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Abstract

Motivation: Next-generation sequencing techniques revolutionized the study of RNA expression

by permitting whole transcriptome analysis. However, sequencing reads generated from nested

and multi-copy genes are often either misassigned or discarded, which greatly reduces both quan-

tification accuracy and gene coverage.

Results: Here we present count corrector (CoCo), a read assignment pipeline that takes into ac-

count the multitude of overlapping and repetitive genes in the transcriptome of higher eukaryotes.

CoCo uses a modified annotation file that highlights nested genes and proportionally distributes

multimapped reads between repeated sequences. CoCo salvages over 15% of discarded aligned

RNA-seq reads and significantly changes the abundance estimates for both coding and non-coding

RNA as validated by PCR and bedgraph comparisons.

Availability and implementation: The CoCo software is an open source package written in Python

and available from http://gitlabscottgroup.med.usherbrooke.ca/scott-group/coco.

Contact: michelle.scott@usherbrooke.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Detection and quantification of RNA transcripts are critical steps to

understand the mechanism of gene expression and its impact on cell

function. Traditionally, transcript abundance has been evaluated

using techniques that target one known RNA sequence at a time, as

in the case of quantitative RT-PCR. More recently, the development

of RNA-sequencing (RNA-seq) techniques revolutionized transcrip-

tome analysis by providing the tools necessary to study, at least in

theory, all RNA transcripts simultaneously. Diverse library prepar-

ation protocols exist, the most commonly used ones focussing on

particular classes of RNA through enrichment steps. Such strategies

include polyA enrichment, non-ribosomal RNA (rRNA) enrichment

(e.g. rRNA depletion), small RNA enrichment and enrichment for

RNAs bound to specific factors (Conesa et al., 2016; Hrdlickova

et al., 2017; O’Neil et al., 2013). All these protocols detect certain

levels of non-coding RNA. Strategies that employ rRNA depletion

are the best approaches to detect a wide range of different classes of

both coding and non-coding RNAs including lncRNAs (long non-

coding RNAs), small nuclear RNAs (snRNAs) and 7SL RNA

(Boivin et al., 2018; Lai et al., 2016). However, no matter how the

sequencing library is created, the capacity to correctly quantify

RNA abundance ultimately depends on the correct assignment of

the sequencing reads, including those generated by non-coding

RNA.

Accurate RNA quantification is not easy to achieve since it

depends on the quality of the transcriptome annotation used as a ref-

erence, the complexity of the target RNA sequence and its genomic

context. RNA quantification is particularly difficult in the case of

small non-coding RNA (<200 nt) which are often produced from

multiple genes and/or nested in other genes (Boivin et al., 2018; Luo

and Li, 2007; Mohammed et al., 2014; Weber, 2006). According to

Ensembl annotations (Yates et al., 2016), in human, 2596 genes,
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including miRNA, snRNA, snoRNA (small nucleolar RNAs) and

tRNA (transfer RNAs) are located in introns and many overlap

exons (Supplementary Table S1). In total, 1838 protein-coding

genes, lncRNA and pseudogenes host or overlap smaller non-coding

RNA (Supplementary Table S2). Although some non-coding RNA

are expressed from independent promoters like tRNA (Paule and

White, 2000) many others do not have independent promoters and

are at least partially linked to the expression of their host gene

(Boivin et al., 2018; Filipowicz and Pogacic, 2002; Matera et al.,

2007). Regardless of the mode of expression, correct identification

of reads from nested and multi-copy genes is essential for the accur-

ate quantification of both coding and non-coding RNA.

Abundance estimation from RNA-seq data generally requires a

pipeline that aligns reads to a reference genome and then assigns

them to annotated genes (Conesa et al., 2016). In higher eukar-

yotes, mapping RNA reads to a genome requires a gapped align-

ment to avoid the DNA intronic sequences, which is accurately

performed by standard software like the splice-aware aligners

STAR (Dobin and Gingeras, 2016) and HISAT (Kim et al., 2015).

Once aligned, the sequencing reads must be assigned to genes, a

task made challenging by overlapping genes and multimapped

reads. Indeed, many available tools and commonly used settings

only quantify correctly genes generating uniquely mapped reads,

and reads mapping to more than one locus are typically discarded

(Fig. 1). Reads originating from non-coding RNAs overlapping

exons (mainly retained introns) of longer protein-coding RNA or

lncRNA are either wrongly assigned to their host gene or labelled

as ambiguous and discarded (Fig. 1). In addition, reads originating

from duplicated genes are often discarded by default and many

such genes, that we term multimapped genes, are under-represented

in RNA-seq assigned counts.

To increase the overall accuracy of RNA quantification and

monitor the expression pattern of overlapping and repetitive genes,

we developed a count corrector (CoCo) pipeline that rescues and

correctly assigns otherwise ambiguous sequencing reads. CoCo

employs the read assignment function featureCounts from Subread

(Liao et al., 2013), providing it with a modified annotation file that

highlights nested genes, while ensuring appropriate distribution of

multimapped reads. CoCo salvages and/or reassigns over 15% of

aligned RNA-seq reads, significantly changing the abundance esti-

mates for several classes of RNA and providing insight into the ex-

pression dynamics of often ignored classes of repetitive and

overlapping genes. We investigated the performance of the main

available read assignment pipelines, comparing their accuracy to

digital PCR abundance values and bedgraph estimates, showing that

CoCo performs best using these metrics while requiring reasonable

runtime and memory.

2 Materials and methods

2.1 Sequencing datasets
To ensure representative abundance of transcripts from nested and

multimapped genes, most of which are highly structured RNAs, we

chose thermostable Group II intron reverse transcriptase sequencing

(TGIRT-seq). TGIRT displays high processivity and fidelity, provid-

ing an accurate view of the ribodepleted transcriptome (Boivin

et al., 2018; Nottingham et al., 2016; Qin et al., 2016). The samples

considered (GEO series GSE99065) are GSM2631741,

GSM2631742 (fragmented) and GSM2631743, GSM2631744 (not

fragmented). Although fragmented datasets enable the study of the

whole transcriptome, non-fragmented datasets emulate size-

selecting short RNAs (Boivin et al., 2018). To evaluate the read as-

signment performance of CoCo on RNA-seq datasets generated

using different library preparation methodologies, the following

SRA datasets were also considered: SRR191548, SRR191549 (small

RNA-seq; Farazi et al., 2011), SRR5312294, SRR5312295 (hydro-

Fig. 1. CoCo read correction scheme for nested and multimapped genes. (A) Representation of a standard gene annotation used for depicting a genetic locus con-

taining one host gene and three nested genes. The dashed lines indicate introns while the dark blue boxes indicate exons. (B) Representation of the gene annota-

tion produced using the correct_annotation module of CoCo showing a gap in the retained intron over the first nested gene. (C) Examples of potential read pairs

overlapping the different features and multimapped read pairs. (D) Comparison of the read pair assignment using standard and CoCo pipelines, for each of the

read pairs illustrated in (C). The reads that are differentially assigned by CoCo are highlighted in red. (E) Comparison of the read count estimates by the standard

and the CoCo pipelines, based on the assignments listed in (D). (F) Flow chart of the CoCo pipeline. Pre-processing and alignment steps are shown before the cor-

rect_count module application. The correct_count module then assigns reads with Subread’s featureCounts using the gapped CoCo annotation (built with the cor-

rect_annotation module). Read pairs resulting in multiple alignments are considered separately and distributed proportionally to the uniquely assigned read

pairs. (Color version of this figure is available at Bioinformatics online.)
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tRNAseq; Gogakos et al., 2017) and SRR2012208, SRR2012209

(standard viral RT ribodepleted RNA-seq; Choy et al., 2015).

2.2 Read alignment
FastQC was used to check Fastq files for quality. Reads were trimmed

using Cutadapt (Martin, 2011) (with parameters -g GATC

GTCGGACTGTAGAACTCTGAACGTGTAGATCTCGGTGGTCG

CCGTATCATT -a AGATCGGAAGAGCACACGTCTGAACTCCA

GTCACATCACGATCTCGTATGCCGTCTTCTGCTTG -minimum-

length 2) and Trimmomatic (Bolger et al., 2014) (with TRAILING:

30) to remove adaptors and portions of reads of low quality, re-

spectively. Read pairs were then aligned to the human genome build

hg38 using an annotation file from Ensembl (described below) with

the splice-aware RNA-seq aligner STAR (Dobin and Gingeras,

2016) using –alignIntronMax 1250000, all other parameters at de-

fault values. Reads not aligned using STAR were aligned once again

using Bowtie v2 (Langmead and Salzberg, 2012), which performs

well for the alignment of shorter reads. Bowtie parameters were the

following: –local, -p 24, -q, -I 13. Read pairs successfully aligned by

STAR/Bowtie were merged into a BAM file and separated into two

groups: those that align to one genomic position and those that align

to more than one position (Fig. 1F).

2.3 Read assignment and corrections
The correct_count module of CoCo employs featureCounts (Liao

et al., 2013) to assign aligned read pairs to their corresponding genes

using the given annotation file as reference (Fig. 1). Parameter values

for the correct_count module are described in Supplementary Table

S3. CoCo uses a corrected annotation produced from Ensembl sup-

plemented annotation by removing regions corresponding to nested

genes from longer host genes (described below). Read pairs aligning

to only one genomic location increase the alignment count by one for

the genomic feature encoded at that location. By default, correct_-

count distributes the reads between their assigned genes according to

their number of assigned uniquely mapped reads. If no singly mapped

reads exist for any of the assigned genes, the reads are distributed uni-

formly. Total counts assigned to a gene correspond to the sum of the

uniquely mapped read pairs and the proportion of multimapped read

pairs assigned to the gene. The correct_count module also corrects for

over-attribution of reads to nested genes by subtracting the length

normalized background counts attributed to the feature in which the

nested gene is encoded (Supplementary Fig. S1).

2.4 Annotation supplementation
An annotation file in gene transfer format (.gtf) was obtained from

Ensembl (Yates et al., 2016) (hg38, v87). The annotation file was sup-

plemented with 628 additional tRNA from GtRNAdb (Chan and

Lowe, 2016) and with 20 snoRNA from Refseq (O’Leary et al., 2016)

that were missing from Ensembl annotations. 63 gene annotations were

removed from the gtf file because they overlap another gene of same

biotype over >90% of their length reciprocally (keeping both annota-

tions would result in reads aligning to them being labelled as ambigu-

ous). These 63 redundant genes consist of 17 snoRNAs, 43 miRNAs, 2

long intergenic non-coding RNAs (lincRNAs) and 1 antisense RNA.

Details are given in Supplementary Material S1.

2.5 CoCo’s annotation correction
The correct_annotation module of CoCo produces a modified anno-

tation file in which any exon position overlapping a snoRNA, small

Caja-body RNA (scaRNA), snRNA, tRNA or miRNA is removed,

resulting in a gapped annotation file (Fig. 1B). To do so,

correct_annotation builds a list of gene coordinates corresponding to

the above biotypes and then seeks overlaps with exons from all tran-

scripts of genes from other biotypes using Bedtools intersect (Quinlan

and Hall, 2010). Exons overlapping a nested gene have their overlap-

ping positions removed, effectively splitting the exon in two if the

nested gene is fully within the exon, or truncating the exon if the

nested gene overlaps its end. From this, two new .gtf annotation files

are made, one containing all the genes and transcripts, the other one

including only the portion of the genes hosting a nested gene (respect-

ively referred as ‘CoCo Full gtf’ and ‘Introns gtf’ in Fig. 1 and

Supplementary Fig. S1).

2.6 Conversion from counts to transcripts per million
The counts obtained from CoCo’s correct_count module were nor-

malized by the length of the main transcript of the gene and by the

read count to give transcripts per million (TPM) as described further

in (Boivin et al., 2018). The final output of the correct_count mod-

ule holds raw read counts, counts per million (CPM) and TPM val-

ues for all annotated genes. Supplementary Material S2 provides

average fragmented TGIRT-seq abundance values in TPM, esti-

mated by CoCo and other read assignment tools considered.

2.7 Alignment visualization
BAM files were converted to Bedgraph files with CoCo’s correct_bed-

graph module (Supplementary Fig. S2) which uses pairedBamToBed12

(https://github.com/Population-Transcriptomics/pairedBamToBed12)

and bedtools genomecov (v2.25.0) to produce a bedgraph of a

paired-end dataset. For single-end datasets (small RNA-seq and

hydro-tRNAseq), BAM files were converted to bedgraphs using only

genomecov (v2.25.0). The bedgraphs were visualized using IGV

(Robinson et al., 2011) with the hg38 build and the Ensembl anno-

tation tracks.

2.8 Gene biotype pooling
Ensembl biotypes protein_coding, pseudogene and long_noncoding

were pooled as recommended (http://ensembl.org/help/faq? id¼468).

The group ‘other’ corresponds to all other biotypes not listed

2.9 Comparison to other read assignment tools
CoCo was compared with the following read assignment tools:

featureCounts (Liao et al., 2013), HTseq-count (Anders et al.,

2015), RSEM (Li et al., 2010), Cufflinks (Trapnell et al., 2012) and

STAR (Dobin and Gingeras, 2016). The parameter values used for

each tool are indicated in Supplementary Table S3. Throughout the

text, featureCounts with typical parameter values is used as the

standard read assignment pipeline.

2.10 Polymerase chain reaction
Digital PCR was performed by the Université de Sherbrooke

RNomics Platform (http://rnomics.med.usherbrooke.ca/). Droplet

Digital PCR (ddPCR) reactions were prepared using 10 ll of 2�
QX200 ddPCR EvaGreen Supermix (Bio-Rad), 10 ng (3 ml) cDNA,

100 nM final (2 ml) primer pair solutions and 5ul molecular grade

sterile water (Wisent) for a 20 ll total reaction. Each reaction mix

was converted to droplets with the QX200 droplet generator

(Bio-Rad). Droplet-partitioned samples were then transferred to a

96-well plate, sealed and cycled in a C1000 deep well Thermocycler

(Bio-Rad) under the following cycling protocol: 95�C for 5 min

(DNA polymerase activation), followed by 50 cycles of 95�C for 30 s

(denaturation), 59�C for 1 min (annealing) and 72�C for 30 s (exten-

sion) followed by post-cycling steps of 4�C for 5 min and 90�C for 5

Read assignment correction for nested and multimapped genes 5041

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz433#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz433#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz433#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz433#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz433#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz433#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz433#supplementary-data
https://github.com/Population-Transcriptomics/pairedBamToBed12
http://ensembl.org/help/faq? id=468
http://ensembl.org/help/faq? id=468
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz433#supplementary-data
http://rnomics.med.usherbrooke.ca/


min (Signal stabilization) and an infinite 12�C hold for reading using

the QX200 reader (Bio-Rad). The concentration reported is in cop-

ies/ll of the final 1� ddPCR reaction (using QuantaSoft software

from Bio-Rad). All primer sequences are available in Supplementary

Table S4.

3 Results

3.1 The CoCo correction for nested genes and

multimapped reads
Standard gene quantification programmes assign reads according to

the amount of overlap between the read and the feature being quanti-

fied. As a consequence, reads mapping with the same number of

matches to a host gene and to a small non-coding RNA gene nested

within its intron/exon are often considered ambiguous (e.g. Fig. 1C

and D, read pair A). In addition, reads from nested genes that exceed

the annotations [which, in many cases, are not accurate (Deschamps-

Francoeur et al., 2014; Kishore et al., 2013)], by even only one nu-

cleotide, are typically automatically assigned to the host gene (e.g.

Fig. 1C and D, read pair C). To address these problems, we have

developed the CoCo package, which consists of three main modules:

(i) the correct_annotation module which generates gapped annotation

files in which the regions of the host gene transcript features overlap-

ping with nested genes are precisely removed (Fig. 1B), (ii) the cor-

rect_count module which recuperates the reads associated with nested

and multimapped genes using the modified annotation (Fig. 1D and

E) and (iii) the correct_bedgraph annotation which produces accurate

representations of paired-end reads (Supplementary Fig. S2).

To test the quantification accuracy of the CoCo pipeline, we

examined its capacity to correctly assign and quantify sequencing

reads using diverse RNA-seq datasets, and compared its quantifica-

tion to those of the main read assignment pipelines available. Most

comparisons we report involve samples generated using a library

preparation protocol that accurately detects both coding and non-

coding RNA classes, thanks to the use of the TGIRT reverse tran-

scriptase and ribodepletion (Boivin et al., 2018). Two of the samples

were fragmented which enables the quantification of both long and

short RNAs (e.g. nested genes and their host gene) while the other

two samples were not fragmented, providing a deeper view of short

RNAs, which is comparable to size-selection RNA-seq. In addition to

TGIRT-seq datasets, we also investigate the performance of CoCo in

small RNA-seq (Farazi et al., 2011), hydro-tRNAseq (Gogakos et al.,

2017) and standard viral RT ribodepleted sequencing (Choy et al.,

2015) datasets. Following standard pre-processing steps, reads were

mapped to the hg38 human genome using STAR, resulting in an aver-

age alignment rate of 90%. The 10% unaligned reads using STAR

are mostly alignments deemed ‘too short’ by STAR and thus a second

alignment step using Bowtie was employed, resulting in an overall

average alignment rate of 99% (Fig. 1F). Aligned reads were then

assigned to annotated genes using the correct_count module of the

CoCo pipeline and the annotation files provided by CoCo’s correc-

t_annotation module. The correct_count module not only reattributes

reads from host genes to nested genes but also corrects the reassign-

ment considering the background read counts of the feature in which

the gene is nested (Supplementary Fig. S1), as discussed below.

3.2 Impact of CoCo on the quantification of nested

genes and comparison to other read assignment tools
To evaluate the impact of CoCo on RNA detection and quantifica-

tion, we compared the aligned read assignments obtained using the

CoCo pipeline to values obtained using five currently available and

commonly used read assignment pipelines, described in Section 2 and

in Supplementary Table S3. The pre-processing and alignment steps

(described in Section 2 and in Fig. 1F) were the same for all read as-

signment tools, except for RSEM which requires an alignment to the

transcriptome instead of the genome (so STAR but not bowtie was

used, with the additional parameter –quantMode

TranscriptomeSAM). As indicated in Figure 2 and Supplementary

Figures S3–S11, the CoCo pipeline performs well in the quantifica-

tion of nested genes, in TGIRT-seq fragmented and non-fragmented

datasets, as well as in the small RNA-seq, hydro-tRNAseq and stand-

ard viral RT ribodepleted sequencing datasets, always obtaining raw

read counts in close agreement with those estimated from the bed-

graph, for all nested genes considered. In contrast, HTSeq-count,

featureCounts with standard parameter values and STAR fail to de-

tect many nested genes, in all datasets considered. Cufflinks was not

considered for this comparison because it does not provide raw read

counts that can be compared with bedgraph counts. Examples of

poorly quantified nested genes include snoRNA (Fig. 2,

Supplementary Figs S3, S5, S9 and S11), snRNA (Supplementary Fig.

S4), tRNA (Supplementary Figs S6, S8 and S10) and a sca RNA

(Supplementary Fig. S7), which all overlap, partially or completely,

retained introns or exons of their host gene. Manual inspection of the

alignment file and visual inspection of the bedgraphs confirm that all

these nested genes have corresponding aligned reads and should thus

be detected and quantified as expressed. RSEM and featureCounts

with optimized parameter values perform better than HTSeq-count,

STAR and featureCounts with standard parameter values, but still

deviate more from bedgraph estimates than does CoCo (see e.g.

Supplementary Figs S3, S4 and S6–S11). In the presence of ambigu-

ous reads (Fig. 1, read pair A), featureCounts_optimized splits the

read counts equally between the nested gene and the host gene.

For example, in the case of the PTCH2 gene locus (Supplementary

Fig. S4), a visual inspection of the bedgraph indicates that the great

majority if not all read counts should be attributed to the nested

gene RNU5E-6P while featureCounts_optimized splits the read

counts equally between the two genes for the fragmented datasets.

Interestingly, in this case, CoCo not only corrects the abundance

values of the nested gene but also adjusts the counts given to the

host gene, reassigning 89% of the counts (313 read pairs out of

350) from the host gene to the snRNA. Based on these results, we

conclude that CoCo is capable of rescuing and properly assigning

reads from the nested genes lost to several read assignment tools

and generates quantification values that are most consistent with

the bedgraph profiles.

3.3 Background correction for nested genes
In order to accurately quantify read counts from nested genes and

distinguish their reads from the host gene reads, CoCo carries out a

background correction. This is achieved by subtracting the average

read count of the feature in which the nested gene is encoded from

the read count assigned to the nested gene. This correction does not

significantly change the final read counts of genes nested in host

gene features (most often introns) that are expressed at low levels

(Supplementary Fig. S12). However, this correction has a major im-

pact when the host gene feature encoding the nested gene is highly

expressed. For example, in the case of the CH507-513H4.1 locus

which hosts miRNAs miR-3648 and miR-3687, the reads were ori-

ginally attributed to the miRNA despite the absence of correspond-

ing peaks in the bedgraph. This inappropriate assignment is no

longer observed following background correction (Supplementary

Fig. S13).
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3.4 Quantification of transcripts from duplicated genes
A large number of genes, in particular those producing non-coding

RNA, exist in more than one copy. The RNA produced from most

of these different forms of repeated features cannot be quantified by

standard read assignment modules due to their identical or near iden-

tical sequences that result in multimapping of sequencing reads (e.g.

Fig. 1C, read pair K). The CoCo pipeline recuperates these otherwise

lost reads by distributing the counts between all genes assigned

according to the distribution of their uniquely mapped read pairs

when possible. For small non-coding RNAs such as snoRNAs,

uniquely mapped reads typically originate from flanking genomic

sequences that are seldom included in the transcripts. Longer genes

are more likely to have longer proportions of unique sequences. For

example, as indicated in Supplementary Figure S14, the annotated

mature forms of SNORD103A and SNORD103B are 100% identi-

cal. As a result, 96% (2314/2401) of all read pairs aligning to these

snoRNAs map equally well to both SNORD103A and SNORD103B

and would thus be discarded without considering multimapped reads.

Considering the distribution of the 87 uniquely aligned read pairs (to

non-identical genomic flanking sequences for SNORD103A and

SNORD103B), CoCo distributed the 2314 multimapped read pairs

proportionally to the uniquely mapped read pairs (Supplementary

Fig. S14B). As a consequence, the sum of the read counts to the

SNORD103 family increased by 25� passing from 87 (considering

only uniquely mapped reads) to 2401 read pairs (using the CoCo’s

correct_count module). A similar example from the small RNA-seq

datasets, the paralogues MIR101-1 and MIR101-2, is shown in

Supplementary Figure S15. Only MIR101-1 has uniquely aligned

read pairs, resulting in all the multimapped read pairs assigned to

MIR101-1 and none to MIR101-2. In one of the datasets, this results

in 5495 read pairs instead of 160 uniquely mapped reads, represent-

ing a 34� increase. Therefore, by using the uniquely mapped reads as

a guide, CoCo rescues and re-distributes the multimapped reads to

provide a realistic read distribution. Overall, the CoCo multimapped

correction module increased the estimated abundance of 1443 multi-

mapped genes, most of which are tRNAs and snoRNAs, by more

than 2-fold in the TGIRT-seq fragmented datasets.

3.5 Experimental validation of CoCo-based

quantification for nested and repeated genes
To experimentally validate the accuracy of the CoCo-based quanti-

fication, we chose nine overlapping or repeated genes and exam-

ined their abundance using ddPCR, comparing these values to

sequencing abundance estimates. These nine genes include seven

snoRNAs overlapping with protein-coding genes and two repeated

gene families (RN7SK and RN7SL2). In the case of the multi-

mapped genes RN7SK and RN7SL2, their abundance was

estimated to be respectively two and four times higher, (Fig. 3)

using the CoCo pipeline compared with featureCounts_standard

estimates. When the ddPCR was compared with all read assignment

tools considered (Fig. 3 and Supplementary Fig. S16), as for the

bedgraph comparisons, HTSeq, STAR and featureCounts using

standard parameter values did not detect the nested genes while

CoCo, RSEM and featureCounts with optimized parameter

values agreed with ddPCR values, obtaining Pearson correlation

values above 0.99.

Fig. 2. Example of bedgraph illustrating the CoCo quantification correction for nested genes. Example of a host gene holding multiple intron-encoded snoRNAs.

The ribosomal protein gene RPS8 harbours four box C/D snoRNAs in four separate introns, two of which are retained in certain RPS8 splice variants. A screenshot

of the sequencing abundance tracks is shown for fragmented (A) and non-fragmented (B) datasets, below which is shown the annotation tracks including the ori-

ginal Ensembl annotations and the CoCo gapped annotation (C). Exons are represented as boxes, introns as lines with arrows and nested small RNA genes are

highlighted with red dashed boxes. Histogram showing the read pair raw counts given by CoCo and other read assignment tools for the snoRNA and host genes

illustrated in (A–C), for the fragmented (D) and non-fragmented (E) datasets. (Color version of this figure is available at Bioinformatics online.)
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3.6 CoCo increases the number of sequencing reads

considered and enhances the detection of

non-coding RNA
The capacity to detect transcripts from repeated and overlapping

genes not only provides new information about the expression dy-

namics of these genes but may also alter the overall distribution of

read counts. Accordingly, we examined the impact of using CoCo

on the overall distribution of transcript estimates in the human gen-

ome. Comparison of the read assignments obtained using the CoCo

pipeline or the standard featureCounts pipeline indicates that while

65.8% of the read pairs in fragmented datasets were assigned identi-

cally by both strategies and 18.6% were assigned by neither, >15%

were only assigned by CoCo (Supplementary Fig. S17). Most of the

read pairs correctly assigned by the standard pipeline originate from

protein-coding genes (74%) and tRNAs (12%) (Supplementary Fig.

S17E, left panel). Read pairs that were not assigned by either pipe-

line originate mostly (88%) from currently unannotated genomics

regions (Supplementary Fig. S18), as is the case for example for an

intronic region in the AKAP6 gene in which >32 000 read pairs

align but no feature is annotated (Supplementary Fig. S19).

Most of the read pairs only assigned by CoCo (15.7%) originate

from multimapped genes, representing 12.9% of all aligned read pairs

(Supplementary Fig. S17A). As expected, the rescued multimapped

read pairs originate mainly from non-coding RNA including tRNAs

(37%), 7SL (27%), snRNAs (14%) (Supplementary Fig. S17C).

However, 13% of the reads aligned to protein-coding genes suggest-

ing that there is a substantial number of protein-coding genes that

contain repeated sequence (Supplementary Fig. S17C). A small pro-

portion of the read pairs only assigned by CoCo (2.4%) were aligned

to overlapping genes that are labelled as ambiguous by standard pipe-

lines (Supplementary Fig. S17A, right panel). Most of the overlapping

gene counts originated from non-coding RNA including snoRNAs

(40%), snRNAs (37%) and 7SK (18%) (Supplementary Fig. S17D).

In addition to the 15.3% of rescued ambiguous and multimapped

read pairs, CoCo also reassigned a small proportion of reads (0.37%)

that are misassigned by the standard pipeline (Fig. 1C and D, read

pair C and Supplementary Fig. S20). In all cases, misassignments by

the standard pipeline result in erroneous association of reads to the

host gene instead of the nested gene. SnoRNAs represent 94% of such

reassignments (Supplementary Fig. S20). Together, these observations

indicate that CoCo greatly increases the percentage of usable read

counts and reduces the number of misassignments.

3.7 CoCo provides a more accurate depiction of the

transcriptome landscape
As a consequence of the CoCo correction, the overall distribution of

the human transcriptome was modified considerably. The proportion

of all read counts attributed to protein-coding genes in fragmented

datasets was reduced by 12%, representing 74% of all assigned reads

using the standard pipeline but only 62% using CoCo (compare

Supplementary Fig. S17E, left and right panels). In contrast, non-

coding RNA including tRNAs and snRNA gain 4 and 2% of the total

read counts, respectively. The most dramatic change in total read

count distribution was observed with the highly redundant (multi-

mapped) gene coding for the signal recognition particle RNA 7SL,

which was increased from 2% using the standard pipeline to 6%

using CoCo. Analyses of transcript abundance distribution, which

take into consideration the transcript length, indicate that the biggest

impact of CoCo is in adjusting the proportion of coding to non-

coding RNA and increasing representation of RNA families with a

strong prevalence of repeated genes. As indicated in Supplementary

Figure S17F, CoCo estimates of transcript abundance reduced the

proportion of protein-coding genes by 5% while tripling the propor-

tion of the 7SL and increasing the proportion of snoRNA and snRNA

by 2% each, when compared with the standard pipeline.

The impact of CoCo on transcript quantification is most visible in

cases where RNA abundance changes from completely undetected

using standard pipelines to abundantly detected with the CoCo pipeline

(e.g. Figs 2, 3, Supplementary Figs S3, S4 and S6–S11). The de novo de-

tection of these genes gives a new view of an otherwise uncharted por-

tion of the human transcriptome. Accordingly, we counted the number

and biotype distribution of genes only detected using CoCo as com-

pared with a standard read assignment pipeline to better understand

their origin and contribution to the human transcriptome, using a frag-

mented dataset to consider the full RNA landscape. As shown in

Figure 4A, the most affected RNA family is the snoRNAs with 22% of

genes (137 out of 628 expressed snoRNAs) detected only with the

CoCo pipeline. The distribution of the corrected abundance of these

137 ‘invisible’ C/D and H/ACA box snoRNA genes is displayed in

Supplementary Figure S21. More than 50% of these snoRNAs (80/

137) have a corrected abundance above 100 TPM, and are thus

amongst the most abundant RNAs in the cell (indeed, only 1.8% of all

expressed genes have cellular transcripts with abundance >100 TPM).

Ten such snoRNAs are even detected with an abundance as high as

>1000 TPM (e.g. SNORD26, SNORD14C). These data clearly indi-

cate that failure to detect snoRNAs using standard assignment methods

is not restricted to rare or lowly expressed RNA. On the contrary, it is

the highly expressed genes that are often missed, most likely due to the

fact that highly expressed non-coding RNA tend to originate from

more than one gene or to be nested in highly transcribed genes. In add-

ition to snoRNAs, a smaller but still significant proportion of each of

the other main classes of non-coding RNA is not detected using stand-

ard techniques including >10% of scaRNA and as many as 27 snRNA

genes, 27 tRNA genes and 224 lncRNAs genes (Fig. 4A).

A less obvious but equally important difference between the

CoCo and standard pipelines lies in the accuracy of read assign-

ments, especially to duplicated genes. For example, while both

CoCo and the standard pipeline agree on tRNA being the most

abundant transcript biotype (Supplementary Fig. S17F), this class of

RNA features the largest number of genes with count corrections by

Fig. 3. Comparison of read assignment tools with ddPCR abundance esti-

mates. Scatter plot of abundance values by ddPCR compared with TPM esti-

mates of the fragmented TGIRT-seq datasets from read assignment tools

considered. N/D, ‘Not Detected’. (Color version of this figure is available at

Bioinformatics online.)
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CoCo. Indeed, 30% of tRNA genes more than doubled their abun-

dance after using CoCo (Fig. 4B). Similarly, a great number of

protein-coding genes (>50%) also increased in abundance, but un-

like tRNA, the difference in read pair count was mostly modest with

an average of 5% change in read counts (Fig. 4B). We therefore con-

clude that the correct counting and assignment of sequencing reads

plays an important role not only in increasing the number of

detected genes but in establishing the relative abundance of RNA

within the transcriptome.

3.8 Runtime and memory requirements
CoCo can be run using multiple threads thus improving its running

performance. The runtime and memory required to use the different

read assignment tools considered in this study is shown in Table 1.

4 Discussion

Increasing sequencing depth and coverage is considered the obvious

target for improving the quality of transcriptome analysis. However,

in this study, we show that the precision, quality and depth of tran-

scriptome analysis can be greatly enhanced by carefully choosing

and tuning read assignment tools using existing sequencing data.

Modification of the read assignment pipeline for the analysis of a

TGIRT-seq fragmented dataset, which provides an accurate view of

the whole transcriptome (Boivin et al., 2018) increased the propor-

tion of assigned reads by 15% and modified the number of assigned

reads for 50% of all expressed genes (Fig. 4 and Supplementary Fig.

S17). Indeed, more than 750 additional transcripts were detected

simply by correcting read association for nested genes (Fig. 4A),

while multimapping affects the quantification of 15 121 genes. The

problem with overlapping genes was solved by introducing gaps cor-

responding to nested gene positions in the reference annotation files

(Figs 1, 2 and Supplementary Figs S3–S11). The gaps ensure that

read pairs are not automatically assigned to the host gene even if

they slightly exceed the often inaccurate annotation of nested genes

(Deschamps-Francoeur et al., 2014; Kishore et al., 2013). CoCo is

not the only tool that can correctly address the quantification of

nested genes, although CoCo provides abundance values that are

most consistent with bedgraph estimates regardless of the library

preparation methodology used (examples shown in Fig. 2 and

Supplementary Figs S3–S11) and performs well when compared

with ddPCR (Fig. 3). Multimapped reads were dealt with by distrib-

uting them proportionally to uniquely mapped reads, as first intro-

duced by MuMRescue (Faulkner et al., 2008) and ERANGE

(Mortazavi et al., 2008). The corrections proposed in our study can

be applied as a supplement to any read-assignment tool as a feature.

By applying the correction tool CoCo, most sequence analysis pipe-

lines will benefit from increased transcriptome coverage and more

accurate transcript quantification.

Five different tools (one of which was run using two different set-

tings) were chosen for comparison to the CoCo pipeline because they

are widely used and easily implemented standalone pipelines. These

tools were compared considering typical examples of nested and mul-

timapped genes in datasets covering five library preparation method-

ologies (TGIRT-seq both fragmented and non-fragmented, small

RNA-seq, hydro-tRNAseq and standard viral RT ribodepleted RNA-

seq) to investigate their wide applicability. HTSeq-count, STAR,

Cufflinks and featureCounts using standard parameter values general-

ly performed poorly to quantify nested and multimapped genes, both

according to comparisons to bedgraphs and ddPCR quantification.

These four tools failed to detect many nested genes and did not accur-

ately quantify many multimapped genes. In contrast, RSEM,

featureCounts with optimized parameter values and most often CoCo

performed much better at quantifying nested and multimapped genes,

both according to bedgraph and ddPCR comparisons, displaying

good capacity for both small and long RNA-seq, fragmented or not,

single and paired-end sequencing, regardless of the strandedness and

type of libraries (Fig. 2, Supplementary Figs. S3–S11, S14 and S15).

RSEM’s greatest drawback is its long runtime and high memory usage

while featureCounts with optimized parameter values does not assign

ambiguous reads in an ideal manner as it simply splits the assignment

counts equally for all features overlapping these reads. In addition,

RSEM and featureCounts with optimized parameter values do not

perform well when quantifying non-fragmented datasets, generally

attributing too many reads to host genes. They are thus not recom-

mended for size-selection datasets often used to quantify miRNAs. In

Table 1. Comparison of runtime and memory usage for available

read assignment tools for a dataset of 41.5 M read pairs with a

computer having 32 GB of available RAM and 24 cores

Tool CPU timea Wall timea RAM (MB) Threads

CoCo 1:40:08 0:49:26 6634 24

RSEM 20:30:37 3:50:13 30 372 24

featureCounts standard 0:06:44 0:01:57 973 24

featureCounts optimized 0:07:15 0:01:15 606 24

HTSeq-countb 4:51:14 3:10:46 173 24 and 1

Cufflinksb 15:17:47 14:02:29 25 432 24

aCPU time and wall time are measured in hours:minutes:seconds.
bCufflinks and HTSeq require sorting before the read assignment can

occur. The values given include sorting before the tool is run.

Fig. 4. Effect of the CoCo pipeline on gene quantification of fragmented

TGIRT-seq datasets by biotype. (A) The proportion of transcripts detected by

either only the standard pipeline (light grey), both the standard and CoCo

(intermediate grey) or only by the CoCo (dark grey) pipelines is shown as a

bar graph. The number of genes only detected using CoCo is indicated at the

top of the graph for each biotype considered. (B) Impact of CoCo on the read

counts of different biotypes. Shown is a bar graph indicating the proportion

of genes of each biotype displaying the indicated change in abundance fol-

lowing the CoCo correction . (Color version of this figure is available at

Bioinformatics online.)

Read assignment correction for nested and multimapped genes 5045

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz433#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz433#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz433#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz433#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz433#supplementary-data


general, if any of these tools are chosen to quantify RNA-seq datasets,

we highly recommend the parameter values used in this study (see

Supplementary Table S4) as using different parameter values can sig-

nificantly change the quantification and thus the accuracy (compare

for example the results obtained using featureCounts_standard and

featureCounts_optimized).

Accurately quantifying multimapped reads has been investigated

in several studies. featureCounts annotates such reads, making it

easy for CoCo’s correct_count module to distribute them according

to uniquely mapped reads. featureCounts itself provides an option

to deal with multimapped reads, by splitting them equally between

all members of a multimapped group (using the –M, –fraction

options). However, a significant proportion of these members are

likely not expressed, particularly in the large families of non-coding

RNAs with tens or even hundreds of copies, making CoCo’s strategy

(the proportional distribution of multimapped reads) more realistic.

Evaluating the accuracy of multimapped read assignment is difficult

since unlike mRNA, most non-coding RNA lack external unique

sequences that could be used to differentiate between genes with

shared sequences. In building our pipeline for the quantification of

nested and multimapped genes, we opted for a computationally

quick and simple solution that enables the evaluation of the overall

abundance of RNA generated from genes with shared sequence.

While we cannot guarantee the accuracy of the abundance for each

individual gene from a repeated family, the overall abundance of the

RNA generated from these repeated families is accurately deter-

mined by CoCo as validated experimentally by ddPCR analysis and

gene-specific analyses (Fig. 3 and Boivin et al., 2018).

One of the most surprising observations in the application of

CoCo is how many genomic regions do not have proper annotation

and how this mis- or lacking annotation may affect the overall inter-

pretation of transcript distribution. Indeed, while CoCo was able to

recuperate the ambiguous reads due to gene overlap with small non-

coding RNAs and multimapping, about 18.6% of all read pairs

remained unassigned. Examination of these read pairs shows that

the great majority align to unannotated regions in the genome

(Supplementary Fig. S18), indicating that improving the annotations

is now becoming essential to increase the coverage and the accuracy

of RNA-seq quantification.

The read assignment corrections shown here are essential steps

to study the human transcriptome. Most of the multimapped and

overlapping reads originate from highly expressed genes and thus

any changes in their read assignment will significantly affect the

overall distribution of the human transcriptome. In addition, accur-

ate quantification of nested and multimapped genes not only enhan-

ces the detection of these types of RNA but also corrects the

quantification of their protein-coding host genes. Thus, any se-

quence analysis pipeline that ignores or fails to accurately detect

nested and multimapped genes would likely result in significant

changes in read count distribution and ultimately in incorrect ex-

pression estimates, for large proportions of the transcriptome.

Indeed, as sequencing depth increases and the capacity to simultan-

eously detect both coding and non-coding RNA improves, read as-

signment tools like CoCo will become essential for any sequencing

analysis pipeline.
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