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Abstract

Mobile Augmented Reality (MAR) requires a descriptor that is robust to changes in viewing

conditions in real time application. Many different descriptors had been proposed in the liter-

ature for example floating-point descriptors (SIFT and SURF) and binary descriptors

(BRIEF, ORB, BRISK and FREAK). According to literature, floating-point descriptors are not

suitable for real-time application because its operating speed does not satisfy real-time con-

straints. Binary descriptors have been developed with compact sizes and lower computation

requirements. However, it is unclear which binary descriptors are more appropriate for

MAR. Hence, a distinctive and efficient accuracy measurement of four state-of-the-art

binary descriptors, namely, BRIEF, ORB, BRISK and FREAK were performed using the

Mikolajczyk dataset and ALOI dataset to identify the most appropriate descriptor for MAR in

terms of computation time and robustness to brightness, scale and rotation changes. The

obtained results showed that FREAK is the most appropriate descriptor for MAR application

as it able to produce an application that are efficient (shortest computation time) and robust

towards scale, rotation and brightness changes.

Introduction

Augmented Reality (AR) requires real-time tracking to trace a user’s or device’s position and

register it with respect to the real world [1]. The ultimate goals of AR applications are to pro-

vide better management and ubiquitous access to information using seamless techniques in

which the interactive real world is combined with an interactive computer-generated world,

creating one coherent environment [2]. Briefly, AR involves integrating virtual objects into the

real world. [2] defines an AR system as having three characteristics:

• Combined real and virtual objects in a real environment;

• Executed interactively and in real time; and

• Real and virtual objects registered (aligned) with each other.

Mobile devices such as smart phones have been recognized as one of the potential tools for

AR [3–8]. Most of the smart phones nowadays provide a combination of a camera,
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accelerometer, GPS and other sensors making it as one of the most suitable device to provide

computer vision application such as AR application [9]. Tracking from natural features is a

complex problem and usually demands high computation power [10]. It is therefore difficult

to use AR natural feature tracking in mobile device compared to personal computer (PC) plat-

form because mobile devices have limited processing power, hardware and memory [11,12].

Hence, the selection of tracking algorithms needs to be given high attention in order to achieve

optimum performance of AR in mobile platform.

The process of MAR is to identify and track natural features from the environment where

local features from the scene image were matched with local features from the reference image.

In order to carry out the matching process, the features’ keypoints from both scene and refer-

ence image must be detected and each detected keypoint must be described using the feature

descriptor. Feature descriptors such as SIFT [13], SURF [14], BRIEF [15], ORB [16], BRISK

[17] and FREAK [18] had been proposed as core components in image recognition, computer

vision based tracking (visual tracking) and AR systems. Currently, researchers used these

descriptors to develop the MAR application [19–24] without testing the performance of each

descriptor used in the tracking process. Hence, it remains unclear which descriptors are appro-

priate for MAR application.

Previous researchers had worked to develop an efficient and robust MAR application [25–

28]. Efficiency and robustness are the general performance measures of tracking. Efficiency is

generally defining as the ability to track corresponding keypoints between consecutive frames

in the shortest time possible. It is often interchanged with words such as “speed” and “fast”.

Robustness can be defined as accurate tracking of corresponding keypoints between two

frames in the presence of large changes in scale, rotation and brightness. “Accuracy” is another

term often used to describe robustness of the tracking techniques [29]. Descriptor used in

MAR application is the component that will directly affect the efficiency and robustness of an

application [1,30]. In order to develop an optimum MAR application, a descriptor should able

to act fast and at the same time robust to changes in viewing conditions, as well as tolerant to

rotation and resistant to changes in brightness and uniform scaling.

Most recently some feature descriptors have been compared in PC AR application using Miko-

lajczyk dataset [30,31]. There are five descriptors involved in the comparison which is floating-

point descriptor; SIFT and SURF, binary descriptor; FREAK and ORB and machine-learning

descriptor; Ferns. The evaluation had been carried out to test the accuracy of descriptor in terms

of scale and angle invariance but brightness invariance which is important for MAR application

has not been evaluated. The computation time has also been evaluated but for both detection and

description process without testing on computation time of description process separately. They

conclude that Ferns and ORB yield the best performance in PC AR application [30].

To be precise on the scope of this paper, there is no need to address the floating-point

descriptors, as floating-point descriptors are not suitable for mobile real-time application [32].

Hence, this paper will concentrate on binary descriptors performance for MAR application.

This paper extended the evaluation of [30] by evaluating binary descriptor, namely BRIEF,

ORB, BRISK and FREAK by using the same database [33] in mobile AR application and evalu-

ate the computation time of description process itself without combining it with the detection

process. This paper evaluated the accuracy of descriptor in term of brightness, scale and rota-

tion invariance, which is important for MAR application.

Background

AR requires real-time and accurate six degrees of freedom (6DoF) pose tracking of devices.

Any particular AR application requires tracking technique to track the user’s or device’s
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position in order to register it in respect to the real world [34]. Such a tracking must run effi-

ciently, typically required a total computation time less than 100 milliseconds [35]. Further-

more, it must be robust under many conditions such as varying brightness, scales and

rotations [36–39]. Hence, the use of tracking algorithm in AR application is important in

order to produce a high performance AR application. In AR, tracking is divided into four steps

[40]. Basically, an image will be captured using phone’s camera and the image is converted

into grey scale image. The first step in tracking process is detection, in which keypoint detec-

tors were used to detect the natural features or keypoints of an image. The second step is to

obtain a description of the image. A descriptor is required to describe or extract the keypoints

detected in the detection process. Descriptors can be divided into two categories; floating-

point descriptors and binary descriptors. SIFT and SURF are examples of floating-point

descriptors, while BRIEF, ORB, BRISK and FREAK are examples of binary descriptors. The

next step in the tracking process is matching. The keypoints of reference image should be

stored in the database in advance to allow the system to match the points of an input image

with those of reference image. Pose estimation is the last step in the tracking process. Pose esti-

mation is performed to determine the position of a virtual object on top of the input image.

After this process is completed, a 3D object can be superimposed on top of the detected image

in the correct orientation [41]. Fig 1 shows the tracking process in AR application.

Descriptors of keypoints must be built to identify and match keypoints across images. The

extraction process must be distinctive for each keypoint and need to be consistent under dif-

ferent viewpoints [42]. Existing feature descriptors will be briefly explained in this section,

grouped by two categories; floating-point descriptors and binary descriptor.

Floating-point descriptors

One of the most famous keypoint descriptors is SIFT (Scale Invariant Feature Transform)

[43], which detects keypoints based on the Difference of Gaussians (DoG). Although SIFT was

published in 1999, it still yields results that are competitive with state-of-the-art techniques.

Apart from SIFT itself, several modified SIFT-like descriptors have been published, such as

PCA-SIFT [44]. SURF (Speeded-Up Robust Feature) almost matched the quality of SIFT but

accelerated the gradient computations using integral images [14]. To date, the SURF descrip-

tor is considered as the most popular replacement for SIFT. Both SIFT and SURF have success-

fully demonstrated their high robustness and distinctiveness in a variety of computer vision

applications [45,46]. However, the computation time required for floating-point descriptors is

Fig 1. Tracking process in AR application.

https://doi.org/10.1371/journal.pone.0207191.g001
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still too high for real-time applications, especially those running on limited computing power

and memory capacity like smart phone [47]. Hence, binary descriptors aim to fill this gap.

Binary descriptors

With the rapid growth of real-time applications, binary descriptors that achieved fast runtime

and compact storage have become increasingly well-known [15]. They show similar quality as

SIFT-like descriptors but at significantly lower computational costs and required small

amounts of memory. The idea behind binary descriptors is that each bit in the descriptor is

independent, and the Hamming distance can be used as a similarity measure instead of Euclid-

ean distance. The four most recent and promising binary feature descriptors are BRIEF

(Binary Robust Independent Elementary Feature) [15], ORB (Oriented Fast and Rotated

BRIEF) [16], BRISK (Binary Robust Invariant Scalable Keypoints) [17] and FREAK (Fast Ret-

ina Keypoint) [18]. Hamming distance can be calculated effectively because the distance

between descriptors were calculated by using XOR operation. Binary strings were generated

by comparing the intensity of each pixel in the image. Binary string represents the area around

the keypoint will be encoded in a string of “0” or “1”. Generally, single bits of a binary descrip-

tor are calculated by comparing the intensity value of point x in a sampling pair with the inten-

sity value of point y in the pair. A single bit of a binary descriptor B on patch p can be

calculated using Eq 1.

Bðp; x; yÞ≔
1 : Iðp; xÞ < Iðp; yÞ

0 : otherwise
; ð1Þ

(

where I(p,x) is the pixel intensity at point x of a sampling pair and I(p,y) is the pixel intensity at

point y of the sampling pair. A binary feature descriptor can be formed by concatenating the

bits formed by B, as shown in Eq 2; where the n value for BRIEF and ORB is 256, while for

BRISK and FREAK, it is 512.

P
1�i�n2

i� 1 Bðp; x; yÞ; ð2Þ

Experimental setup

SIFT, SURF, ORB, FREAK and Ferns had been evaluated in a PC-based markerless AR and

the computation times required by the detection, description and matching processes were

compared [30]. However, they presented the computation time used by the detection process

together with the description process and do not mention about number of keypoints involved

in the process. The results showed that ORB required the shortest time to compute both the

detection and description processes. They also tested the robustness of descriptors in terms of

scale invariance, rotation invariance and occlusion. The Ferns descriptor obtained the highest

matching rate compared to the other descriptors in all the robustness tests. Still, in all these

evaluations, the computation times used by the descriptors were combined with the computa-

tion time used by the detector. Evaluating the computing time required by the descriptors

themselves is important for determining the descriptors’ performances in AR applications.

Moreover, they did not test the robustness of the descriptors in terms of brightness invariance

which is important for AR applications [38]. Hence in this work we determined the distinctive

and efficient accuracy measurements for several descriptors and identified which descriptor

can function in the shortest amount of time and is robust to changes in terms of scale, rotation

and brightness in markerless AR applications. This section will discuss the configuration of

each test; computation time, rotation invariance, scale invariance and brightness invariance

test, in an AR application using standard dataset. The testing was implemented on HTC One
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X+ android smart phone. It has built in camera and is able to record video with 1080 pixels at

28 fps or 720 pixels at 30 fps which fulfils the basic requirements for successful implementation

of AR application. The source code for all these descriptors were obtained from OpenCV 2.4.9.

Dataset

Although there are a vast number of datasets used to evaluate the performance of feature

descriptors, the dataset used for this research was the well-known dataset introduced by [33]

which had been used by most researchers [15,18,30]. The dataset consists of eight classes; bark,

boat, bike, graffiti, wall, trees, leuven and ubc. Amsterdam Library of Object Images (ALOI)

dataset [48] also had been used by most researchers [49,50]. The dataset consists of one-thou-

sand small objects classes. This evaluation was carried out on a more specific task framework,

similar to the one proposed by [51] and [18]. The images in this dataset are complement with

extra rotation, scaling and brightness changes in this work to evaluate the performance of

binary descriptors under various transformation and to isolate the effects of each transforma-

tion. The combination of detector and descriptor strongly affects the performances of the

descriptors. Some descriptors are more discriminant for blobs than corners, but [18] noted

that the global ranking of the matching performance remained the same regardless of the

selected detector. Hence, the multi-scale AGAST detector introduced by BRISK was used

throughout the tests [17].

Evaluation metric 1: Efficiency

Efficiency is the ability to track corresponding keypoints between consecutive frames in the

shortest time possible. Descriptor used in an MAR application should able to extract features

in faster speed in order to create a MAR application that can act in real time. Hence, the first

and most important measurement in this work was the computation time obtained by each

descriptor. The detection and matching algorithm used throughout the measurement will be

the same, which is BRISK detector and Brute Force Hamming Distance respectively. Eq 3 is

used to measure the computation time used by descriptor. Let Mm denote the starting time, Mt

denote the ending time, and Mj denote the total computation time. If f (x) is the function of

each process (image capture, grey scale converter, keypoint detection, keypoint description,

matching, pose estimation and visualization), then the computation time for each process is

defined as:

f ðxÞ ¼ MjðMt � MmÞ ð3Þ

Evaluation metric 2: Robustness

Robustness in various changes is the general performance measurement or a requirement for

MAR application. Robustness can be defined as accurate tracking of corresponding keypoints

between reference image and input image in the presence of large changes in scale, rotation

and brightness. The evaluation criterion of robustness is based on the number of correct

matches and the total number of matches obtained from reference image and input image.

Two region A and B from reference image and input image respectively are matched if the dis-

tance d between their descriptor DA and DB is below a threshold. Each descriptor from the ref-

erence image is compared with each descriptor from the transformed input image and

obtained the number of correct matches. Hence, accuracy of descriptor is the number of cor-

rectly matched regions with respect to total number of matches between reference image and

input image of the same scene. Eq 4 is used in all the robustness evaluation includes rotation
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invariance, scale invariance and brightness invariance.

Accuracy %ð Þ ¼
Number of Correct Matches

Number of Matches
x 100 ð4Þ

Rotation invariance. Robustness of descriptors in terms of rotation changes are evaluated

using leuven, bot and bark images from Mikolajczyk dataset and christmas bear, lab-keys and

apricot images from ALOI dataset. The rotation invariance test applied affine rotation for both

images around the center. The images were rotated by measuring the angle from the center.

Let Io be the original image and IR be the rotated image. A total of 11 rotated images were pro-

duced and each rotated image can be defined using Eqs 5–7. Fig 2 shows the example of rota-

tion transformation using bark image.

Io ¼ 0 degree ð5Þ

IR1
¼ ðIo; 28 degreesÞ

..

.
ð6Þ

IR12
¼ ðIR11

; 28 degreesÞ ð7Þ

Scale invariance. Leuven, bot and bark images from Mikolajczyk dataset and christmas

bear, lab-keys and apricot images from ALOI dataset were used in scale invariance test. The

scaling operation was applied to the original image. Let Io be the original image and ISU denote

the scaled up or zoomed in images. A total of 12 scaled up images were produced and each

scaling up image was performed based on Eqs 8–10. Fig 3 shows the example of scaled up

transformation using boat image.

ISU1
¼ Io þ 5% ð8Þ

ISU2
¼ ISU1

þ 10%

..

.
ð9Þ

ISU12
¼ ISU11

þ 10% ð10Þ

Let ISD denote the scaled down images. A total of 8 scaled down images were produced and

each scaled down or zoomed out image can be defined using Eqs 11–13. Fig 4 shows the exam-

ple of scaled down transformation using boat image.

ISD1
¼ Io � 5% ð11Þ

ISD2
¼ ISD1

� 10%

..

.
ð12Þ

ISD8
¼ ISD7

� 10% ð13Þ
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Brightness invariance. Leuven, bot and bark images from Mikolajczyk dataset and christ-

mas bear, lab-keys and apricot images from ALOI dataset were used in brightness invariance

test. The brightness value changes were applied to the original image. Let Io be the original

image and IBR denote the brighter images (higher brightness value). A total of 10 brighter

images were produced and performed based on Eqs 14–16; where R, G and B denote Red,

Green and Blue, respectively, as the brightness value changes was applied to RGB images.

Example of the brightness transformation (higher brightness value) using leuven images are

shown in Fig 5.

IBR1
¼ ðIo � R x 15Þ þ ðIo � G x 15Þ þ ðIo � B x 15Þ ð14Þ

IBR2
¼ ðIBR1

� R x 15Þ þ ðIBR1
� G x 15Þ þ ðIBR1

� B x 15Þ

..

. ð15Þ

IBR10
¼ ðIBR9

� R x 15Þ þ ðIBR9
� G x 15Þ þ ðIBR9

� B x 15Þ ð16Þ

Fig 2. Rotation transformation using bark image.

https://doi.org/10.1371/journal.pone.0207191.g002
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Fig 3. Scaled up transformation using boat image.

https://doi.org/10.1371/journal.pone.0207191.g003

Fig 4. Scaled down transformation using boat image.

https://doi.org/10.1371/journal.pone.0207191.g004
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Similarly, let IDR denote the darker images (lower brightness value). A total of 10 darker

images were produced and performed based on Eqs 17–19; where R, G and B denote Red,

Green and Blue, respectively, as the brightness value changes was applied to RGB images. Fig 6

shows the example of brightness transformation (lower brightness value) using leuven image.

IDR1
¼ ½Io � R x ð� 15Þ� þ ½Io � G x ð� 15Þ� þ ½Io � B x ð� 15Þ� ð17Þ

IDR2
¼ ½IDR1

� R x ð� 15Þ� þ ½IDR1
� G x ð� 15Þ� þ ½IDR1

� B x ð� 15Þ�

..

.
ð18Þ

IDR10
¼ ½IDR9

� R x ð� 15Þ� þ ½IDR9
� G x ð� 15Þ� þ ½IDR9

� B x ð� 15Þ� ð19Þ

Fig 5. Brightness transformation (higher brightness value) using leuven image.

https://doi.org/10.1371/journal.pone.0207191.g005

Fig 6. Brightness transformation (lower brightness value) using leuven image.

https://doi.org/10.1371/journal.pone.0207191.g006
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Results and discussion

This section discussed the experimental results of the evaluation. The performance of every

binary descriptor; BRIEF, ORB, BRISK and FREAK is compared in terms of computation

time, rotation, scale invariance and brightness invariances.

Computation time

In order to measure the computation time of description process, the algorithm used to

perform detection and matching process is the same. BRISK and Hamming Distance were

used as detector and matching algorithm respectively, whereas, the description of each

process is using BRIEF, ORB, BRISK and FREAK to test the exact computation time. The

computation time of each process is calculated by using Eq 3. Computation time used to

carry out keypoint detection, description and matching process is recorded for 50 times

and every 500 keypoints. The results shown in Table 1 are the average computation time

used to perform each process and the total computation time of the entire tracking

process.

The evaluation showed that the total computation time of tracking process using FREAK as

a descriptor obtained the best result; 29.1ms. Conversely, the computation time using ORB

descriptor obtained the longest computation time of 36.7ms. All these evaluations are showing

that the tracking process using binary descriptor can work in real-time in mobile because the

computation time are less than 100ms.

Computation time used for each process; captured image with camera, converted to grey

scale image, keypoint detection, keypoint matching, pose estimation and visualization using

different descriptors are approximately the same. For example, the detection process using

BRISK algorithm to detect 500 keypoints in the tracking process using BRIEF, ORB, BRISK

and FREAK descriptors are 14.1ms, 14.5ms, 14.3ms and 13.8ms, respectively. This is because

the algorithm used for each detection process are the same.

Computation time used to describe 500 keypoints using different feature descriptors has a

huge difference between each other. Computation time used by FREAK descriptor has secured

the shortest time of 4.3ms, while the computation time used by BRISK and BRIEF are 5.2ms

and 7.5ms, respectively. Computation time used by ORB descriptor to describe 500 keypoints

are the longest; 9.4ms. Hence, FREAK descriptor is the most efficient descriptor as it can func-

tion in shortest computation time for mobile AR application compared to other binary

descriptors.

Table 1. Comparison of computation time for each process.

Descriptor BRIEF

Time (ms)

ORB

Time (ms)

BRISK

Time (ms)

FREAK

Time (ms)

Capture Image 1.3 1.3 1.3 1.3

Convert to Grey Scale Image 2.4 2.3 2.3 2.3

Detection

(500 keypoints)

14.1 14.5 14.3 13.8

Description

(500 keypoints)

7.5 9.4 5.2 4.3

Matching

(500 keypoints)

1.9 2.3 2.2 1.9

Pose Estimation 4.5 4.9 4.6 4.1

Visualization 1.9 2.0 1.7 1.4

Total Computation Time 33.6 36.7 31.6 29.1

https://doi.org/10.1371/journal.pone.0207191.t001
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Rotation invariance

A total of 52 testing were carried out to evaluate the robustness of descriptor in rotation, which

is 4 descriptors x 13 sequence images. The images were rotated at 28 degrees at the center

sequentially. The number of correct matches and the number of matches were recorded in

order to calculate the percentage of accuracy. This testing uses six images; leuven, boat and

bark from Mikolajczyk dataset and christmas bear, lab-keys and apricot from ALOI dataset,

therefore, each image that have the same rotation conditions were repeated 150 times (6

images × 25 times). For example, the boat image with IR2
condition was tested repeatedly for 25

times and the rest of the images; leuven, bark, lab-keys and apricot with IR2
condition was also

tested repeatedly for 25 times each. Fig 7 summarize the robustness of each descriptor in vari-

ous rotated images.

The results clearly showed that all the descriptors were most accurate at condition I0 as the

image is the original image without any rotation changes. The highest percentage of accuracy

at condition I0 was obtained by FREAK descriptor, 97.54% and followed by BRIEF descriptor,

95.22%, BRISK descriptor, 91.23% and ORB descriptor, 87.40%. Throughout the complete

sequence of rotated images, from Io to IR12
, the accuracy did not change abruptly when using

FREAK, ORB and BRISK, but the accuracy percentage of BRIEF dropped dramatically after

IR1
. The accuracy percentage of BRIEF descriptor drops to 0% after the image rotated at condi-

tion IR3
. Therefore, BRIEF descriptor is not suitable for mobile AR application because BRIEF

descriptor is not designed to extract features that have high rotation variation. This work also

analysed the result using One Way Anova and mean. The results show that FREAK achieved

the highest mean percentage of accuracy (88.135%) followed by BRISK (85.705%) and ORB

Fig 7. Accuracy obtained by each descriptor in different rotation conditions.

https://doi.org/10.1371/journal.pone.0207191.g007
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(84.299%) while BRIEF obtained the lowest percentage of accuracy (14.211%). BRIEF descrip-

tor also showed a significant difference compared to other descriptors in One Way Anova test.

FREAK, BRISK and ORB are robust to rotation invariance and obtained a high mean percent-

age of accuracy in rotation variation test, but referring to Fig 7 and the mean test, FREAK

slightly outperformed the other descriptors.

Scale invariance

Robustness of descriptors in terms of scale invariance were tested using leuven, boat and bark

images from Mikolajczyk dataset and and christmas bear, lab-keys and apricot images from

ALOI dataset. The configuration of the testing is similar to the testing in rotation invariance. A

total of 80 testing were carried out to evaluate the robustness of descriptor in scale variation,

which is 4 descriptors x 20 sequence images. This testing uses six images, therefore each image

that have the same rotation conditions were repeated 150 times (6 images × 25 times). Fig 8

showed the robustness of each descriptor in various scale images.

The results show that the descriptors obtain their highest accuracy percentage at scale con-

ditions ISD1
; ISU1

and ISU2
. This is because the three images had undergone a minimum scale

changes and most of the descriptors able to function accurately. As the camera starts to zoom

out (ISD1
� ISD8

) or moving away from the input image, the accuracy percentage of each

descriptors began to decline. FREAK, BRISK and ORB descriptor are still able to function by

extracting features and continuing the matching process. Percentage of accuracy obtained by

FREAK, BRISK and ORB at scale condition ISD8
are 83.20%, 81.21% and 65.33%, respectively.

However, BRIEF descriptor obtained 0% accuracy because there are insufficient features to

perform the matching process. Hence, BRIEF descriptor is not suitable for mobile AR

Fig 8. Accuracy obtained by each descriptor in different scale conditions.

https://doi.org/10.1371/journal.pone.0207191.g008
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application because BRIEF is not robust to scale invariance. Percentage of accuracy of each

descriptor was analysed using One Way Anova and mean to identify the most robust descrip-

tor in scale variation. The results here shown that FREAK obtained the highest mean percent-

age of accuracy (90.156%) followed by BRISK (86.246%), ORB (82.986%) and BRIEF

(78.391%). Therefore, researchers concluded that FREAK, BRISK and ORB are descriptors

that function robustly for scale variation in mobile AR application compared to BRIEF

descriptor. However, FREAK again achieved the highest accuracy percentage among the oth-

ers and hence indicated as the most robust descriptor in scale variation test.

Brightness invariance

Robustness of descriptors in terms of brightness invariance were tested using leuven, bot and

bark images from Mikolajczyk dataset and and christmas bear, lab-keys and apricot images

from ALOI dataset. A total of 84 testing (4 descriptors x 21 sequence images) were carried out

to evaluate the robustness of descriptor in different brightness condition. The number of cor-

rect matches and the number of matches obtained from each test were recorded in order to

calculate the percentage of accuracy. Each image that have the same brightness conditions

were tested repeated 150 times (6 images × 25 times). For example, the chrismas bear image

with IDR2
condition was tested repeatedly for 25 times and the rest of the image; leuven, boat,

bark, lab-keys and apricot with IDR2
conditions was also tested repeatedly for 25 times each. Fig

9 shows the accuracy percentage obtained by each descriptor in the presence of brightness

changes.

The results showed that the highest accuracy percentages were obtained when the bright-

ness conditions are at IDR1
and IBR1

. This is because of these two brightness conditions had

Fig 9. Accuracy obtained by each descriptor in different brightness conditions.

https://doi.org/10.1371/journal.pone.0207191.g009
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undergone a minimum change in brightness value which allows the descriptors to function

robustly. When the brightness value decreases (condition IDR10
� IDR1

) or increases (condition

IBR10
� IBR1

), the number of correct matches obtained by all the descriptors decreases dramati-

cally. For example, accuracy of FREAK descriptor obtained at brightness condition IDR1
is

94.95% but when the brightness value decreases to condition IDR10
, the accuracy obtained by

FREAK descriptor is also decreased to 44.33%. Similarly, at the brightness condition IBR1
,

FREAK descriptor obtained 96.23% accuracy, but when the brightness value increases to con-

dition IBR10
, the accuracy decreased to 65.90%. However, the matching process does not fail in

any of the conditions although the accuracy percentage decreased when brightness value

increases or decreases. The percentage of accuracy of each descriptor was analysed using One

Way Anova and mean to identify the most robust descriptor in brightness variation. The

results showed that FREAK obtained the highest mean percentage of accuracy (84.041%) fol-

lowed by BRIEF (79.410%), ORB (75.195%) and BRISK (74.057%). FREAK descriptor yields to

be the most robust descriptor in brightness invariance test because the accuracy decline rate is

less compared to other descriptors.

Overall performance

Performance ranking for FREAK, BRISK, ORB and BRIEF in computation time, scale invari-

ance, rotation invariance and brightness invariance are summarized in Table 2. The value of

performance ranking is given based on the mean of each testing. The descriptor that obtained

the lowest mean in computation time test was labelled as “1” (best) and the descriptor that

obtained the highest mean was labelled as “4” (worst) in the performance ranking. Whereas in

the robustness testing, the descriptor that obtained the highest mean was labelled as “1” (best)

and the descriptor that obtained the lowest mean was labelled as “4” (worst).

Based on Table 2, FREAK descriptor obtained the highest position in the performance

ranking followed by BRISK descriptor (second position), ORB and BRIEF descriptor were

both at 3.5 position, FREAK descriptor achieved the best performance compared to others

descriptor in all the testing include efficiency and robustness test. Therefore, FREAK descrip-

tor had been identified as the most appropriate descriptor for mobile AR application.

FREAK descriptors able to perform efficiently (low computation time) due to the sampling

pairs structure of FREAK descriptor is using a coarse-to-fine apporach which matches with

the model of human retina. FREAK takes advantage of this coarse-to-fine structure to further

speed up the extraction using a cascade approach. FREAK descriptor first compare only the

first 128 bits which representing coarse information during matching the two features. If the

distance of the two features is smaller than a threshold, FREAK descriptor only further con-

tinue the comparison with the next 128 bits to analize finer information. As a result, a cascade

of comparisons is performed accelerating even further the matching as more than 90% of the

features are discarded with the first 128 bits of FREAK descriptor.

Table 2. Performance ranking for each descriptor.

Computation

Time

Scale Rotation Brightness Overall Performance Performance Ranking

FREAK 1.0 1.0 1.0 1.0 1.0 1

BRISK 2.0 2.0 2.0 4.0 2.5 2

ORB 4.0 3.0 3.0 3.0 3.25 3.5

BRIEF 3.0 4.0 4.0 2.0 3.25 3.5

https://doi.org/10.1371/journal.pone.0207191.t002
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FREAK is a binary descriptor that is similar to BRIEF, ORB and BRISK, but with the added

advantages of ratation invariance and learned sampling pairs which biologically inspired by

the retinal pattern in the eye. FREAK descriptor suggests to use the retinal sampling grid

which is also circular with the difference of having higher density of points near the center.

The density of points drops exponentially. Each sampling point is smoothed with a Gaussian

kernel where the radius of the circle illustrates the size of the standard deviation of the kernel.

FREAK improves upon the sampling pattern and method of pair selection that BRISK descrip-

tor uses. BRISK select pairs according to their spatial distance, however the selected pair can

be highly correlated and not discriminat. Consequently, FREAK learn the pairs by maximizing

variance of the pairs and taking pairs that are not correlated. This had lead to a more accurate

description of the keypoints and make FREAK descriptor able to perform robustly under vari-

ous changes.

Conclusion

This research paper presents a distinctive and efficient method for measuring the accuracy of

binary descriptors for mobile AR applications using Mikolajczyk dataset and ALOI dataset.

Comparative accuracy tests were performed for FREAK, BRISK, ORB and BRIEF descriptors

to determine the most appropriate descriptor (efficiency and robustness) in mobile AR appli-

cations. Based on the accuracy measurement results, FREAK is recommended as the best

binary descriptor for mobile AR applications, yielding the fastest computation time of all the

descriptors. Furthermore, FREAK achieved good results in rotation invariance, scale invari-

ance and brightness invariance. In comparison, BRISK yielded an average result in all tests

while BRIEF yielded a good result in the efficiency and brightness invariance test but has the

worst results on scale invariance and rotation invariance tests. Therefore, FREAK achieved the

best overall results for mobile AR application using the Mikolajczyk dataset and ALOI dataset,

followed by BRISK in 2nd place and ORB and BRIEF in 3rd place respectively.
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