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Abstract
A variety of methods that predict human nonsynonymous single nucleotide polymorphisms

(SNPs) to be neutral or disease-associated have been developed over the last decade.

These methods are used for pinpointing disease-associated variants in the many variants

obtained with next-generation sequencing technologies. The high performances of current

sequence-based predictors indicate that sequence data contains valuable information

about a variant being neutral or disease-associated. However, most predictors do not readi-

ly disclose this information, and so it remains unclear what sequence properties are most

important. Here, we show how we can obtain insight into sequence characteristics of vari-

ants and their surroundings by interpreting predictors. We used an extensive range of fea-

tures derived from the variant itself, its surrounding sequence, sequence conservation, and

sequence annotation, and employed linear support vector machine classifiers to enable ex-

tracting feature importance from trained predictors. Our approach is useful for providing ad-

ditional information about what features are most important for the predictions made.

Furthermore, for large sets of known variants, it can provide insight into the mechanisms re-

sponsible for variants being disease-associated.

Introduction
Over the last decade, many predictors have been developed to categorize human nonsynon-
ymous SNPs as disease-associated or neutral [1–16]. Such predictors can be used for identify-
ing the relatively few disease-associated variants in human variation data, a type of data that is
rapidly increasing due to the advances in whole genome sequencing techniques [17]. These
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methods typically employ large sets of known neutral and disease-associated variants to learn
how to separate both classes based on variant characteristics, i.e. features. As might be ex-
pected, the degree of sequence conservation is highly predictive for disease association of genet-
ic variants. Therefore, all available prediction methods heavily rely on conservation-based
features. In fact, several methods, among which the often used method SIFT, predict class la-
bels by thresholding a single conservation-based feature.

A comparative study, however, showed improved prediction results for methods that incor-
porate additional sequence-derived features [18]. It found two methods, MutPred [8] and
SNPs&GO [7] to be most reliable. MutPred builds upon the SIFT score by incorporating gain
and loss of structural and functional properties; SNPs&GO calculates several conservation-
based features and additionally incorporates features that capture the amino acid substitution,
its surrounding sequence, and features based on the functional annotation of the protein in
which the substitution occurs. Except for the functional annotation-based features, these and
some supplementary features were also used in this work. The more recently developed method
CADD, which can be applied to all types of genetic variants, provided good performance by in-
corporating conservation metrics, regulatory information, transcript information, and protein
level scores that are generated with methods like SIFT and PolyPhen [19].

Protein structure-based features are also attractive to further improve classification perfor-
mance. However, their use is hampered by the limited availability of structural data. Further-
more, regarding the variants that do have available structure data, the fact that relatively many
of these variants are disease-associated complicates the use of this type of feature by introduc-
ing a strong bias.

The fact that good classification performances can be obtained implies that the used fea-
tures, which are mostly derived from sequence data, comprise valuable information about the
probability of a genetic variant being neutral or disease-associated. However, this information
is rarely utilized to provide better insight into what features actually contribute most to classifi-
cation outcomes, i.e. what sequence characteristics are predictive for the effect of genetic vari-
ants. In this work, we show how we can obtain insight in characteristics of variations
associated with disease through predictor interpretation.

We used linear support vector machines, allowing us to extract feature weights from trained
classifiers. A high weight indicates a strong contribution of a certain feature to the classifier
outcome, and its sign indicates if it is predictive for neutral (negative weight) or disease-associ-
ated (positive weight) variants (Fig. 1). To further enhance interpretation potential and perfor-
mance of the linear classifiers, we trained separate classifiers on subsets that contain variants
with the same reference amino acid. This was done based on the assumption that feature im-
portance might be different per type of amino acid substitution. For example, a surrounding se-
quence with many small amino acids might be a high risk in case of substitutions from small to
large amino acids, whereas substitutions from small to other small amino acids in the same sur-
rounding might have a lower risk. Extracting feature importance from classifiers trained on the
variant subsets could help in revealing such differences. Although it is not the aim of this paper
to introduce a competitive predictor, we demonstrate that classifiers can be made interpretable
without significant loss in prediction performance.

Results and Discussion
To characterize variants, we used five different sequence-derived feature categories (Fig. 2a)
that were derived from different types of sequence data (Fig. 2b). Most of these features were
inspired by the well performing method SNPs&GO [7]. The Amino acid substitution category
consists of 20 features that capture the amino acid substitution by setting the reference amino
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acid to minus one, the mutant amino acid to one, and all other amino acids to zero [7]. These
features were added because it is expected that different amino acid substitutions have different
probabilities of resulting in a functional effect. Surrounding sequence features capture amino
acid counts in a window of 19 residues around the substituted amino acid [7], which can be in-
formative for structural surroundings. For example, the features could (implicitly) capture

Fig 1. Extracting feature weights from trained classifiers. a) For illustration, objects in two classes (blue and red) are represented by rectangles and
characterized by the features “width” and “height”. b) By measuring widths and heights, objects are mapped to a two dimensional grid (feature space).
Classifier training results in the decision boundary that separates the two classes of objects. c) Feature importance can be deducted from the slope of the
decision boundary. The height is more important than the width, hence the higher (absolute) weight for this feature. The sign indicates for what class the
feature is predictive. Blue rectangles are generally wider, hence the negative weight for the width feature. Red rectangles are generally taller, hence the
positive weight for the height feature.

doi:10.1371/journal.pone.0120729.g001

Fig 2. Feature categories. a) Five feature categories and their corresponding features. The colors indicates from which type of sequence data in part B the
features were derived. b) Sequence and annotation data used to derive variant features; the amino acid substitution (green), the surrounding sequence
(yellow), the amino acid variation in similar proteins (blue), and Pfam annotations (purple).

doi:10.1371/journal.pone.0120729.g002
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information about backbone disorder, solvent accessibility, and secondary structure. Conserva-
tion features capture how conserved the mutated position is based on a multiple sequence
alignment (MSA) with similar proteins. Two features capture how often the reference and the
mutant amino acid occur in the set of amino acids at the mutation position in the MSA
(Fig. 2b). An often occurring reference amino acid indicates strong conservation and therefore
a high risk of a functional effect upon mutation. In contrast, a low risk is expected in case of a
high occurrence of the mutant amino acid. Two additional features capture the number of pro-
teins in the alignment. These features were added to account for limited availability of homolo-
gous sequences, in which case the first two conservation features are expected to be less
informative. Physicochemical conservation features capture if physicochemical properties of the
mutant amino acid are much different compared to those of the amino acids at the mutation
position in the MSA. These features were added based on the assumption that, for example, in-
troducing a hydrophobic amino acid at a position where none of the amino acids at that posi-
tion in the MSA is hydrophobic, might affect protein function. Finally, based on recent work
showing an enrichment of deleterious variants in Pfam domains [20], domain features capture
if a variant resides within a Pfam domain, family, or clan.

For classifier training, we used a set of 171,257 human nonsynonymous SNPs: 149,850 neu-
tral variants from the 1000 Genomes Project and 21,407 disease-associated variants from the
SwissProt humsavar data base [21, 22] (S1 Information). The variants were split into subsets
containing variants with the same reference amino acid. Because the tryptophan, tyrosine, and
phenylalanine subsets were too small for classifier training, these were combined into one sub-
set. The resulting variant subsets are listed in Table 1. Classifiers were trained on the subsets
separately. Afterwards, feature weights were extracted from the trained classifiers (Fig. 1). This
was done using each of the five feature categories separately (Fig. 2a) and once using
all features.

Table 1. Number of variants and proteins per subset.

subset # variants (%) # disease # neutral # proteins

Alanine A 14,852 (0.09) 1,294 13,558 7,891

Arginine R 28,544 (0.17) 3,687 24,857 10,364

Asparagine N 5,968 (0.03) 624 5,344 4,132

Aspartic acid D 7,715 (0.05) 1,040 6,675 4,864

Cysteine C 3,285 (0.02) 1,174 2,111 2,166

Glutamic acid E 8,618 (0.05) 903 7,715 5,269

Glutamine Q 4,723 (0.03) 435 4,288 3,467

Glycine G 12,008 (0.07) 2,648 9,360 6,377

Histidine H 4,319 (0.03) 532 3,787 3,170

Isoleucine I 7,985 (0.05) 701 7,284 5,052

Leucine L 8,206 (0.05) 1,584 6,622 4,988

Lysine K 5,419 (0.03) 441 4,978 3,793

Methionine M 4,950 (0.03) 503 4,447 3,598

Proline P 11,910 (0.07) 1,152 10,758 6,587

Serine S 11,541 (0.07) 1,165 10,376 6,522

Threonine T 11,007 (0.06) 891 10,116 6,388

Valine V 12,771 (0.07) 940 11,831 7,129

WYF 7,436 (0.04) 1,693 5,743 4,593

171,257 (1.00) 21,407 149,850 16,523

doi:10.1371/journal.pone.0120729.t001
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For clarity, practical application of our predictor is different compared to existing
methods. In our case there are 18 different classifiers instead of one. Which classifier is applied
depends on the variant for which a prediction is desired. For example, if this variant results
in an amino acid substitution from Glutamine (reference) to Histidine (mutant), than the
classifier that is trained on all variants with reference amino acid Glutamine will be used
for prediction.

Enhanced classifier interpretation
Amino acid substitution features. Extracted feature weights from classifiers trained using

the amino acid substitution features are visualized using a heat map in Fig. 3a. Here, each row
shows feature weights obtained from one subset classifier, i.e. a classifier trained on one of the
variant subsets. For example, the colors in the top row correspond to the weights obtained
from the classifier trained on all variants with aspartic acid (D) as reference amino acid. A posi-
tive weight (red) indicates that the feature (the mutant amino acid in this case) is predictive for
disease-association whereas a negative weight (blue) indicates importance for neutral variants.
The higher the (absolute) weight, the higher the feature importance. Using the top row as ex-
ample again, the low weight of the glutamic acid feature (column E) indicates that a substitu-
tion from aspartic acid to glutamic acid is relatively safe, whereas the high weight of the glycine
feature (column G) indicates that a substitution from aspartic acid to glycine is relatively dan-
gerous. Gray elements indicate amino acid substitutions that do not occur in our data set, since
these require more than one mutation at the nucleotide level. Additionally, the feature weights
obtained from the classifier that was trained on the entire data set are shown in the single row
at the bottom.

Fig 3. Amino acid substitution feature weights. a) Heat map showing feature weights obtained from classifiers trained using the amino acid substitution
features. The rows show feature weights obtained per variant subset classifier. The single row at the bottom shows feature weights obtained from a classifier
trained on the entire set of variants. The rows and columns are ordered based on amino acid properties [23]. Low (blue) and high (red) weights indicate that
the feature is predictive for neutral and disease-associated variants respectively. Gray cells indicate amino acid substitutions that do not occur in the data set,
because these substitutions require more than one mutation in the reference codon. b) Heat map showing log odds ratios between neutral and disease-
associated variants that were obtained by counting the amino acid substitutions in our data set. Here, low (blue) and high (red) values indicate that
substitutions occur relatively often in the set of neutral and disease-associated variants, respectively.

doi:10.1371/journal.pone.0120729.g003
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The classifier trained on the entire data set (bottom row) only has twenty features to capture
the risks of the different amino acid substitutions. For interpretation, the low weight of the me-
thionine feature indicates that substitutions from and to methionine are relatively safe. In con-
trast, the weights of the subset classifiers offer much richer interpretations. Here it can be
observed that substitutions from threonine to methionine are relatively safe, but that substitu-
tions the other way around (from methionine to threonine) are relatively dangerous.

For validation, the heat map in Fig. 3b shows the log odds ratios between the neutral and
disease-associated variants in our data set that were calculated using the amino acid substitu-
tion counts. Here, high values indicate relatively dangerous variants, i.e. variants that are rela-
tively often disease related, and low values indicate relatively safe variants. The feature weights
of the subset classifiers in Fig. 3a clearly reflect the log odds ratios, thereby showing that the
subset classifiers successfully learned the ‘risks’ of the different amino acid substitutions.

Surrounding sequence features. Resulting weights of classifiers trained using the sur-
rounding sequence features are shown in Fig. 4. In this case, most columns show consistently

Fig 4. Surrounding sequence feature weights. Heat maps showing feature weights obtained from classifiers trained using the surrounding sequence
features. The rows show feature weights obtained per variant subset classifier. Both the rows and the columns are hierarchically clustered (complete
linkage). The single row at the bottom shows feature weights obtained from a classifier trained on the entire set of variants. Low (blue) and high (red) weights
indicate that the feature is predictive for neutral and disease-associated variants respectively.

doi:10.1371/journal.pone.0120729.g004
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signed weights, which indicates that the same general rules hold for different amino acid substi-
tutions. For example, it is easy to observe that in a serine-rich surrounding (#S), any amino
acid substitution is relatively safe, independent of what the reference amino acid is. The weights
of the classifier trained on the entire set of variants (bottom row) show that the same rules can
indeed be learned using the entire set of variants.

For the sequence surrounding features, enhancing interpretation by using the subset ap-
proach therefore seems limited. However, some interesting details can still be observed that
cannot be derived from the classifier trained on the entire data set. For example, the cysteine
subset classifier (C) shows a very negative weight for the cysteine count feature (#C), indicating
that in a cysteine-rich surrounding, substituting cysteines is relatively dangerous. This might
be explained by the fact that such variants potentially break disulfide bridges [24]. Similarly, in
a glycine-rich surrounding (#G), substituting glycines (G) shows a relatively high risk of being
disease-associated, which might be related to changing conformational entropy of a
flexible region.

The columns were clustered using hierarchical clustering (complete linkage), which reveals
a cluster with positive values (red cluster) containing hydrophobic amino acids. This indicates
that amino acid substitutions are relatively dangerous in a hydrophobic sequence surrounding,
which is consistent with the fact that variants in the hydrophobic protein core have a high-risk
of disrupting thermodynamic stability.

Physicochemical conservation features. The physicochemical conservation features cap-
ture whether there is a large physicochemical distance between the mutant amino acid and the
amino acids at the same position in the MSA (Fig. 2b). For defining physicochemical distances,
we used so called amino acid scales: mappings from amino acids to corresponding values that
capture some physicochemical property, e.g. hydrophobicity. Many amino acid scales are col-
lected in the AAIndex database [25], but the majority of these scales are highly correlated. We
therefore used 19 amino acid scales that were derived from the AAIndex database using VARI-
MAX [26]. This set contains independent amino acid scales (which is desired for classification
performance) of which as many as possible are still closely related to physicochemical proper-
ties (which is desired for interpretation). The amino acid scales that have a strong correlation
to physicochemical properties, i.e. the interpretable scales, are given in Table 2. The AAIndex
scales that best correlate to the derived scales are given in S1 Table.

For calculating these features, the amino acids are first mapped to characterizing values
using the amino acid scale, after which the minimal distance between the mutant amino acid
and the amino acids at the same position in the MSA is calculated. This is done for all 19
amino acid scales. As an example, a large mutant amino acid on a position where the MSA con-
tains only small amino acids will result in a large bulkiness (scale 3) distance. These features ba-
sically capture conservation of physicochemical properties.

Table 2. The amino acid scales that corresponds the best to physicochemical properties.

Scale Property

1 Hydrophobicity, β-sheet

2 α-Helix

3 Bulkiness (volume/size/mass)

4 Amino acid composition

7 Isoelectric point

8 β-sheet

doi:10.1371/journal.pone.0120729.t002
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This category captures a property of the mutant amino acid, while our classifiers are trained
on variants with the same reference amino acid, which complicates interpretation. Theoretical-
ly, splitting the variants per amino acid substitution (150 out of the 380 possible substitutions,
since we only consider substitutions that are a result of a single mutation in the codon) could
improve interpretation possibilities, but these subsets would be too small for classifier training.
Still, some intuitive results can be observed (Fig. 5). For example, cysteines are small and often
buried, so replacing these by a large amino acid may disrupt protein core packing. Conversely,
a difference in bulkiness when replacing the relatively large amino acids phenylalanine, tyro-
sine or tryptophan, is found to be relatively safe.

Conservation and domain features. The conservation features indicate how conserved a
mutated position is. As expected, variants for which the reference amino acid often occur at the

Fig 5. Physicochemical conservation feature weights.Heat maps showing feature weights obtained from classifiers trained using the physicochemical
conservation features. The rows show feature weights obtained per subset classifier. The single row at the bottom shows feature weights obtained from a
classifier trained on the entire set of variants. Low (blue) and high (red) weights indicate that the feature is predictive for neutral and disease-associated
variants respectively.

doi:10.1371/journal.pone.0120729.g005
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same position in homologous sequences have a high risk of being disease-associated, and vari-
ants for which the mutant amino acid often occur on the same position in homologous se-
quences are relatively safe (S1 Fig.). These rules hold for all variants, independent of what
amino acid substitution they induce. Similarly, considering the domain features, it holds for all
variants that the risk of being disease-associated is relatively high if it resides in a Pfam domain
(S2 Fig.). For these features, the classifiers trained on the variant subsets therefore do not pro-
vide better interpretations than the classifier trained on all variants.

All features combined. Considering the classifiers trained using all features, the resulting
feature weights (S3 Fig.) show that the conservation and domain features generally obtain high
(absolute) weights, indicating that these feature categories are most predictive. However, high
weights for certain features in other categories show that these also contribute to prediction
and interpretation. For example, for variants resulting in alanine substitutions, not only high
conservation is a strong indicator for disease-association, but also if the alanine is substituted
to an aspartic (or glutamic) acid. For the set of variants with phenylalanine, tryptophan, and ty-
rosine as reference amino acid, it can be observed that substitutions to less bulky amino acids,
and especially to cysteines, have a relatively low risk of being disease associated.

Classifier performances
Interpreting a classifier is only useful if it demonstrates good prediction performance, as other-
wise the used features are not predictive and consequently interpretation of their weights is
dangerous. To assess classifier performance, we used ten-fold cross-validation using the area
under the receiver operator curve (AUC) as performance measure. Again, classifiers were test-
ed using each feature category separately and one classifier was tested using all features. Classi-
fiers were tested for all variant subsets; to obtain a combined subset classifier (CS) result, all test
set predictions were combined to generate an ROC-curve. For comparison, classifiers that were
trained on the entire set of variants (CE) were also tested.

Resulting performances are given in Table 3 (more results can be found in S2 Table and S4
Fig.). In case of the linear support vector machines, subset classifiers (CS) consistently outper-
formed the classifiers trained on the entire set of variations (CE). The subset approach thus not

Table 3. Classification performances (AUC).

Features CS* CE** Δ

Linear support vector machine classifiers

all features 0.833 0.813 0.020

amino acid substitution 0.683 0.587 0.096

surrounding sequence 0.714 0.673 0.041

conservation 0.775 0.765 0.010

physicochemical conservation 0.712 0.633 0.079

domain 0.720 0.676 0.044

RBF support vector machine classifiers

all features 0.845 0.858 -0.013

Other prediction methods

SIFT - 0.803 -

PolyPhen 2 - 0.807 -

* combined subset classifiers,

** classifier trained on all variants

doi:10.1371/journal.pone.0120729.t003
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only improves interpretation, it also results in better classification performances (for linear
classifiers). Best performance was obtained using the subset classifier trained on all features, re-
sulting in 0.833 AUC (Fig. 6).

To compare this result with existing methods, we applied the two often used methods SIFT
and PolyPhen2 to our data set. With AUCs of 0.803 and 0.807 respectively, both methods were
outperformed by our interpretable classifier (Fig. 7). We also compared our linear approach to
one using a non-linear classifier, which may be better suited for a complex classification prob-
lem such as this. With a cross-validation result of 0.858 (Fig. 6), this was indeed the case for a
non-linear SVM (RBF kernel). However, this classifier does not allow for interpretation. By
using the subset approach with linear classifiers, we managed to enable interpretation with
only a limited loss in performance (0.833 vs. 0.858).

Conclusion
In this work, we propose to investigate properties of disease-causing genetic variants, by ex-
ploiting predictors trained to distinguish between such variants and neutral mutations. We
take a linear classification approach, allowing us to interpret feature weights in a straightfor-
ward manner. The results showed that our approach enables interpretation with only limited
performance loss compared to the use of non-linear classifiers. This is useful for users that are
interested in specific disease-associated variants, providing better understanding about mecha-
nisms potentially responsible for functional effects. Furthermore, when considering large sets

Fig 6. ROC-curves showing classifier performances using all features. In blue, performances for linear
support machines using the combined subset classifier approach (CS), and for a classifier trained on the
entire set of variants (CE). In gray the performance of a non-linear support vector machine (RBF kernel)
trained on the entire set of variants.

doi:10.1371/journal.pone.0120729.g006
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of variants, the approach also provides pointers to help find general mechanisms resulting in
neutral or disease-associated variants.

Methods
Human protein sequences were obtained from the UniProt website (June 3, 2013) using a
query for canonical human proteins with keyword “Complete proteome”, and from the
Ensembl (version 71) FTP server (see S1 Information for the URLs used). Only the protein se-
quences that were identical in both sets were selected, thereby providing a one-to-one mapping
from UniProt to Ensembl proteins (S4 File), which facilitated running other prediction meth-
ods on our data. Proteins longer than 10,000 residues were considered outliers and therefore
removed. This resulted in a set of 18,162 human protein sequences (S3 File).

Human variants
Disease-associated variants were obtained from the SwissProt human single amino acid vari-
ants data base (humsavar release 2013–07), selecting all variants with annotation disease. Non-
disease associated variants from the 1000 Genomes Project were obtained by directly querying
the database (Dec 2012). An overlap of 676 variants that were both found in the set of disease-
associated variants and the set of neutral variants were assumed to be disease-associated and
therefore removed from the neutral set. Synonymous SNPs, duplicate variants, variants in the
start codon, and substitutions that included other than the twenty unambiguous amino acids

Fig 7. ROC-curves showing classifier performance compared to SIFT and PolyPhen 2. In blue,
performance using the combined subset classifier approach (CS). In orange and green, performances of SIFT
and Polyphen 2 respectively.

doi:10.1371/journal.pone.0120729.g007
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were removed. To prevent a bias caused by an unbalanced occurrence of multiple nucleotide
mutations in the different classes [22], amino acid substitutions that require more than one
mutation in the codon were removed. This resulted in 23,039 disease-associated variants in
1,941 proteins and 216,697 neutral variants in 17,183 proteins.

The human protein sequences were used to filter out variants that do not “fit” the protein
sequence, i.e. variants for which the reference amino acid was not found on the specified posi-
tion in the sequence. Variants for which no protein sequence was available were removed.
Also, variants at different locations with an identical surrounding sequence in a window of
nineteen amino acids around the mutation were removed, assuming a mapping from the same
DNAmutation to multiple proteins. The resulting data set consists of 171,257 variants in
16,523 proteins, subdivided into 149,850 neutral and 21,407 disease-associated variants (S1
File and S2 File).

The variants were split into twenty subsets, each containing variants with the same reference
amino acid. Due to the low number of substituted tryptophans, tyrosines, and phenylalanines,
these subsets were combined into one subset, resulting in a total of eighteen subsets. The num-
ber of variants per subset are given in Table 1.

Feature categories
Calculation of the different feature categories is described below. A file with feature matrix data
(250 MB) is available on request.

Amino acid substitution features—Amino acid substitutions are represented by twenty fea-
tures, one per amino acid, in which the reference amino acid (S2 File, column 3) is set to −1,
the mutant amino acid (S2 File, column 4) is set to 1, and all other amino acids are set to 0
(Fig. 2). For each variant subset, some features have the same value for each variant in that
set. Therefore, these features do not contribute to the classification and were removed. For
example, the serine feature was removed from the variant subset with substitutions from
serine to other amino acids, because that feature is −1 for all variants in the subset. Also, the
aspartic acid, glutamic acid, histidine, lysine, methionine, glutamine, and valine features
were removed, because a substitution from serine to any of these amino acids requires more
than one mutation in a serine codon, and such mutations are not present in our data set.
These feature values are therefore all 0.

Surrounding sequence features—Twenty features, one per amino acid, capture the surround-
ing sequence of each variant (S2 File, column 6). These twenty features contain amino acid
counts of a sequence window of 19 residues around the variant (Fig. 2a).

Conservation features—Alignments with similar proteins were obtained for each human pro-
tein by running a single HHBlits [27] against the redundancy reduced UniProt20 data base
version 2013–03 using default parameter settings (S1 Information). For each variant, four
conservation features were derived from the multiple sequence alignment (MSA) column at
the mutation position: i) the frequency of occurrence of the reference amino acid, ii) the fre-
quency of occurrence of the mutant amino acid, iii) the total number of aligned proteins,
and iv) the number of aligned residues in this column.

Physicochemical conservation features—These features employ the MSA to capture minimal
physicochemical distances between the mutant amino acid and the set of variant amino
acids at the mutation position (Fig. 2b), in which amino acid scales were used to calculate
physicochemical distances between two amino acids. Amino acid scales map each amino
acid to a value that captures a physicochemical or biochemical property and the AAIndex
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data base [25] contains a large collection of these scales, many of which are highly correlat-
ed. We therefore used a set of 19 uncorrelated scales derived from the entire AAIndex data-
base [26]. The uncorrelated scales were derived in such a way that some of the scales remain
highly correlated to a set of consensus natural scales: Scale 1 has strong correlation with hy-
drophobicity and β-sheet scales, scale 2 has strong correlation with α-helix scales, scale 3
has strong correlation with bulkiness scales, scale 4 has strong correlation with amino acid
composition scales, and scale 7 has strong correlation with isoelectric point scales (Fig. 5b in
[26]). This way, all amino acid scales data is captured while interpretation is still possible for
some of the resulting uncorrelated scales.

Domain features—Pfam version 27.0 [28] was used to predict Pfam domains on the protein
sequences (S1 Information). Resulting annotations (S5 File) were used to construct three bi-
nary domain features that are set to 1 if the variant resides within a predicted Pfam family,
domain, or clan, respectively, or to 0 otherwise.

Classification
A linear support vector machine (LIBSVM [29]) was employed for classification [30], using a
linear and RBF kernel for the linear and non-linear classifiers respectively, and using a 10-fold
stratified cross-validation (CV) protocol to asses classifier performance [31]. When using the
linear kernel, parameter C was set to 0.1; for the RBF kernel we set C = 1.0 and γ = 0.01. Proba-
bility estimates were used as classifier output, so that outcomes of the different subset classifiers
could be combined.

Classifiers were trained on the variant subsets separately (CS). Their combined performance
was obtained by combining the outcomes of all CV test sets for all subset classifiers and using
these to generate an ROC-curve [32] for the entire data set. The area under the ROC-curve
(AUC) was used as performance measure. Classifiers were also trained on the entire set of vari-
ants (CE), in which case the average AUC of the ten CV-loops was used as performance mea-
sure. For classifier types, CE and CS, a classifier was trained for each of the feature categories,
and a classifier was trained on all features. Feature scaling was applied to enable the use of data
with varying ranges. All feature values were standardized (the feature value subtracted by the
mean of the feature vector and the result divided by the standard deviation of the feature vec-
tor) so that all feature vectors have zero-mean and unit-variance.

After cross-validation, classifiers were trained on the entire data sets. These classifiers were
used to obtain feature weights. For a given set of variants V, the feature weight vector w from
the trained SVM classifier was obtained using:

w ¼
X

vi2V
aiyiFðviÞ; ð1Þ

in which αi are the weights assigned to the objects (variants), yi are the variant labels (−1 for
neutral and 1 for disease-associated) and F(vi) is a function that maps a variation vi to its fea-
ture representation. For comparison, weight vectors are standardized to zero mean and unit
standard deviation.

Other prediction methods
Predictions for our mutation data set were obtained using the two often used prediction meth-
ods SIFT [1] and PolyPhen2 [9]. SIFT predictions were obtained using their website, the result-
ing SIFT scores were used as prediction outcome. Predictions were missing for a total of 4,208
mutations, either because the protein ID (ENSP) or the requested position in the sequence was
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not found by the current SIFT predictor. PolyPhen2 predictions were also obtained using their
website. Both our list of mutations and the FASTA file with human proteins were supplied to
the method, which was run using HumDiv as classifier model, GRCh37/hg19 as genome as-
sembly, canonical transcripts, and missense annotations. The resulting Naive Bayes posterior
probabilities were used as prediction outcome. No predictions were given for 647 variants. The
area under the ROC-curve was used as performance measure.

Supporting Information
S1 Information. Supporting information. This file describes which web resources were used
to get sequence and variant data, and it describes how the software tools HHBlits and PfamS-
can were used to obtain the multiple sequence alignments and the PFAM domains, respective-
ly, that were used for feature calculation.
(PDF)

S1 File. Labeled human variants. This file contains the labeled variants that were used for clas-
sifier development and testing (using cross-validation). The first line contains the two used la-
bels: neutral (0) and disease (1). The following lines each contain two tab-separated items: a
variant id, and the corresponding label (0 or 1). The variant id is composed of four underscore-
separated items: the protein id (UniProt), the protein sequence position (starting at 1), the ref-
erence amino acid, and the mutant amino acid.
(TXT)

S2 File. Variant data. This file contains sequence information for all variants. Each row con-
tains twelve tab separated items related to one variant: 1. the protein id (UniProt), 2. the pro-
tein sequence position (starting at 1), 3. the reference amino acid,4. the mutant amino acid, 5.
the label (0 for neutral, 1 for disease), 6. the surrounding amino acid sequence, 7. the window
size of the surrounding sequence, 8. the surrounding nucleotide sequence, 9. the reference
codon, 10. the mutant codon, 11. the id of the pdb structure to which the variant is mapped
(None if we could not map the variant to a structure in the pdb), 12. the position in the pdb
structure to which the variant is mapped (−1 in case of no mapping).
(TXT)

S3 File. Protein sequences. This file contains the human protein sequences that are used in
this work. The sequences are in FASTA format with UniProt identifiers.
(FSA)

S4 File. UniProt to Enseble id mapping. This file contains a mapping from UniProt to
Ensembl identifiers for the human proteins in S3 File.
(TXT)

S5 File. Predicted PFAM domains. This file contains the raw output of running PfamScan on
the set of human proteins in S3 File.
(TXT)

S1 Fig. Conservation feature weights.Heat maps showing feature weights obtained from clas-
sifiers trained using the conservation features. The rows show feature weights obtained per sub-
set classifier. The single row at the bottom shows feature weights obtained from a classifier
trained on the entire set of variants. Low (blue) and high (red) weights indicate that the feature
is predictive for neutral and disease-associated variants respectively.
(PDF)
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S2 Fig. Domain feature weights. Heat maps showing feature weights obtained from classifiers
trained using the domain features. The rows show feature weights obtained per subset classifi-
er. The single row at the bottom shows feature weights obtained from a classifier trained on the
entire set of variants. Low (blue) and high (red) weights indicate that the feature is predictive
for neutral and disease-associated variants respectively.
(PDF)

S3 Fig. All feature weights.Heat maps showing feature weights obtained from classifiers
trained using all features. The rows show feature weights obtained per subset classifier. Both
the rows and the columns are hierarchically clustered (complete linkage). The single row at the
bottom shows feature weights obtained from a classifier trained on the entire set of variants.
Low (blue) and high (red) weights indicate that the feature is predictive for neutral and dis-
ease-associated variants respectively.
(PDF)

S4 Fig. Classifier performances using all features. a) Classifier performances using the entire
data set. b) Classification performances per variant subset.
(PDF)

S1 Table. AAIndex scales. The AAIndex amino acid scales with highest correlation (r) to the
varimax-derived scales (V) as taken from [26].
(PDF)

S2 Table. Classifier performances.
(PDF)
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