, were then used to develop the predictive
OPLS models.

3.2. Predictive OPLS Models

Individual OPLS models were developed to correlate the pre-processed Raman spec-
tral data with the reference data to produce predictive models of glucose, lactate, glu-
tamine, glutamate and mAb titer. Figure 3 shows the parity plots for these analytes
using the measured reference values and the predictions during cross-validation from the
Raman-based models.

Generally, high cell densities did not have an impact on either the liquid handling
system nor the quality of spectra, i.e., resulting in more outliers. Peak viable cell densities
of up to 14.5 × 106 cells/mL were reached towards the middle of the cultivation. Whenever
the viable cell density decreases by several million cells per mL towards the end of the run,
the data points drift away from the main group (Figure S1B), indicating a fundamental
change in the spectra. However, these data points are not necessarily outliers and are
mostly still part of the analyte models shown below. In summary, this shows that (a) the
liquid handling system works reliably at different viscosities, (b) high cell densities and,
therefore, increased turbidity do not interfere with the spectroscopic measurement and
(c) when fundamental changes within the process occur, the data pre-treatments are able to
compensate these.
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Figure 3. Parity plots of the observed values vs. predicted values from cross-validation for OPLS
models of unspiked cell culture samples for (A) glucose, (B) lactate, (C) glutamine, (D) glutamate
and (E) normalized titer with unspiked cell culture samples from 250 mL mini bioreactors.

Table 1 summarizes the key parameters and figures of merit for the models constructed
using unspiked bioreactor samples. The Raman models generated in this study showed
lower prediction errors for glucose and lactate measurement than those published, e.g.,
by Rowland-Jones, van den Berg et al. [24], where the measured glucose concentration
showed a RMSEcv of 0.92 g/L and lactate concentration showed a RMSEcv of 1.11 g/L in
a similar process. The normalized product titer model also showed good accuracy, with
a Q2 value of 0.911 and RMSEcv of 0.08 g/L.

The Raman models for the unspiked samples of glutamate and glutamine were found
to have lower coefficients of determination, with a Q2 value of <0.8, indicating lower
predictive ability. The main issue with the unspiked models is that glutamine and glutamate
are present over a very narrow concentration range (1 g/L for glutamine and 2 g/L for
glutamate), which makes it more difficult for the chemometrics algorithm to distinguish
between the real concentration changes and process noise. Additionally, Raman scattering
for lactate and glucose produces more dominant bands than for glutamine and glutamate.
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Bearing in mind the limitations, spiking might be useful to increase the analyte range to
improve model quality. These observations are consistent with other cell culture studies
where weaker Raman activity, particularly with glutamate [14,25,26], has produced less
accurate models compared to those for glucose or lactate.

Table 1. Summary of key parameters for Raman OPLS models from spiked and unspiked samples
from 250 mL mini bioreactors. Range indicates the concentration range of the analyte within the
model; n states the number of datapoints used in the model; # of principal components states, in
addition to one predictive component, how many orthogonal components the model utilizes; Q2

denotes the goodness of prediction; RMSEcv equals to the root mean square error of cross-validation.

Analyte Range n # of Principal
Components Q2 RMSEcv

Glucose 2–8 g/L 224 1 + 1 0.97 0.20 g/L
With Spiking 2–13 g/L 254 1 + 3 0.97 0.36 g/L

Lactate 1.5–11 g/L 221 1 + 3 0.98 0.23 g/L
With Spiking 1.5–11 g/L 255 1 + 5 0.94 0.43 g/L

Glutamine 1–2.5 g/L 146 1 + 4 0.58 0.21 g/L
With Spiking 1–6 g/L 173 1 + 3 0.93 0.24 g/L

Glutamate 0.5–2.5 g/L 215 1 + 4 0.76 0.21 g/L
With Spiking 0.5–5.5 g/L 248 1 + 3 0.94 0.23 g/L

Titer (normalized) 0–1 83 1 + 3 0.91 0.08
With Spiking 0–3 108 1 + 3 0.97 0.10

Altogether, the process at hand delivered comparably high concentrations of all the
analytes without concentration levels below 0.5 g/L, except for the mAb titer. If the models
are transferred to other scales or the processing is changed, possibly leading to lower
concentrations than those covered in the model, this can result in higher prediction errors,
or in the worst case, to a wrong prediction of a much higher analyte concentration than
actually present. This, in turn, could leave the model useless for process monitoring and
control. To counteract this, various measures can be taken to further extend the range of
the model to cover lower concentrations. These include, instead of spiking, the dilution of
the sample with an analyte of interest-free medium (i.e., glucose or glutamine free) and an
added experiment where some vessels are either run in batch mode, or have a significantly
different feeding regimen, thus leading to a deprivation of the metabolites. A third choice
would be to combine data from this process with data from a different process that ideally
uses similar media, but is run differently and is known to have lower analyte concentrations
present. Previous studies have shown that the latter is possible, even if the cell lines and
target products are different [18]. Overall, past studies have shown that the limits of
detection for the different analytes between 0.1 g/L and 0.3 g/L with Raman spectroscopy
in bioprocessing can be achieved [18,27].

3.3. Predictive OPLS Models of Combined Non-Spiked and Spiked Samples

OPLS models, including spiked data, were employed to extend the dynamic range
and potentially improve the correlation with reference data. These models were developed
using the same pre-processing and outlier identification methods as previously discussed
for unspiked samples. Figure 4 shows the observed (reference) versus the predicted (Raman)
data from the models developed for glucose, lactate, glutamine, glutamate and titer in
spiked cell culture samples.

Additionally, not all the cell culture processes yield high concentrations of glutamine
and glutamate (highest concentration e.g., below 1 g/L). For these processes, spiking can
make the difference between a functional and a non-functional model. Spiking, therefore,
has the potential to generate more valid OPLS models for glutamine and glutamate. Table 1
shows the summary statistics of the spiked and unspiked Raman OPLS models.
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Figure 4. Parity plots of the observed values vs. predicted values from cross-validation for OPLS
models, including spiked cell culture samples for (A) glucose, (B) lactate, (C) glutamine, (D) glutamate
and (E) normalized titer with spiked cell culture samples from the 250 mL mini bioreactors.

The models including both spiked and unspiked data were developed. Generally, the
models for a particular analyte demonstrated good performance, regardless of whether
spiked or native samples were used. However, the inclusion of spiked samples for glu-
tamine and glutamate (extending the concentration range of the unspiked samples) resulted
in a better fit, with a Q2 values above 0.9 and RMSECV values of 0.24 g/L and 0.23 g/L,
respectively. This indicates that Raman models can predict glutamine and glutamate con-
centrations within a similar accuracy and specificity as previously demonstrated for other
analytes (e.g., glucose, lactate), further instilling confidence that the predictive performance
of the models for these less explored analytes is limited by spurious correlations.

While spiking did extend the calibration range for glucose and lactate models, it did
not have a considerable positive impact on the Q2 values for either analyte (Table 1). This
is a consequence of the variations in the process conditions via the DoE, the wavenumbers
selected for inclusion in the models, and the large concentration range of lactate and
glucose in the native samples, which together resulted in minimal residual variance that
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was unexplained by the optimized models. Additionally, the fed-batch process requires the
addition of feed media, such as nutrients, that are naturally depleted during the course of
cell culture, which enhances the glucose range as this was a component of the media used
in this case study. It should be noted that the models based on spiked samples are expected
to have a slightly higher model error than the optimal models based on non-spiked data.
This anticipated decrease in model accuracy is a result of the variations caused by the slight
inaccuracies associated with the stock solution concentration and additional pipetting and
mixing steps, all of which impact the ability to successfully correlate the changes in Raman
scattering, with the corresponding changes in reference values.

All the Raman generated models showed a slight difference in the slope/offset between
the spiked (Figure 4) and unspiked (Figure 3) samples, which was most notable for glucose.
The differences in slope and offset were hypothesized to be a consequence of sample
dilution or insufficient mixing. To evaluate this hypothesis, further tests were performed,
such as comparing several measurements taken one from one mixture, as well as comparing
different mixing procedures. These tests proved non-optimal mixing of the sample and
spiking solution as the sources of these variations. The pipette mixing technique of the
early prototype led to the moving of layers, but to the insufficient mixing of these layers.
This resulted in a concentration gradient between the first and the last part of the spiked
sample. Given that the first portion of the sample was also used to rinse the flow cell,
a Raman analysis was performed on the samples with concentrations that exceeded what
nominally should be present when assuming sample homogeneity. This led to further
refinement of the spiking methodology, which minimized the differences between the
spiked and non-spiked samples, suggesting that sample inhomogeneity was effectively
mitigated. The confirmation of the lab results is planned as a part of a separate study and
will require separate cultivations, which can serve as independent prediction datasets to
further evaluate the accuracy and robustness of the models discussed herein.

3.4. Application of Raman Models

Robust and predictive OPLS models for glucose, lactose, glutamine, glutamate and
mAb titer in cell culture were developed using Raman spectra, generated with the inte-
grated 250 mL mini bioreactor system. To determine the potential of using spectral data
for on-line monitoring, one specific 250 mL vessel was selected to illustrate the analyte
levels over a 14-day process run. The data of this vessel were not used in model building,
in order to validate the model performance with an outside dataset. The results (Figure 5)
demonstrate that the Raman model for the selected analytes, as well as the mAb titer, align
well with the reference data, indicating that the Raman models alone are likely to be suitable
to control the cell culture. It is of particular note that the models even provide reasonable
data for the glutamate concentration on day 6 and mAb titer on day 10, when the suspected
sampling errors are believed to have caused reference measurement deviations. Overall,
these results are promising and support the next phase of work, which is to transfer models
based on small-scale data to larger scale single-use bioreactors to evaluate model scalability.
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Figure 5. Observed vs. predicted development of analyte concentration during batch maturation.
Comparison of observed (by reference method; black diamonds) and predicted (from the Raman
spectroscopy models; yellow squares) analyte concentration vs. batch maturity from cell culture in
a single 250 mL mini bioreactor; (A) glucose, (B) lactate, (C) glutamine, (D) glutamate, (E) mAb titer.

4. Conclusions

Mini bioreactor systems are increasing in popularity within the biopharmaceutical
industry, fueled by the growing library of applications underscoring their ability to reduce
timelines and the overall cost associated with process development and cell culture scale-up
for manufacturing. A prototype system, integrating a Raman spectrometer into a multipar-
allel mini bioreactor system with an integrated bioanalyzer, was designed to facilitate the
continuity of PAT across scales. A CHO cell line expressing a mAb was selected as a case
study to demonstrate that accurate and robust Raman models could be developed using
the prototype system, which would be difficult and costly to generate using conventional
model building approaches that are currently predicated on larger bioreactors.

Notably, the integration of both a Raman flow cell and a bioanalyzer allowed for
a reliable correlation between the Raman spectra and reference measurements because this
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experimental setup eliminates the otherwise necessary time-consuming manual collection
of reference data. Due to the minimal time gap between the reference measurement and
Raman spectroscopy, the models generated in this study show even lower prediction
errors than the models generated with similar systems, but with manual collection of
reference data [24].

In conclusion, using a multi-parallel mini bioreactor system integrating Raman spec-
troscopy and reference measurements, this study generated automated Raman spectroscopy
models for a range of nutrients, metabolites and product titer, offering the potential to
significantly reduce time and resource costs of commercial process development. Future
case studies will investigate under which conditions the models generated in this study
can be transferred to larger scales and whether they can be utilized for process monitoring
and control.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22093397/s1, Figure S1: PCA Plot of all spectra used for out-
lier detection, i.e., points outside Hoteling’s T2 ellipse are possible outliers. Colored according to
(A) spiking vs. non-spiking, (B) cultivation day, Figure S2: Example Raman spectra taken at three dif-
ferent timepoints during a cultivation. (A) Raw spectra without corrections; (B) Spectra after baseline
correction with ALS algorithm—fluorescence underground is removed successfully; (C) Spectra after
normalization to the area under the waterband between 1550 and 1750 cm−1—removal of intensity
differences due to perturbations not caused by the analytes of interest, e.g., by high turbidity in the
sample due to high cell counts, Table S1: Overview over spiking solutions and spiking regimen over
the duration of the cultivation. Each day from day six onwards samples from 24 Vessels were spiked
with shown volumes from one of the two spiking solutions, Table S2: Wavenumber pre-selection for
single analytes derived from pre-trials. Several mixtures of the analytes at different concentrations
following a DoE approach were prepared. After acquiring a spectrum for each sample, spectra were
pre-treated with the ALS-algorithm and separate OPLS for each analyte were built. Very Important
Parameters (VIPs), i.e., those Wavenumbers with a high influence on the model were selected and
used for future modeling.
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