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Abstract: Accurate blood smear quantification with various blood cell samples is of great clinical
importance. The conventional manual process of blood smear quantification is quite time consuming
and is prone to errors. Therefore, this paper presents automatic detection of the most frequently
occurring condition in human blood—microcytic hyperchromic anemia—which is the cause of various
life-threatening diseases. This task has been done with segmentation of blood contents, i.e., Red Blood
Cells (RBCs), White Blood Cells (WBCs), and platelets, in the first step. Then, the most influential
features like geometric shape descriptors, Gray Level Co-occurrence Matrix (GLCM), Gray Level
Run Length Matrix (GLRLM), and Gabor features (mean squared energy and mean amplitude) are
extracted from each of the RBCs. To discriminate the cells as hypochromic microcytes among other
RBC classes, scanning is done at angles (0◦, 45◦, 90◦, and 135◦). To achieve high-level accuracy,
Adaptive Synthetic (AdaSyn) sampling for imbalance learning is used to balance the datasets and
locality sensitive discriminant analysis (LSDA) technique is used for feature reduction. Finally,
upon using these features, classification of blood cells is done using the multilayer perceptual model
and random forest learning algorithms. Performance in terms of accuracy was 96%, which is better
than the performance of existing techniques. The final outcome of this work may be useful in the
efforts to produce a cost-effective screening scheme that could make inexpensive screening for blood
smear analysis available globally, thus providing early detection of these diseases.

Keywords: erythrocytes; RBCs; segmentation; classification; anemia; reliable

1. Introduction

Anemia is an abnormal condition in human blood in which the amount of red blood cells
(and therefore their oxygen-carrying capacity) is inadequate to fulfill the physiologic needs of the body.
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The World Health Organization (WHO) estimates that 42% of children less than 5 years of age and
40% of pregnant women worldwide are anaemic [1,2]. According to the translated prevalence by [3],
496 million are nonpregnant women, 32 million are pregnant women, and 273 million are children
with anemia in 2011. When a peripheral blood smear slide is viewed under a microscope, it is found
to be composed of three main cell types, i.e., Red Blood Cells (RBCs), White Blood Cells (WBCs),
and platelets. Normal RBCs are round and reddish in color, having a central pallor area in the center
indicating hemoglobin level; see Figure 1. The diameter of normal RBCs ranges from about 6.2 to
8.2 micrometer (µm), and its thickness ranges from about 2 to 2.5 micrometers (µm) [4]. magenta The
amount of hemoglobin indicates whether magenta a human is healthy or has a potential disease that
affects RBC production or function. This indication is through several parameters of whole RBC (size,
shape, and number) and the amount of hemoglobin it contains. The size of RBCs indicates three main
defects in human blood: narmocytosis, microcytosis, and macrocytosis. Narmocytosis is an anemia of
normocytes, where the size of RBCs is normal. Microcytosis occurs when the size of the RBC is less
than that of the normal reference range and is expressed by a blood index called Mean Corpuscular
Volume (MCV) of less than 80 femtoliters, whereas macrocytosis is when the size of the RBC is greater
than the normal reference range and is expressed by an MCV greater than the normal range [5].

Patients of anemia may be categorized into mild, moderate, and severe according to
WHO classification, i.e., mild anemia (hemoglobin 9.0–10.9 g/dL) moderate anemia (hemoglobin
7.0–8.9 g/dL), and severe anemia (hemoglobin <7.0 g/dL) [1]. The amount of hemoglobin on the other
hand specifies two other abnormalities: hypochromic, if the mean concentration of hemoglobin in a
single cell is lower than the normal reference range, i.e., 27 to 32 picogram (pg) (approximately) and is
stated by Mean Corpuscular Hemoglobin Concentration (MCHC), and hyperchromic, if the range is
above the said reference range [6].

The above discussed terms are parameters used in distinguishing the primary types of anemic
conditions. When both cell size and hemoglobin defects are combined, e.g., if microcytic is taken from
the first category and combined with hypochromic from the second category, then it will define the
features of microcytic hypochromic anemia, whereas if macrocytic and hyperchromic are combined,
it will give macrocytic hyperchromic anemia, etc. [7,8]. The diseases which are most frequently
diagnosed in South Asian countries especially in Pakistan are iron deficiency anemia, sideroblastic
anemia, and thalassemia, which are categorized and defined under microcytic hypochromic anemia [9].
These parameters may be obtained from peripheral blood smear slides prepared by hematologists in
clinical labs of hospitals proceeded by grabbing digital images, which is an area of interest.

This work is organized as follows: related work is explained in Section 2, the preparation
and visualization of the blood smear is explained in Section 3. To better understand the nature
of improvement, we carried out a thorough study that builds up a methodology in which blood
smear after following the necessary procedures is processed with image processing techniques for
segmentation. The primary steps of image processing are image acquisition, preprocessing (conversion
into color spaces, splitting channels, and enhancement techniques), binarization, segmentation, etc. [10].
Then, the classification step explained in Section 4 is conducted with Adaptive Synthetic (AdaSyn)
sampling to balance the datasets and with Locality Sensitive Discriminant Analysis (LSDA) for the
reduction of unnecessary features of all the contents visible in a blood smear. The rest of paper presents
the results (Section 5) and finally the conclusion and discussion (Section 6).

(a) (b) (c) (d) (e)

Figure 1. (a) A normal blood smear image and (b) microcytic hypochromic, (c) normocytic hypochromic,
(d) macrocytic hypochromic, and (e) microcytic hyperchromic anemia.
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2. Related Work

Various state-of-the-art image processing-based techniques for computer-aided disease detection
are present excessively, some of which are the most relevant to our work presented here.
Moallem et al. [11] used a three-step algorithm for segmentation of overlapped cells in blood smear
images by extracting a binary mask in the first step, then an adaptive mean shift algorithm was
used to centrally localize a cell, and finally the gradient vector flow algorithm was used to draw
boundaries for separation of cells. In the given article, there is no shape analysis done, which fails
to classify the significant classes of RBCs. Tomari et al. [12] used some geometric features for the
classification of RBCs through Artificial Neural Network (ANN). Alomari et al. [13] worked on the
automatic quantification of WBCs and RBCs by using an iterative structured circle detection algorithm,
but in the given technique, it was found that it is restricted to circular cells. The technique suggested
by Aggarwal et al. [14] is intensity-based Otsu thresholding where segmentation of RBCs infected
with a parasite was done, but the segmentation by intensity may suffer extremely due to luminance
variations and other photographic conditions. Tek et al. [15] suggested a technique for recognition
and classification of malarial RBCs’ parasites and species in peripheral blood smears. Shape, color,
and local granulometry features were extracted from the area of interest, and k Nearest Neighbor (kNN)
classifier was applied to classify them from extracted features. Chen et al. [16] evaluated blood smear
slides having hemolytic anemia by determining the chain codes for finding the edges of cells, separated
the cells with the help of concavity measurement, and classified cells with a bank of classifiers. A work
done by Xu et al. [17] for the detection of sickle cells is segmentation of red cells in the first step,
then separation of overlapped cells using random walk algorithm in the next step, and classification
through Deep Convolutional Network in the last step. Sharma et al. [18] used a median filter for image
smoothing and watershed for overlapped cells separation. Then, they implemented a three-feature
vector, circularity matric, aspect ratio, and radial signature, trained with KNN classifier for the
recognition of three types of RBCs called sickle cells, elliptocytes, and dacrocytes. A work for the
detection and classification of parasites in RBCs was done by Ahirwar et al. [19]. They generated
geometric, color attributes and gray level texture feature sets and used artificial neural network for
their classification. A fuzzy logic technique was used by Bhagavathi et al. [20] for segmentation of
RBCs and WBCs. Morphological operations and hough transform method for circle detection were
used by Chandrasiri et al. [21] for the detection and analysis of red blood cells, but the proposed
system was unable to determine and analyze the extensive number of clumped or overlapped regions.
The above presented approaches can do better in a situation where the population of clumped cells is
low. In highly populated clumped cells, accuracy suffers. In our proposed approach, the issue is fixed
to much extent by leveraging the concavities and texture-based features in each cell as explained in the
following Materials and Methods section.

3. Materials and Methods

Our proposed plan of work for the detection of hypochromic microcytic cells in sample blood
smear images consisted of the following series of steps shown in Figure 2.

3.1. Blood Smear Slide Preparation

A consistent blood distribution and proper lucidity are required for reliable blood smear analysis.
It can be done by starting with a drop of sample blood at one end of glass slide, which is smeared
quickly and gently with a wedge technique to form a thin edge, where all cells are able to be analyzed
separately, especially RBCs [22]. This whole process was done by an expert laboratory technician in
the local hospital.
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Figure 2. A step-by-step proposed plan of work.

3.2. Image Acquisition

After the staining process was completed, the image acquisition step started by using a 400× field
of a microscope with oil immersion, keeping the horizontal and vertical resolution at 180 dpi and the
image dimension at 2592 × 1944 pixels. The images were captured and labelled properly.

3.3. Preprocessing

A green channel of RGB blood smear was selected, enhanced, and smoothed using Balance
Contrast Equalization Technique (BCET) and median filter. After getting a fine gray-scale image shown
in Figure 3, it was quantized with a scale factor Fg, calculated from mean intensity value of g(x, y)
calculated in Equations (1) and (2), where Q(x, y) is the resultant quantized image.

Fg =
1
N

N

∑
1

g(x, y) (1)

Q(x, y) = Fg ∗ round(
g(x, y)

Fg
) (2)

(a) (b) (c) (d) (e) (f)

Figure 3. Output images after the preprocessing step: (a) original RGB image, (b) red channel, (c) green
channel, (d) blue channel, (e) enhanced green channel, and (f) quantized image leaving behind RBCs.

3.4. Segmentation

A global or automatic thresholding technique was used in this work for the segmentation of
only RBCs (leaving behind WBCs and platelets). A two-step binarization technique was followed for
getting noise-free binary images. In the first step, the quantized image was binarized containing white
blood cells; in the second step, the whole original image was binarized. Finally, we used the XOR gate
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(Exclusive OR) operation to remove white blood cells. The output along with other processed images
are shown in Figure 4.

(a) (b) (c)

Figure 4. (a) Binarized original image of a sample blood smear, (b) binarized image of a sample blood
smear quantized, and (c) exclusive OR of (a,b).

3.5. Feature Extraction

A three-way feature extraction plan was implemented. The first was geometric morphological
feature extraction, the second was intensity features and texture features using (GLCM and GLRLM),
and the third was texture features using the Gabor Filter Bank.

3.5.1. Geometric Morphology of Microcytic Hypochromic RBCs

Keeping in view the visual size and shape of hypochromic microcytes, the useful features were
calculated as follows:

• Area: Area is an important geometrical feature for the detection of microcytes, being small in size
compared to other blood cells.

• Circularity: A size-invariant shape descriptor given in Equation (3) which describes a shape to be
circular, if the value is closer to 1 and noncircular if the value is closer to 0, where A is Area and P
is parameter of a cell.

Circularity =
4πA

P2 (3)

• Rectangularity: It determines the degree of elongation with respect to a rectangle. Equation (4)
shows its calculation, where As is area of a shape and Ar is the area of minimum
bounding rectangle.

Rectangularity =
As

Ar
(4)

• Concavity: This property is used to determine how much an object is concave; we applied
it on the shapes for identification of the amount of central pallor area occupied in an RBC,
given by Equation (5)

Concavity =
Ac

AH
(5)

• Convexity: A cell convexity can be determined by Equation (6), which identifies a shape through
its boundary convexity.

Convexity =
PC H
PC

(6)

3.5.2. RBC Texture Feature Calculation

Features other than geometry include texture information on RBCs. In this research work,
we extracted RBG intensity-based features (mean and variances), Gray Level Co-occurrence Matrix
(GLCM), Gray Level Run Length Matrix (GLRLM), and Gabor feature bank. This set of features
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associated with the dispersal of chromatin matter in the RBCs is helpful in the classification of
hypochromic, hyperchromic, and normochromic cells given in Figure 1 above. The measure will
indicate that either the RBC has a deep red color compared to the others (cells having more
haemoglobin) or are less red, with more central pallor area and having a smaller haemoglobin ratio.
The texture features calculated are presented below:

• RGB mean and variance of hypochromic microcytic RBCs:

The mean values µr, µg, and µbof pixels of each RBC in R, G, and B, respectively,
were calculated in Equation (7).

µr =
1
N

N

∑
1

r(x, y)

µg =
1
N

N

∑
1

g(x, y)

µb =
1
N

N

∑
1

b(x, y)

(7)

The variances (σr)2, (σg)2, and (σb)
2 in the channels R, G, and B, respectively, are calculated

in Equation (8)).

(σr)
2 =

∑(X− µr)2

N

(σg)
2 =

∑(X− µg)2

N

(σb)
2 =

∑(X− µb)
2

N

(8)

• GLCM features of Hypochromic Microcytic RBCs: GLCM is the distribution of cooccurring pixel
values defined over an N × N image P at a specific offset, or every P’s element determines the
occurrences of a pixel with value of gray level, i, lifted by a certain distance to a pixel with value j.
Our next six textural features are GLCM features. The mean of 6 GLCM features were determined
for offset values conforming to 0◦, 45◦, 90◦, and 135◦ consuming 8 gray levels (see Figure 5).

(a) (b)

Figure 5. (a) Orientation of angles overlayed on a sample red blood cell (RBC) and (b) scanning through
0◦, 45◦, 90◦, and 135◦.

Maximum Probability: It measures the strongest response of the cooccurrence matrix.
The range of values is [0, 1] as given in Equation (9), where Pij is the pixels of gray image.

P = maxij(Pij) (9)
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Correlation: The degree of correlation of a pixel to its neighbor is determined by the correlation
factor of the cooccurrence matrix, ranging from 1 to −1 given by Equation (10). This measure
cannot be defined if any of the standard deviation σ is 0 for the two existing correlations, perfect
positive and perfect negative correlation.

correlation =
K

∑
i,j=1

(i−mr)(j−mc)p(ij)
σrσc

(10)

Pixels intensity contrast: It is a measure of intensity contrast between a pixel and its neighbor
over the entire image (calculated in Equation (11)).

contrast =
k

∑
i,j=1

(i− j)2 pij (11)

Energy: It is the measurement of uniformity in the intensities of an image (as given in
Equation (12)). Its value is 1, if an image is constant and 0 if the intensities are variable.

Energy =
k

∑
i,j=1

(P(i,j))
2 (12)

Homogeneity: It measures the spatial closeness of the distribution of elements in the
cooccurrence matrix to the diagonal given by (13). The values range is [0, 1], and the maximum
value is attained when the matrix is a diagonal.

homogeneity =
k

∑
i,j=1

Pij

1 + |i− j| (13)

Entropy: It measure the degree of variability of the elements of the cooccurrence matrix.
Its value is 0 if all intensities of Pij are 0 and is maximum when all Pij are equal. It may be
calculated by (14).

entropy = −
k

∑
i,j=1

Pijlog2Pij (14)

• Run length matrix features of each RBC: The other textural features are created on the gray-level
run length matrix (calculated in Equations (15)–(24). The l ∗ K matrix p, where l is the number of
gray levels and k is the maximum run length, is defined for a certain image as the total runs with
pixels of gray level i and run length j. Likewise, as in the GLCM, the run length matrices were
calculated using 8 gray-levels for 30◦, 60◦, 90◦, and 135◦.

Short Run Emphasis (SRE):

SRE =
1
R

k

∑
i=1

k

∑
j=1

Pij

j2
(15)

Long Run Emphasis (LRE):

LRE =
1
R

k

∑
i=1

k

∑
j=1

(pi j)j2 (16)

Gray-Level Nonuniformity (GLN):

GLN =
1
R

k

∑
i=1

(
l

∑
j=1

(pi j))2 (17)
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Run Length Nonuniformity (RLN):

RLN =
1
R

l

∑
j=1

(
k

∑
i=1

pij)
2 (18)

Low Gray-level Run Emphasis (LGRE):

LGRE =
1
R

k

∑
i=1

l

∑
j=1

pij
i2

(19)

High Gray-level Run Emphasis (HGRE):

HGRE =
1
R

k

∑
i=1

l

∑
j=1

(pij)i2 (20)

Short Run Low Gray-level Emphasis (SRLGE):

SRLGE =
1
R

k

∑
i=1

l

∑
j=1

pij

i2 j2
(21)

Short Run High Gray-level Emphasis (SRHGE):

SRHGE =
1
R

k

∑
i=1

l

∑
j=1

p(ij)i2

j2
(22)

Long Run Low Gray-level Emphasis (LRLGE):

LRLGE =
1
R

k

∑
i=1

l

∑
j=1

p(ij)j2

i2
(23)

Long Run High Gray-level Emphasis (LRHGE):

LRHGLE =
1
R

k

∑
i=1

l

∑
j=1

(pij)i2 j2 (24)

• Gabor Feature Extraction: like a human visual processing system, the Gabor filter extracts features
at different amplitudes and orientation.

ψ(x, y) =
f 2

πγη
e−(

f 2

γ2 x
′2) + (

f 2

η2 y
′2)ej2π f x′

x′ = x cos θ + y sin θ

y′ = x sin θ + y cos θ

(25)

The Gabor filter is the product of a 2D Fourier basis function and origin-centred Gaussian given in
Equation (25), where f is the central frequency of the filter, γ and η are the sharpness or bandwidth
measure along the minor and major axes of Gaussian respectively, θ is the angle of rotation,
and (η/γ) is the aspect ratio. The analytical form of this function in frequency domain is given in
Equation (26) as follow:
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ψ(u, v) = e
−

π2

f 2 (γ2(u′− f )2+η2v
′2)

u′ = u cos θ + v sin θ

v′ = u sin θ + v cos θ

(26)

In the frequency domain given by Equation (27), the function is a single real-valued Gaussian
centered at f. A simplified version of a general 2D Gabor filter function in Equations (25) and (26)
was formulated by [23], which implements a set of self-similar filters, i.e., Gabor wavelets (rotated
and scaled forms of each other, irrespective of the frequency f and orientation θ.

Gabor bank or Gabor features were created from responses of Gabor filters in Equations (25) and (26)
by using multiple filters on several frequencies fm and orientations θn. Frequency in this case
corresponds to scale information and is thus drawn from [23]

fm = k−m fmax, m = {0, ..., M− 1} (27)

where fm is the mth frequency, f θ = fmax is the highest frequency desired, and k > 1 is the
frequency scaling factor. The filter orientations are drawn from [24]. Gabor features were calculated
at 4 wavelengths (3, 6, 9, and 12) and 3 orientations θ (30◦, 60◦, and 90◦); see Figure 6a–c. Then,
each filter was convolved with the real image, and the response image of the same image was
produced; here, each image gave us a feature vector. Each feature vector consisted of mean
amplitude and mean squared energy. Finally, two matrices were obtained, that were of [1 × 12]
each. The matrices were appended to each other, and a [1 × 24] matrix was produced for one
image having a [n × 24] vector for n images for supplementary training purpose in the preceding
step of classification (as shown in Figure 6).

3.6. ADASYN Sampling

A significant aspect in classification and learning is to show a reasonable dataset to guarantee
that no inclination is presented by an imbalanced information distribution. A method that has been
used in previous works is Adaptive Synthetic Sampling (ADASYN) to enhance the classification
accuracy by balancing the datasets, thus decreasing bias factors [25]. Table 1 shows that the original
dataset is partially imbalance; therefore, we applied ADASYN to overcome this problem and to
balance the dataset. After applying ADASYN sampling, the database then consisted of 354 microcytic,
327 normocytic, 312 macrocytic, 340 hypochromic, and 380 normochromic images of blood smears.

Table 1. Balanced datasets after applying Adaptive Synthetic Sampling (ADASYN).

Cell Type Original Synthetic Total

Microcyte 157 197 354
Normocytes 270 57 327
Macrocytes 101 211 312

Hypochromic 157 150 340
Narmochromic 380 0 380
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. (a) Original image of hyperchromic macrocytic RBC, (b) gray level image of hyperchromic
macrocytic RBC, (c) Gabor filter bank of hyperchromic macrocytic RBC, (d) original image of
hypochromic microcytic RBC, (e) gray level image of hypochromic microcytic RBC, (f) Gabor filter
bank features of hypochromic microcytic RBC, (g) original image of hyperchromic microcytic RBC,
(h) gray level image of hyperchromic microcytic RBC, and (i) a hyperchromic microcytic RBC with its
Gabor filter bank features.

3.7. Features Reduction

To maintain variation among interclass data samples, it is necessary to reduce the dimensionality
of an original dataset. We used Gray Level Cooccurrence Matrix (GLCM), Gray Level Run Length
Matrix (GLRLM), and Gabor filter bank, which collectively produced 52 features for a single cell image
in a blood smear image. Therefore, to reduce the dimensionality, a Locality Sensitive Discriminant
Analysis (LSDA) [26] approach was applied separately to the features extracted from each cell (shown
in Figure 7). We use LSDA because it is significant in the case where there are no sufficient training
samples. LSDA uses local structures, and it is generally more important than global structure for
discriminant analysis. LSDA determines a projection using the local manifold structure, which results
in the maximization of the margin among data points from different classes at every local area.
Various experiments on the existing datasets showed an improvement over the Linear Discriminant
Analysis (LDA).
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Figure 7. Feature reduction using Locality Sensitive Discriminant Analysis (LSDA).

4. Classification

In different situations, varied instances show a tendency to a specific classification tool. Therefore,
iterative experiments have been performed for the selection and determination of an optimal tool.
The tools determined during the process were random forest and multilayer perceptual modal.
These are ideal classification tools in this situation. For classification, the training data set was prepared
with the extracted features mentioned above. The images were labelled with ground truth from the
existing dataset images, containing Iron Deficiency Anaemia (IDA) images, mostly. The instances of
dataset comprised of geometric morphological feature, GLCM, GLRL, and Gabor texture features are
given in the features below. We used the classical machine learning methods as the overfitting and
underfitting anomalies of pretrained deep learning algorithms suffer in accuracy of results due to
less sufficient data in datasets. The performance of our classification technique is given in the Results
Section 5.

5. Results

The results of the proposed work are as follows.

5.1. Dataset

The images we used in our work were collected from a local hospital. At the selected hospital,
a high frequency of microcytic hypochromic patients were observed. The available datasets were also
searched for such images, and a set of 150 images (comprising of about 80 hypochromic microcytes per
image) were created based on ground truth, labeled by expert hematologists.

5.2. Qualitative Results

Hypochromic microcytes are the cells we are interested in for segmentation, the cell with a
more pallor area and smaller than normal mean sizes of RBCs (Figure 8). These types of cells have
less pixel area with more hole area proportionality. A hole containing cells was assumed to be a
pallor cell and was less chromatic than the cell having no hole. The chromaticity factor is inversely
proportional to the proportionality of central pallor: the bigger the central pallor, the less chromatic
the cell will be and the cell will have a big hole in it after carrying out binarization operations,
and hence, the concavity of the cell will also be more. The qualitative results of the GLCM, GLRL,
Gabor mean amplitude, and Gabor mean square energy are given in Tables 2–5. The qualitative results
are also demonstrated in Figures 8 and 9. The sample cells for which the features are extracted and
demonstrated in Tables 2, 3 , 4 and 5 are shown in Figure 10.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 8. (a,d,g) Original RGB images of a sample blood smear, (b,e,h) removal of white blood cells
(WBCs) from the blood smear images, and (c,f,i) enhanced gray-scale images of RBCs in blood smears.

5.3. Quantitative Results

This work has two main purposes: one is to segment the red blood cells accurately and then
to detect the microcytic hypochromic cell. To evaluate the detection algorithm, the precision, recall,
F1-score and accuracy metrices were calculated (using Equations (28)–(31)), where TP, TN, FP, FN are
true positive, true negative, false positive, and false negative, respectively. To evaluate the detection
algorithm, the precision, accuracy, recall, and F1-score matrices were calculated. The performance-wise
results of different algorithms are given in Table 6.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j)

Figure 9. Classes of cells among RBCs (a,b) microcytic hypochromic cells, (c) microcytic
narmochromic cells, (d) macrocytic hyperchromic cells (e,f) microcytic hyperchromic cells (g)
macrocytic Hyperchromic cells, and (h,j) codocytes or taget cells.
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Table 2. Gray Level Cooccurrence Matrix (GLCM) features extracted from each cell in a sample image.

Cell No. Contrast Correlation Energy Homogeneity

Cell1 85.40 406.62 123.52 105.8
Cell2 80.02758 −112.132 136.3636 108.52
Cell3 116.9 394.59 100 93.68
Cell4 96.18 94.716 117.85 100.0
Cell5 121.1 −79.49 80 92.77
Cell6 106.2 −148.7 80 98.03
Cell7 86.6 −201.2 120 104.07
Cell8 88.12 88.12 120 104
Cell9 106.1 97.47 100 98
Cell10 100 100 100 100

Table 3. Gray Level Run Length (GLRL) features.

Cell No. SRE LRE GLN RLN RP LGRE HGRE SRLGE SRHGE LRLGE LRHGE

Cell1 0.56 44.24 116.35 113.27 8.74 2.09 50.11 0.22 12.46 24.79 209.57
Cell2 0.7 40.25 126.78 108.01 8.69 2.26 39.37 0.29 14.12 25.91 127.59
Cell3 0.43 44.88 135.02 139.61 8.47 2.02 51.45 0.18 10.59 24.89 268.0
Cell4 0.5 65.18 137.38 115.35 12.93 2.62 48.2 0.23 7.83 45.05 134.07
Cell5 88.24 106.62 94.77 106.14 102.68 93.53 110.29 80.23 86.07 96.51 118.61
Cell6 115.4 100.85 94.51 98.77 103.26 92.73 99.82 120.77 73.02 88.5 120.18
Cell7 0.39 61.57 132.04 111.73 11.22 2.6 43.64 0.19 7.9 42.7 130.44
Cell8 1.25 89.76 103.12 103.36 29.92 7.01 81.33 0.59 19.3 70.39 130.52
Cell9 0.33 47.64 309.2 216.5 11.1 2.44 28.86 0.15 6.02 32.81 254.73

Cell10 0.37 45.41 355.65 206.29 10.46 2.56 28.17 0.18 5.99 31.69 325.68

Table 4. Gabor’s Mean Squared Energy (MSE).

Cell No. MSE1 MSE2 MSE3 MSE4 MSE5 MSE6 MSE7 MSE8 MSE9 MSE10 MSE11 MSE12

Cell1 376 263 165.7 155.2 414.9 301.7 216.3 204.5 424.4 313.3 226.3 197
Cell2 258 350 274.6 316.8 436.3 380.9 264.9 306.7 439.7 382.9 273.3 299
Cell3 269 403 419.8 554.9 328.8 457.5 386.6 493.4 314.5 440.3 377.1 462
Cell4 234 205 207.9 153.3 177.8 157.8 186.5 174.7 173.5 153 200.3 172
Cell5 62 96 121.3 164.9 72.1 110.4 157.8 173.6 73.3 109.7 155.8 167
Cell6 45 70 91.5 113.5 40.8 70.5 93.3 104.4 41.5 72.4 102 105
Cell7 120 115 149.8 136 79.1 140 201.2 149.7 70.6 102.6 147.2 156
Cell8 50 101 138.6 120 51.8 101 149.7 146 54.2 113.4 163.6 131
Cell9 701 682 737.9 862.7 669 592 692 784 70 653.5 685.5 820

Cell10 730 695 700 850 670 590 701 770 715 1373.9 1396.1 1397

Table 5. Gabor’s Mean Amplitude (MA).

Cell No. MA1 MA2 MA3 MA4 MA5 MA6 MA7 MA8 MA9 MA10 MA11 MA12

Cell1 2 5 11 20 2 6 13 21 2 6 13 21
Cell2 1 5 12 23 1 5 12 21 1 5 12 22
Cell3 1 4 11 23 1 4 11 21 1 4 10 21
Cell4 2 5 16 24 2 5 16 24 1 5 16 24
Cell5 1 4 13 25 1 5 15 26 1 5 15 26
Cell6 1 4 11 21 1 4 12 21 1 4 12 21
Cell7 1 4 13 22 1 5 16 23 1 4 13 23
Cell8 1 4 14 22 1 5 16 25 1 5 16 24
Cell9 1 4 12 18 1 4 12 17 1 4 11 17

Cell10 1 4 12 16 1 4 12 16 1 4 12 16



Entropy 2020, 22, 1040 14 of 16

Table 6. Performance evaluation of each classification algorithm with statistical measurement tools.

Statistical K-means Clustering (%) Logistic Regression (%) Naive Bayes (%) Proposed Classifier (%)

Precision 81.1 86.4 87.1 92.3
Accuracy 80.7 86.2 88.3 93.2

Recall 80.3 83.2 84.3 95.4
F1-Score 79.8 82.1 84.1 94.1

(a) (b)

(c) (d)

Figure 10. Graphs showing the results of four types of texture features, (a) GLRLM (b) GLCM (c) GMSE
(d) GMA.

Precision =
FP

TP + FP
(28)

Recall =
TP

TP + FN
(29)

F1Measure = 2 ∗ precision ∗ Recall
precision + Recall

(30)

Accuracy =
TP + TN

TP + TN + FP + FN
(31)

6. Conclusions

The goal of this study is to develop and improve a robust algorithm for the analysis of blood
smear images for the classification of microcytic hypochromic anaemia. Many studies are present in
the literature that focus on the classification of blood cells, but there are very rare studies found on the
classification of normal and abnormal blood slides as a specific anemic disease. Moreover, the existing
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state-of-the-art techniques are very expensive and their operation is very difficult. Our proposed
system has a reasonable accuracy rate and processing time. The proposed system is capable of
detecting various chromatic status of blood and accurately estimates the boundary pixels of RBCs
at diverse photographic conditions. The results showed that our algorithm is a better automatic
segmentation methods for blood smear images. The geometric and three potential texture features of
RBCs, i.e., GLCM, GLRL, and Gabor texture features at 4 different degrees of scan (3, 6, 9, and 12) and
3 orientations θ (30◦, 60◦, and 90◦) were extracted. After feature extraction and the feature reduction
technique, the features were then put in two powerful machine learning algorithms (random forest
and multilayer perceptron) using ensemble learning technique. The overall classification accuracy
was 96%. Which was compared to the existing techniques and were found better for classification.
The present work may be extended to a 3D volume estimation of blood cells, which is necessary
in finding the accurate blood indices like Mean Corpuscular Volume (MCV), Mean Corpuscular
Haemoglobin (MCH), and Mean Corpuscular Haemoglobin Concentration (MCHC). The proposed
system may facilitate pathologists by getting quicker results with high True Positive (TP) and True
Negative (TN) rates in the initial stage of diagnosis. It is user-friendly and easily operable with less
expenses in terms of cost. Furthermore, the system may be made available on the web without any
association of special equipment and user knowledge. Therefore, it can be considered an added value
to the existing automated analysis blood smear tools.
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