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Objective: Currently, there is a lack of good clinical tools for evaluating the effect of chemotherapy preoperatively on
primary high-grade bone sarcomas. Our goal was to investigate the predictive value of the clinical findings and estab-
lish a scoring system to predict chemotherapy response.

Methods: We conducted a retrospective multicenter cohort study and reviewed 322 patients with primary high-grade
bone sarcomas. Patients who routinely received neoadjuvant chemotherapy and underwent primary tumor re-
section with an assessment of tumor necrosis rate (TNR) were enrolled in this study. The medical records of patients
were collected from November 1, 2011, to March 1, 2018, at Peking University People’s Hospital (PKUPH) and Peking
University Shougang Hospital (PKUSH). The mean age of the patients was 16.2 years (range 3–52 years), of whom
65.5% were male. The clinical data collected before and after neoadjuvant chemotherapy included the degree of pain,
laboratory inspection, X-ray, CT, contrast-enhanced magnetic resonance (MR), and positron emission tomography-
computed tomography (PET-CT). Several machine learning models, including logistic regression, decision trees, sup-
port vector machines, and neural networks, were used to classify the chemotherapy responses. Area under the curve
(AUC) of the scoring system to predict chemotherapy response is the primary outcome measure.

Results: For patients without events, a minimum follow-up of 24 months was achieved. The median follow-up time
was 43.3 months, and it ranged from 24 to 84 months. The 5 years progression-free survival (PFS) of the included
patients was 54.1%. The 5 years PFS rate was 39.7% for poor responders and 74.9% for good responders. Features
such as longest diameter reduction ratio (up to three points), clear bone boundary formation (up to two points), tumor
necrosis measured by magnetic resonance (up to two points), maximum standard uptake value (SUVmax) decrease
(up to three points), and significant alkaline phosphatase decrease (up to 1 point) were identified as significant predic-
tors of good histological response and constituted the scoring system. A score ≥4 predicts a good response to chemo-
therapy. The scoring system based on the above factors performed well, achieving an AUC of 0.893. For
nonmeasurable lesions (classified by the revised Response Evaluation Criteria in Solid Tumors [RECIST 1.1]), the AUC
was 0.901.

Conclusion: We first devised a well-performing comprehensive scoring system to predict the response to neoadjuvant
chemotherapy in primary high-grade bone sarcomas.
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Introduction

The gold standard for evaluating the chemotherapy
response of bone sarcomas is still pathologic examina-

tion.1 However, the tumor necrosis rate (TNR) can be
obtained only postoperatively; it cannot be used for preoper-
ative evaluation of a patient’s chemotherapy response. Never-
theless, preoperative evaluation of chemotherapy response is
extremely valuable because it can be used to: (i) determine
whether preoperative chemotherapy should be terminated or
whether the chemotherapy regimen should be changed dur-
ing neoadjuvant chemotherapy; (ii) assess the risk of local
recurrence for limb-salvage surgery; and (iii) evaluate the
therapeutic responses of unresectable tumors.2 The signifi-
cance of this study is to establish a preoperative model for
predicting the TNR.

In 1979, the World Health Organization (WHO)3 pro-
posed the concept of objective response, which was defined
as 50% reduction in the product of perpendicular diameters
of tumors. Clinical evaluation concepts of complete response
(CR), partial response (PR), stable disease (SD), and progres-
sive disease (PD) have become the standard criteria used to
evaluate the efficacy of new agents in almost all solid tumors.
Currently, the revised Response Evaluation Criteria in Solid
Tumors (RECIST 1.1) is the most commonly used criterion
for predicting histological response.4 However, existing prob-
lems have been raised regarding the scope of the revised
RECIST. First, the intraosseous tumor volume changes only
minimally with treatment. Therefore, the change in the lon-
gest diameter of the intraosseous tumor cannot represent the
histological response of the tumor to chemotherapy. Second,
intraosseous lesions and sclerotic lesions are thought of as
being nonmeasurable, and only lytic bone lesions or mixed
lytic-sclerotic lesions with soft tissue components ≥1 cm are
evaluated to determine anatomic changes after therapy.4

Third, the inherent deficiency of this assessment method is
that it does not consider morphological or metabolic changes
in the treated target lesions.

Current researches on chemotherapy response assess-
ment involves many fields. For sarcomas, alkaline phospha-
tase (ALP) and lactate dehydrogenase (LDH) in
osteosarcoma,5,6 as well as LDH in Ewing’s sarcoma,7 have
been identified and reported as prognostic serum markers. In
radiology, increased calcium deposition within the neoplastic
bone and the presence of a calcified shell surrounding the
tumor are considered to represent progressive healing and a
good histological response.8 Contrast-enhanced MRI9 can
help oncologists identify the necrotic fraction of sarcoma.
The addition of gadopentetate dimeglumine to the static
T1-weighted sequence enabled the separation of unenhanced
necrosis and hemorrhage from enhanced inflammation and
viable tumors.9 In recent years, some studies have revealed
that decreased fluorine-18-fluorodeoxyglucose (18F-FDG)
uptake after chemotherapy or radiotherapy is associated with
a good pathological response.10,11 In positron emission
tomography (PET), the response criteria in solid tumors
(PERCIST 1.0)11 requires a 30% decline in the standard

uptake value (SUV) for a response. At present, no method
for chemotherapy response assessment considers all these
factors. A meta-analysis12 suggested that PET-CT, the most
expensive imaging examination, had an AUC of 0.72–0.81
for predictive performance, which was still lower than clini-
cal need. Therefore, a more comprehensive method is
urgently needed.

Given all these clinical findings, we must consider how
to analyze these data most effectively. Machine learning
(ML) techniques are being increasingly widely used in differ-
ent medical sciences to determine the most effective variables
and predict outcomes, and experimental results have shown
that these models not only improve the classification accu-
racy but also have strong universality.13,14 ML voting mecha-
nisms can help establish a scoring system to predict the
histological response to chemotherapy.

The purpose of this study was to: (i) establish a practi-
cal multi-factor scoring system for predicting the chemother-
apy response to neoadjuvant chemotherapy in primary
malignant bone sarcomas; and (ii) compare the prediction
performance of different types of machine learning models.

Methods

Patient Selection Criteria
We retrospectively collected and reviewed the medical
records of patients with primary high-grade bone sarcomas
who received neoadjuvant chemotherapy from November
1, 2011, to March 1, 2018, at Peking University People’s
Hospital (PKUPH) and Peking University Shougang Hospi-
tal (PKUSH).

Patients were potentially included when they met the
following criteria: (i) patients with histologically confirmed
primary high-grade bone sarcomas; (ii) patients who rou-
tinely received neoadjuvant chemotherapy; (iii) patients who
underwent primary tumor resection with an assessment of
TNR according to the method reported by Rosen et al.;1 and
(iv) patients who had complete pre- and post-neoadjuvant
chemotherapy imaging, including X-ray, CT, and contrast-
enhanced MRI of the tumors as well as chest CT (with each
layer ≤5 mm), bone scan, and either a PET-CT of the tumor
site or whole-body PET-CT instead of the aforementioned
3 imaging modalities.

The exclusion criteria were as follows: (i) patients
whose follow-up information or postoperative chemotherapy
evaluation was unavailable; and (ii) patients with other fatal
diseases. From the initial 358 eligible patients, those whose
follow-up information or evaluation after postoperative che-
motherapy was unavailable were excluded (n = 36); thus,
322 patients were included (270 from PKUPH and 52 from
PKUSH).

Neoadjuvant Chemotherapy
Patients were treated according to PKUPH’s chemoprotocols.
Four-drug regimen15 (high-dose methotrexate [MTX], doxo-
rubicin [ADM], cisplatin [CDP] and ifosfamide [IFO]) for
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osteosarcoma and undifferentiated high-grade pleomorphic
sarcoma (UPS). Five-drug regimen16 (vincristine [V], doxo-
rubicin [A], cyclophosphamide [C], ifosfamide [I] and
etoposide [E]) for Ewing sarcoma (ES).

Clinical and Imaging Data Collection
The clinical data collected before and after neoadjuvant che-
motherapy included patient characteristics, disease features,
clinical manifestations, images, and laboratory inspection.

Tumor Necrosis Rate
In this study, all pathology slides were reviewed by two
senior pathologists who evaluated all surgical re-
section specimens but were blinded to the patient’s clinical
status. TNR was graded using tumor histopathological
response grading1 (Huvos classification), in which grade I
was 0% to 49%, grade II was 50% to 89%, grade III was 90%
to 99%, and grade IV was 100% necrosis. The response was
classified as “poor” for grades I and II and “good” for grades
III and IV.

Pain
The degree of pain was assessed by the visual analogue scale
(VAS), which consists of a straight line ranging from 0–10
that represents pain intensity. Pain relief was defined as a
lower VAS after the last cycle of chemotherapy than before
the first cycle of chemotherapy.

Imaging
Images were obtained within 2 weeks prior to initiation of
chemotherapy and 2 weeks after the last cycle of chemother-
apy. The time interval between post-neoadjuvant chemother-
apy imaging and tumor resection was less than 2 weeks. Two
radiologists who were blinded to the study information and
outcomes independently evaluated the images and recorded
changes in the size of the target lesions pre- and post-therapy
(Fig. 1). The longest axial diameters of the extraosseous
tumor component were measured in extremities. For pelvic
sarcomas or spinal sarcomas, the longest diameters of the
tumor were measured. All measurements were measured on
contrast-enhanced T1-weighted sequence and reported as
the means.

Some specific phenomena were defined. Clear bone
boundary formation was defined as the development of a
fully sclerotic rim of lesions on X-ray or CT8,17 (Fig. 1).
Increased CT density was defined as a 50% increase in the
CT value (Hounsfield unit, Hu) over baseline after
treatment,17 which reflected the degree of bone healing
inside the tumor. Tumor necrosis measured by MR was
described as a distinct nonenhanced solid area emerging
within the lesion after chemotherapy (when no such area
had existed before chemotherapy). If a significant area of
necrosis was already observed on MR before chemotherapy,
this item was no longer evaluated and assigned 0 poinst. The
necrotic area shows a high signal on fat-saturated
T2-weighted MR images and a lack of central enhancement

on postcontrast subtraction MR images and can be sur-
rounded by irregular rim enhancement9,18 (Fig. 1). If the two
radiologists reported different results, they would discuss
together to form a consensus. In the case where no consen-
sus was reached, a third expert was consulted.

PET-CT images were evaluated by the Department of
Nuclear Medicine of the two hospitals. After image recon-
struction, FDG uptake was measured as SUVmax. Protocols
for image acquisition are described in Appendix S1.

Laboratory Inspection

ALP decrease ratio was calculated as ALPpre�ALPpost
ALPpre

. ALPpre

refers to the ALP level before the first cycle of chemotherapy.
ALPpost refers to the ALP level after the last cycle of chemo-
therapy. The calculation of LDH decrease ratio is the same
as above. The factor ALP was only evaluated in patients with
osteosarcoma.

The VAS, ALP, LDH, and SUVmax values were
extracted from the official reports of the examinations.

Statistical Analysis
Figure S1 shows a flowchart of the model development and val-
idation procedure. The full dataset was randomly split into a
training set (75%) and a testing set (25%) used to evaluate and
compare the performances of competing models. We adopted a
supervised learning approach. Several classification models,
including ML methods (logistic regression [LR], decision tree
[DT], support vector machine [SVM], and neural network
[NN]), were used to classify the histological response into two
groups: “good” and “poor.” The metrics of prediction accuracy
and the area under the receiver operating characteristic (ROC)
curve (AUC) are useful for evaluating model performances.19

These metrics were calculated and evaluated by executing the
trained models on the testing set.

LR analysis was used to determine the significant factors
involved in the decision support system. The tolerance criteria
for the multivariate analysis were 0.05 of α risk for admission
and 0.1 of α risk for rejection. Stepwise selection in both direc-
tions was performed under these criteria. Here, locally weighted
scatter-plot smoother (LOESS)20 curves were examined to iden-
tify the cut points of continuous variables associated with nota-
ble changes in the risk of the outcome. The coefficient of the
LR formula rounded off to the nearest integer can be assigned
as the weight of the variables in a scoring system.21 The scores
of each predictive factor were summed to produce a total score.
The optimal threshold of the score to predict good response is
the point closest to the top-left corner of the ROC plot with a
perfect balance between sensitivity and specificity. After esta-
blishing the scoring system, it underwent performance evalua-
tions similar to the other ML algorithms. This scoring system
further underwent calibration evaluation with the testing set to
evaluate the agreement between the predicted and observed
risks.

Many factors, such as first-line chemotherapy, second-
line treatments, surgery and malignant tumor grade, can
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influence the overall survival of individual patients, while in
this study, progression-free survival (PFS) was not influenced
by second-line drug treatments or radiotherapy. For this pur-
pose, PFS was selected as the endpoint of survival data. All
data-mining tasks in this study were performed using
R version 3.6.0.

Ethics Approval
Informed consent was obtained from all participants and/or
their legal guardian(s). This study was approved by the ethi-
cal committee of Peking University People’s Hospital
(No. 2018PHB170-01) and Peking University Shougang Hos-
pital (No. IRBK-2020-060-02).

Results

Clinical Characteristics and External Consistency
Of the 322 patients, 242 patients were randomly assigned to
the training set, and 80 were assigned to the testing set. No

significant differences between the two sets were noted
regarding the analyzed factors (Table 1). For patients without
events, a minimum follow-up of 24 months was achieved.
The median follow-up time was 43.3 months, and it ranged
from 24 to 84 months. The 5 years PFS of the included
patients was 54.1%. The 5 years PFS rate was 39.7% for poor
responders and 74.9% for good responders (Logrank
P < 0.001).

ML Models
The final predictive performance of each algorithm and the
ROC curves of the ML methods validated on the testing set
are shown in Fig. 2. The predictive performances of LR,
SVM, and NN were similar (AUC = 0.899, 0.907, 0.893,
respectively; LR vs SVM, P = 0.5873; LR vs NN, P = 0.4291.
DeLong’s test). Moreover, they outperformed DT (AUC of
DT = 0.841; LR vs DT, P = 0.0149). Therefore, we assume
that LR can satisfactorily reflect the overall contribution of
variables. Because the coefficients of an LR formula can be

A B

C D E F

Fig. 1 Imaging assessment methods involved in this study. (A) Axial MR image of a distal femoral osteosarcoma. The red line indicates the longest

axial diameter of the extraosseous tumor component at the distal femur. (B) Axial MR image of a pelvic osteosarcoma. The red line indicates the

longest diameter of the pelvic osteosarcoma. (C, D) Pre- and post-chemotherapy contrast-enhanced MR images of proximal tibial osteosarcoma. Lack

of central enhancement on postcontrast-subtraction MR images surrounded by irregular rim enhancement (D). (E, F) Pre- and post-chemotherapy

radiograph of a distal femoral osteosarcoma. Bone healing shows a smooth and clear edge on the image (F).
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easily extracted, interpreted, and shared, we further per-
formed LR variate analysis. The results of the best per-
forming parameters and the tuning process can be found in
the Appendix S2.

Scoring System

Weight of the Factors
Regarding the LR features, the longest diameter reduction
ratio, clear bone boundary formation, tumor necrosis mea-
sured by MR, SUVmax decrease ratio, and ALP decrease ratio
were identified as significant predictors of good histological
response (Table S1).

Three of the five variables in the LR result were continu-
ous. The cutoff values of the longest diameter reduction ratio
were specified as �10%, 20%, and 50%, while the cutoff points
of the SUVmax decrease ratio were 30% and 60% (Fig. S2). Due

to the results of the LR univariate analysis (P = 0.0121), we
additionally used a post-chemotherapy SUVmax cutoff value of
2.5 to discriminate histological response. An ALP reduction to
the normal range after chemotherapy could be considered sig-
nificant (LR univariate analysis P = 0.0480). For patients whose
ALP levels were too high to decline to a normal level, a decrease
in ALP of more than 70% suggests a probability of a good histo-
logical response above 50% (Fig. S2). After relabeling the
records, the scoring system was developed on the training set.
Factors such as the longest diameter reduction ratio and SUVmax

decrease had the highest weights, followed by clear bone bound-
ary formation and tumor necrosis measured by MR. The cate-
gorical criteria and weights of the factors are shown in Table 2.

Predictive Performance
This weight-based scoring system is named Peking Univer-
sity Score (PKU Score). The ROC threshold point for the

TABLE 1 Clinical characteristics and external consistency

Variable Training set (mean � SD or count) Testing set (mean � SD or count) P value of no difference

Age 16.31 � 7.87 year 15.79 � 7.74 year 0.600
Gender
Male 161 50 0.511
Female 81 30

Location
Lower extremity 175 62 0.643
Upper extremity 28 11
Pelvis 31 6
Spine 7 1
Other(rib) 1 0

Histological response
Good 101 32 0.785
Poor 141 48

Pathology
Osteosarcoma 205 73 0.316
Ewing sarcoma 33 7
UPS 4 0

Initial Enneking stage
IIA 10 4 0.332
IIB 182 64
IIIB 50 12

Pain relief
Relieved 227 76 0.904
Not relieved 15 4

Longest diameter reduction ratio 14.81 � 61.13% 11.17 � 69.56% 0.677
Clear bone boundary formation
Yes 88 25 0.406
No 154 55

Increased CT density
Yes 86 30 0.751
No 156 50

Tumor necrosis measured by MR
Yes 50 21 0.296
No 192 59

SUVmax decrease ratio 33.11 � 36.32% 44.92 � 28.81% 0.157
ALP decrease ratio 22.71 � 45.91% 3.90 � 130.13% 0.209
LDH decrease ratio 8.057 � 57.09% 9.49 � 47.20% 0.828

Notes: No significant differences between the training set and the testing set were noted regarding the analyzed factors. P value, t-test for numeric variables, chi-
squared test for categorical variables, and Fisher’s exact test for contingency table.; Abbreviations: ALP, alkaline phosphatase; LDH, lactate dehydrogenase; MR,
magnetic resonance; SUVmax, maximum standard uptake value; UPS, undifferentiated high-grade pleomorphic sarcoma.
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PKU score is 3.5, which means that scores of 4 and higher
indicate a good response. Subsequently, the AUC, overall

prediction accuracy, specificity and sensitivity of the scoring
system on the testing set were 0.893, 0.836, 0.774 and 0.811,
respectively. The PKU score had a higher AUC than RECIST
1.1 (0.893 vs 0.772, P < 0.001). The predictive performance
of each individual score is shown in Table S2. The logistic
calibration of the PKU score is close to the ideal line (Fig. 3).
The Dxy and Brier scores of this scoring system are 0.797
and 0.122, respectively, suggesting a good match. Harrell’s
unreliability index U = �0.004 (P = 0.526) indicates that
the model is not overfitted.

Clinical Evaluation Generated from PKU Score
A survival analysis of PFS was performed to connect the
scores to the oncology outcome data. The post hoc log-rank
analysis showed that patients with scores of 0, 1–3, or more
had differences in disease progression (Fig. 4). Therefore,
0 points was classified as an unfavorable response (5 years
PFS was 30.4%), 1–3 points was classified as a moderate
response (5 years PFS was 43.5%), and four points or more
was classified as a favorable response (5 years PFS was
74.6%; post hoc log-rank test: unfavorable vs moderate,
P = 0.017; moderate vs favorable, P < 0.001). Although the
purpose of this scoring system was not to assess survival time
but to predict tumor pathological response, the results cor-
roborated the correlation between survival outcome and che-
motherapy response. Comparing the baseline characteristics
of different PKU score groups, there was no significant dif-
ference in the initial Enneking stage (chi-square test P value
0.213, Table 3).

Fig. 2 The receiver operating characteristic (ROC) curves of the

machine learning methods. Peking University (PKU) score and RECIST

1.1 were validated on the testing set, and the PKU score had a higher

AUC than RECIST 1.1 (0.893 vs 0.772, P < 0.001). SVM, support

vector machine; AUC, area under the curve; ACC, accuracy.

TABLE 2 Peking University score

Variable Logistic regression coefficient P value Scores

Clear bone boundary formation
No Reference — 0
Yes 1.902 <0.001 2

Tumor necrosis measured by MR
No Reference — 0
Yes 1.962 <0.001 2

Longest diameter reduction ratio
≤�10% Reference — 0
>�10% and ≤20% 0.823 0.170 1
>20% and ≤50% 1.732 0.00290 2
>50% 2.801 <0.001 3

Significant ALP decreasea

No Reference — 0
>70% or decrease to normal level 0.826 0.0408 1

SUVmax decrease
≤30% and post-chemotherapy SUVmax >2.5 Reference — 0
>30%, ≤60% and post-chemotherapy SUVmax

>2.5
0.59 0.295 1

>60% or post-chemotherapy SUVmax ≤2.5 3.181 <0.001 3

Notes: The coefficient of the logistic regression formula rounded off to the nearest integer can be assigned as the weight of the variables in a scoring system. The
scores of each predictive factor were summed to produce a total score: zero points, unfavorable response; 1–3 points, moderate response; and ≥4 points, favor-
able response.; Abbreviations: ALP, alkaline phosphatase; MR, magnetic resonance; SUVmax, maximum standard uptake value.; a ALP was only evaluated in
patients with osteosarcoma.
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Traditional Nonmeasurable Lesions
A total of 38 nonmeasurable tumors (classified by RECIST
1.1) included 13 intraosseous-only, 24 sclerotic-only tumors,
and one combined tumor. The variant analysis results
showed that clear bone boundary formation and SUVmax

decrease were associated with a good response (P values of
0.0492 and <0.001, respectively). The prediction accuracy
and the AUC of the PKU score for nonmeasurable lesions
were 0.842 and 0.901, respectively.

Discussion

Main Findings of the Study
We found it available to use a weight-based scoring system
to preoperatively assess the response of primary malignant
bone tumors to chemotherapy. Features such as longest
diameter reduction ratio, clear bone boundary formation,
tumor necrosis measured by magnetic resonance, SUVmax

decrease, and significant alkaline phosphatase decrease were
identified as significant predictors of good histological
response and constituted the scoring system.

Limitations of Current Tools
Much effort has been directed toward the development of
standardized and reproducible methods for evaluating the
response of tumors over the past several decades.22–24 Cur-
rently, the most commonly used criteria are the revised REC-
IST guidelines (version 1.1).4 These anatomic criteria focus
predominantly on unidimensional physical measurement of
solid tumors. These criteria provide highly concordant
response assessments compared with bidimensional mea-
surements and are also more reproducible. RECIST 1.1 guar-
antees reliability, but it is not integrated with clinical
presentation and new imaging techniques. In addition, REC-
IST 1.1 is beneficial but not for intraosseous or sclerotic bone
sarcomas.4 Therefore, a comprehensive evaluation system
that can predict the treatment response of bone sarcomas is
urgently needed. Based on the RECIST 1.1, PERCIST, and
MDA criteria, we focused on patients with lesions that origi-
nated in bones who received neoadjuvant chemotherapy. We
reviewed the relevant studies5,12,25,26 and evaluated a number
of morphologic and metabolic parameters to validate the
clinical prediction and standardized methods of measuring
lesions.

Based on clinical experience, we generally think that
patients who respond well to chemotherapy will achieve sig-
nificant pain relief, but this study shows that the pain of
patients with poor response will also be reduced. Pain relief
depends on receiving chemotherapy rather than chemother-
apy response.

The Longest Axial Diameters of the Extraosseous Tumor
Component
In primary sarcomas of long bone, in most cases, the longi-
tudinal intramedullary extent never decreases with chemo-
therapy, while the axial dimension of the extraosseous tumor
component shows reduction after chemotherapy.27,28 There-
fore, the longest axial diameters of the extraosseous tumor
component were measured in the extremities. For pelvic sar-
comas or spinal sarcomas, because the shape of the bone
is irregular, the longest diameters of the tumor were
measured. The mean pre-treatment longest axial diameter of
the extraosseous tumor component was 3.1 cm (range,
0.48–15 cm). There were 14 cases of tumors with longest
diameter more than 8 cm, of which nine cases (64%) had a
necrosis rate <90% and five cases (36%) had a necrosis rate
greater than or equal to 90%. There were 308 cases of tumors
with longest diameter less than or equal to 8 cm, of which
180 cases (58%) had a necrosis rate <90% and 128 cases
(42%) had a necrosis rate greater than or equal to 90%. The
chi-square test showed no significant difference in the necro-
sis rate between the two groups (P = 0.875). We did not
observe a higher rate of necrosis in large tumors. In this
study, we observed some contradictions that although the
majority of tumors that had a good response to chemother-
apy showed a decrease in volume (91%, 121/133), there were
also tumors that had a good response to chemotherapy
that increased in size by more than 10% (6.8%, 9/133).

Fig. 3 The calibration plot evaluates the agreement between predicted

and observed risks. The predicted probability using the testing set data

is plotted against the observed probability, and the deviation from the

ideal line indicates the difference between the predicted and observed

risks. Somers’ Dxy rank correlation measures how two pairs of

variables are connected (�1 = all pairs disagree, 1 = all pairs agree).

The Brier score measures the total difference between the event and

the forecast probability of that event as an average squared difference

(0 = perfect forecaster, 1 = perfect misforecaster). The Dxy and Brier

scores of this scoring system are 0.797 and 0.122, respectively,

suggesting a good match. Harrell’s unreliability index U = �0.004

(P = 0.526) indicates that the model is not overfitted. ROC, receiver

operating characteristic.
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This phenomenon may be related to the metabolic activity of
tumor necrosis.

Clear Bone Boundary Formation
The typical pattern of response to chemotherapy in osteosar-
coma is the increase in bone matrix production leading to
diffuse calcification of the tumor mass. However, increased

CT density of the lesion sometimes fails to distinguish
between neoplastic osteogenesis and bone healing: bone
healing shows smooth and clear edges on an X-ray image,
while the edges of neoplastic osteogenesis are irregular. Neo-
plastic osteogenesis means that osteosarcoma cells are still
active. Therefore, although both increased CT density and
clear bone boundary formation were significant in the

A B

C D

Fig. 4 Distribution and survival analysis of patients grouped by Peking University (PKU) score or RECIST 1.1. (A, B) Bar plot of histological response

grouped by PKU score (A) or RECIST 1.1 criteria (B). The probability of a good chemotherapy response increases with PKU score, forming a steep

S-shaped curve with better discrimination than RECIST 1.1. (C, D) Kaplan–Meier estimate of progression-free survival (PFS) of the entire cohort by

clinical evaluation generated from PKU score (C) or RECIST 1.1 (D). Post hoc log-rank analysis showed that patients with scores of 0, 1–3, or higher

had differences in disease progression (post hoc log-rank test: unfavorable versus vs moderate, p = 0.017; moderate versus vs favorable,

P< 0.001). In addition, it was difficult to distinguish PFS from disease status evaluated by RECIST 1.1 (complete response (CR) vs partial response

(PR), P = 0.334; PR vs stable disease (SD), P = 0.160; SD vs progressive disease (PD), P < 0.001).
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univariate analysis, clear bone boundary formation per-
formed better in the multivariate analysis. The interobserver
agreement rate between the two radiologists for evaluating
clear bone boundary formation was 97.5% (314/322).

Tumor Necrosis Measured by MR
MR is the most sensitive technique for detecting marrow-based
lesions. However, MRI does not provide sufficient information
on the degree of tumor viability, the clinical parameter determin-
ing tumor response and prognosis.29 This led to the investigation
of dynamic MRI. Because the application of dynamic contrast-
enhanced MRI is far less than regular static contrast-enhanced
MRI, static contrast-enhanced MRI is still our most important
clinical examination. Hao et al.30 studied chemotherapy-induced
MRI changes, suggesting that changes in tumor volume, peri-
tumoral edema, boundaries around the extraosseous component,
and hemorrhage were associated with chemotherapy. Amit
et al.31 reported that the nonenhanced area on contrast-enhanced
MRI had a high correlation with histological necrosis. In our
experience, although the overall accuracy of tumor necrosis mea-
sured by MR in predicting response to chemotherapy is not sat-
isfactory (66.5%, 214/322), it is a factor of low sensitivity (36.1%,
48/133) but high specificity (87.8%, 166/189). This means that
tumors with a good response to chemotherapy may not be dis-
tinguishable by this method, but tumors with this imaging phe-
nomenon are very likely to be necrotic. Such high specificity can
also contribute to a comprehensive evaluation system. The inter-
observer agreement rate between the two radiologists for this fac-
tor was 96.9% (312/322).

Positron Emission Tomography-Computed Tomography
PERCIST 1.011 were introduced in 2009 as guidelines for sys-
tematic and structured assessment of response to therapy
with fluorine 18 fluorodeoxyglucose (FDG) PET in patients
with cancer, with suggested application in clinical trials and,
potentially, in the clinical practice of PET reporting. We
adopted the cutoff points of the SUVmax decrease ratio of
30% and 60% in our LOESS curve. The cutoff point of 30%
was also recommended by PERCIST. Due to the results of
the LR analysis (univariate regression P = 0.0121), we addi-
tionally used a post-chemotherapy SUVmax cutoff value of
2.5 to discriminate histological response. The same cutoff
value was also adopted by previous studies.10,12,32

Alkaline Phosphatase
ALP has been shown to be produced directly by human oste-
osarcoma cells, and its level can be increased in patients with
osteosarcoma.33 Given the disagreement regarding ALP as a
prognostic indicator for osteosarcoma in previous studies,
recent studies have reassessed the enzyme as a tumor marker
and prognostic predictor, and these rigorous studies have
reaffirmed the predictive value of elevated ALP for poor
prognosis in patients with osteosarcoma.5,34–36 In our study,
ALP was a predictive factor of good response, but the weight
was lower than that of other factors. ALP is generally not
considered a prognostic factor for ES and UPS. In this study,
there were 44 cases of these two types of tumors, and 42 out
of the 44 cases had an ALP score of zero. Therefore, in
patients without osteosarcoma, we did not evaluate ALP, and
their ALP scores were adjusted to zero.

Traditional Nonmeasurable Lesions
Our scoring system also performed well in assessing non-
measurable lesions (classified by RECIST 1.1). The longest
diameter reduction ratio of intraosseous lesions could not be
evaluated and was assigned 0 points. The contrast-enhanced
MR image of sclerotic osteosarcoma exhibited a low signal;
therefore, even when necrosis was present, it was difficult to
identify from MR images. Of all the factors, only clear bone
boundary formation and SUVmax decrease elicited a good
response. This finding indicates that PET-CT is an essential
tool when evaluating the chemotherapy response to sclerotic
osteosarcoma.

Heterogeneity
Another potential problem is that the chemotherapy-related
imaging changes between osteosarcoma and Ewing sarcoma
are not identical. We used 278 patients with osteosarcoma as
a data set and trained the prediction model, which resulted
in a score of 2 for clear bone boundary formation, 2 for
tumor necrosis measured by MR, 3 for longest diameter
reduction ratio, 1 for a significant reduction in ALP, and
4 for a decrease in SUVmax. SUVmax has a slightly higher in
the PKU score (for osteosarcoma dataset). The performance
parameters of the PKU score for predicting the response to
chemotherapy in osteosarcoma, such as the cutoff value,
AUC, overall accuracy, specificity, and sensitivity, were 3.5,

TABLE 3 Baseline characteristics of different PKU score groups

Initial Enneking stage

PKU score groups

Unfavorable response (0) Moderate response (1–3) Favorable response (≥4)

IIA 2 5 7
IIB 34 100 113
IIIB 15 26 20

Abbreviation: PKU, Peking University.
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0.8873, 0.8165468, 0.8373, and 0.7857, respectively.
Weighting and prediction performance were observed to be
similar between the system for the osteosarcoma dataset and
the overall dataset. This study included 40 cases of Ewing
sarcoma, and the model of Ewing sarcoma was trained using
the same procedure, which resulted in a score of 2 for clear
bone boundary formation, 1 for tumor necrosis measured by
MR, 4 for the longest diameter reduction ratio, and 3 for a
decrease in SUVmax. The change in the longest axial diameter
of the extraosseous tumor component seemed to be weighted
the most. However, because the sample size is small, barely
meeting the minimum requirement of 10 times the sample
size of the variables, the system is not stable enough. The
performance parameters of the PKU score for predicting the
response to chemotherapy in Ewing sarcoma, such as the
cutoff value, AUC, overall accuracy, specificity, and sensitiv-
ity, were 3.5, 0.8008, 0.75, 0.8095238, and 0.6842, respec-
tively. The performance parameters in the Ewing sarcoma
dataset were slightly lower than those in the OS dataset but
still higher or similar to those reported in other studies
(AUC was 0.807 in Saleh et al.’s study37 on dynamically
enhanced MRI; AUC was 0.750 in El-Hennawy et al.’s
study38 on FDG PET).

Comparison between ML Models
Logistic regression is a linear model for classification. In this
model, the probabilities describing the possible outcomes of
a single trial are modeled using a logistic function. SVMs are
a set of supervised learning methods used for classification.
The main advantage of SVMs is still effective in cases where
number of dimensions is greater than the number of sam-
ples. A neural network is different from logistic regression,
in that between the input and the output layer, there can be
one or more non-linear layers, called hidden layers. The
main advantages of NN is capability to learn non-linear
models. Some advantages of DT are: (i) Using a white box
model. If a given situation is observable in a model, the
explanation for the condition is easily explained;
(ii) requiring little data preparation. The disadvantages of
DT include: (i) can be unstable because small variations in
the data might result in a completely different tree being
generated; and (ii) can create over-complex trees that do not
generalize the data well. This is called overfitting.

The predictive performances of LR, SVM, and NN
were similar (AUC = 0.899, 0.907, 0.893, respectively; LR vs
SVM, P = 0.5873; LR vs NN, P = 0.4291. DeLong’s test.).
Moreover, they outperformed DT (AUC of DT = 0.841; LR
vs DT, P = 0.0149). The results show that the scoring system
have a good predictive performance and linear fit. There is
no clear advantage to more complex algorithms (SVM
and NN).

Limitations
However, our study still has several limitations. First, it is a
retrospective study with inevitable selection biases. Second,
due to the rarity of bone sarcomas and the requirement for

complete PET-CT examinations, the number of patients was
relatively small. Our ongoing prospective study will validate
the predictive values of this system in a large number of
patients. In future studies, we hope that larger prospective
multicenter studies could be developed to test and promote
the application of the prediction scoring system.

Conclusion
We first devised a comprehensive scoring system to predict
the response to neoadjuvant chemotherapy preoperatively in
primary high-grade bone sarcomas. This new scoring system
considers all the clinical exam results and performed well in
estimating patient chemotherapy response. Our proposed
system can also assess the response of traditional non-
measurable lesions (classified by RECIST 1.1).
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Appendix S1 Supporting Information

Fig. S1 Flowchart of the model development and validation
procedure. The full dataset was split into a model training
set (75%) and a testing set (25%) that were used for evaluat-
ing and comparing the performances of competing models.
Random sampling was performed as an attempt to balance
the class distributions of the two levels of histological
responses. For each selected technique, we tested a series of
values for the tuning process with the optimal parameters
determined based on the model performance. The model
training set was further randomly divided into 10 subsets.
The holdout method was repeated 10 times with different
datasets (10-fold cross-validation (CV)). The error estima-
tions from three repeated 10-fold CVs were taken and aver-
aged to give the final error estimation of the model. The
coefficients of the factors in the logistic regression were then
converted into scoring weights. Discrimination and calibra-
tion evaluation of the Peking University (PKU) score were
performed on the testing set.

Fig. S2 Locally weighted scatter-plot smoother (LOESS)
curve of the continuous variables. LOESS curves were exam-
ined to identify the cutoff points of continuous variables
associated with notable changes in the probability of a good
response.

TABLE S1 Logistic regression on the training set.

TABLE S2 Predictive performance table of the Peking Uni-
versity (PKU) score for the full set.
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