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Microarray analysis of gene expression is often used to diagnose different types of disease. Many studies report remarkable
achievements in nervous system disease. Clinical diagnosis of schizophrenia (SCZ) still depends on doctors’ experience, which
is unreliable and needs to be more objective and quantified. To solve this problem, we collected whole blood gene expression data
from four studies, including 152 individuals with schizophrenia (SCZ) and 138 normal controls in different regions.The correlation-
based feature selection (CFS, one of the machine learning methods) algorithm was applied in this study, and 103 significantly
differentially expressed genes between patients and controls, called “feature genes,” were selected; then, a model for SCZ diagnosis
was built.The samples were subdivided into 10 groups, and cross-validation showed that the model we constructed achieved nearly
100% classification accuracy. Mathematical evaluation of the datasets before and after data processing proved the effectiveness of
our algorithm. Feature genes were enriched in Parkinson’s disease, oxidative phosphorylation, and TGF-beta signaling pathways,
which were previously reported to be associated with SCZ.These results suggest that the analysis of gene expression in whole blood
by our model could be a useful tool for diagnosing SCZ.

1. Introduction

Schizophrenia is one of the most common, severe, and
heritable psychiatric disorders, with a lifetime risk of 1% in
the global population [1]. Over the years, clinical diagnosis of
schizophrenia has been highly dependent upon the patient’s
symptoms, relyingmainly on self-reports, mental state exam-
ination, and clinical interviews. Due to the lack of objective
laboratory tests, doctors often fail to explain the pathogenic
mechanisms behind the symptoms. Therefore, patients tend
to doubt the validity of the schizophrenia diagnosis [2].
Furthermore, diagnostic strategy has been widely criticized
as it can sometimes lead to misdiagnosis [3].

With the development of probe and microarray tech-
niques, many studies have been performed to investi-
gate the relationship between gene expression and illness.

Genome-wide blood transcriptome profiling coupled with
network analyses provides a platform for identifying func-
tionally relevant biological markers of disease, permitting
multiscale data integration [4]. Additionally, machine learn-
ing provides a useful tool for in silico prediction of candidate
biomarkers [5]. Previously, many studies on the diagnosis
of cancer have been reported and show great success in
providing molecular diagnostics by machine learning [6].
Such studies used tools such as Support Vector Machine
or the shrunken centroid classification method to analyze
microarray gene expression data to diagnose cancer [7, 8].
In recent years, there have been substantial advances in
the molecular diagnosis of nervous system diseases such
as Pelizaeus-Merzbacher disease [9]. Additionally, as whole
blood is a relatively accessible patient sample, it is con-
sidered a valuable source of gene expression data [10].
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Using blood-based gene expression and transcriptome data,
a model has been constructed for diagnosis of SCZ [11].

A machine learning method called the correlation-based
feature selection (CFS) algorithm was chosen to process data
in our study. In this analysis, high influential genes (feature
genes) are selected when they are highly associated with
whether a certain patient suffers from schizophrenia and
when the correlation between each selected gene is relatively
small [12].

In this study, we selected and normalized 4 datasets of
peripheral blood transcriptome profiling, which were then
analyzed by the CFS algorithm. The feature genes were
selected and used to establish a model for objective clinical
diagnosis by studying the differential transcript levels in
patients as compared to controls. Finally, an identification
model was established that was used for objective clinical
diagnosis.

2. Materials and Methods

The diagnostic classification of schizophrenia included four
parts: the patient data, the analyzing method, feature gene
evaluation, and pathway analysis. The flowchat of the diag-
nostic classification is illustrated in Figure 1.

2.1. Subjects. The purpose of this study was to analyze gene
expression of SCZ patients from various regions within a
large population. We searched “whole blood”, “schizophre-
nia” and “profile” on the GEO database of NCBI and
downloaded 4 datasets (https://www.ncbi.nlm.nih.gov/gds/
?term=). All datasets, including GSE18312 [13], GSE38481,
and GSE38484 [14], contain RNA information of SCZ pat-
ients in America. GSE54913 [15] contains RNA information
of Chinese teenagers with SCZ in China. The whole group
contains 290 samples (152 SCZ patients and 138 controls).
The group of adults we studied contains 134 SCZ patients (96
males and 38 females, aged 37.1 ± 11.6) and 126 controls (63
males and 63 females, aged 40 ± 13.3 years). The teenager
group contains 18 SCZ patients (8 males and 10 females,
aged 14.8 ± 1.7 years). Table 1 shows that all the datasets we
normalized.

To solve interplatform systemheterogeneity (difference in
methods used to determine the transcription group, signal
extraction, and calculation process), we used a specialized
data normalization algorithm to merge different datasets.
We used R software package CONOR, containing the
XPN (Cross-Platform Normalization) and DWD (Distance
Weighted Discrimination) methods to normalize different
datasets. Finally, we obtained the integrated expression spec-
trum matrix, containing 11385 elements (genes) and 290
columns (sample size).

2.2. Method Choosing. The magnitudes of gene sequenc-
ing results usually reach tens of thousands. However, the
sequencing samples of SCZ vary from tens to hundreds
due to limited samples. This type of data is typical of the
high-dimension, low-sample-size datasets (HDLSS), which
are characterized by large number of features, 𝑝, and a
relatively small number of samples, 𝑛 (𝑝 ≫ 𝑛). The former

study shows that HDLSS will cause what is called a “Curse
of Dimensionality [10089]”. To solve this problem, it is
necessary to extract the features of this dataset.

Feature extraction methods were combined with the
characteristics of the data and the purpose of the study. Based
on the high redundancy of gene sequencing and the need for
diagnosis of SCZ, we assume the following:

(1) The selected gene subset should be highly associated
with whether the sample suffers from SCZ (the subset
should be closely correlated with SCZ).

(2) The correlation between each selected gene should be
small (to eliminate the influence of redundant genes
on diagnosis).

Based on the assumptions listed, we can obtain a subset of
genes that contains feature genes with small redundancy that
are highly correlated with SCZ.Machine learning, such as the
CFS algorithm, has these same characteristics and is suitable
for our study. It is widely used in studying other illnesses, such
as cancer, and is reported to be an effective tool to analyze
gene expression. Compared with other algorithms, CFS is
quicker and more accurate in processing gene expression
information [16]. After processing datasets with CFS, feature
genes were selected, and amathematical classifier was used to
classify all samples, resulting in high sensitivity.

Takahashi et al.’s study [11] chose an unpaired 𝑡-test to
analyze differentially regulated probes between two groups,
evaluated every probe, and selected significantly differentially
expressed genes (𝑃 < 0.01). By contrast, CFS deals with a sub-
set of genes and considers the relationship between genes
and genes with classification at the same time. This can
ensure that each feature gene has a low correlation with other
feature genes and high correlation with SCZ. Compared with
Takahashi et al.’s study, we studiedmore samples and obtained
fewer feature genes.

The interaction between genes is tremendously compli-
cated. Statistical tests that make comparisons between the
same genes, such as the paired 𝑡-test, might overlook the con-
nection between genes. However, the CFS algorithm deals
with a subset of genes, which considers both genes and inter-
actions.

2.3. Feature Gene Selection. The core of the CFS algorithm is
to evaluate a feature on its worth or merit [17, 18]. It considers
the influence of features on predicting the class label together
with the intercorrelation between each feature. The result
of this algorithm is a subset which contains features highly
correlated with the class and uncorrelated with each other.

This method calculates the relationship between each
feature and class label (rcf) or, in other words, the relationship
between gene expression and whether a person suffers SCZ.
At the same time, it measures the intercorrelation between
features (rff) and, in this study, the intercorrelation between
genes:

Merit𝑠 =
𝑘𝛾𝑐𝑓

√𝑘 + 𝑘 (𝑘 − 1) 𝛾𝑓𝑓
, (1)

https://www.ncbi.nlm.nih.gov/gds/?term=
https://www.ncbi.nlm.nih.gov/gds/?term=
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Figure 1: The flowchart of the diagnostic classification of schizophrenia.

Table 1: Detailed information about dataset collected.

Dataset Case Control Tissue Platform

GSE54913 18 12 Blood GPL15314 Arraystar Human LncRNA microarray V2.0
(Agilent 033010 Probe Name version)

GSE38481 15 22 Blood GPL6883 Illumina HumanRef-8 v3.0 expression
beadchip

GSE38484 106 96 Blood GPL6947 Illumina HumanHT-12 V3.0 expression
beadchip

GSE18312 13 8 Blood GPL5175 [HuEx-1 0-st] Affymetrix Human Exon 1.0 ST
Array

where Merits is a feature subset 𝑠 which contains 𝑘 features,
𝛾𝑐𝑓 is the average correlation degree between features and
categories, and 𝛾𝑓𝑓 is the average correlation degree between
features. This method excludes genes unrelated to SCZ and
the redundant genes highly correlatedwith one ormore other
genes. Equation (1) is a standard linear (Pearson’s) correlation.

Finally, 103 feature genes were selected, and a model was
created.

Equation (1) was used for evaluating prediction per-
formance of a certain set of genes. To obtain a gene set,
we chose the “BEST-1st search” method. “BEST-1st search”
is a search algorithm that explores a graph by expanding
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Table 2: The evaluation results of data processing.

LWL BayesNet SMO KNN NativeBayes J48
Before After Before After Before After Before After Before After Before After

CCI∗ (%) 73.1 100.0 79.3 83.4 72.4 80.0 69.0 76.6 51.7 76.6 58.6 71.7
RRSE∗ (%) 85.8 16.6 91.3 77.5 105.4 89.5 81.8 85.4 139.4 93.8 128.0 103.5
CC∗ (%) 99.7 100.0 79.3 89.0 72.4 80.0 100.0 95.5 51.7 83.1 62.1 77.9
𝐹-measure 0.73 1.00 0.80 0.83 0.71 0.80 0.67 0.76 0.37 0.76 0.57 0.71
ROC∗ area 0.81 1.00 0.83 0.92 0.70 0.80 0.84 0.81 0.48 0.82 0.51 0.72
PRC∗ area 0.80 1.00 0.79 0.92 0.66 0.74 0.84 0.79 0.49 0.81 0.53 0.67
∗CCI, correctly classified instances; RRSE, Root Relative Squared Error; CC, Coverage of Cases (0.95 level). ROC, Receiver Operating Characteristic; PRC,
Precision and Recall Curve.

the most promising node according to a specified rule.
By combining best-first-search with bidirectional-search, an
ideal gene subset could be conveniently obtained.

2.4. Algorithm Application. Each sample in the merged
dataset contains 11385 genes, and each gene is considered a
property of a certain sample. The CFS algorithm is used to
analyze every gene of every sample in the merged dataset.
It then selects the genes with small redundancy and high
correlation with SCZ. We extracted the selected genes in 290
samples and created a newdataset with only 103 feature genes.

The locallyweighted learning (LWL) classifier saves all the
data in the training set into memory and then calculates the
distance between samples in the test set and the training set.
Based on the calculated distance, LWL gives a higher weight
to the training data which is closer to the test set. It then
uses the weighted training set to learn and predict whether
an unknown sample is a patient [19].

2.5. Pathway Analysis. To study biofunction of our results,
103 feature genes have been imported to the KOBAS website
(http://kobas.cbi.pku.edu.cn/). We also performed KEGG
pathway analysis (http://www.kegg.jp/kegg/pathway.html) to
obtain biofunctional information about the feature genes.

3. Results

3.1. Feature Genes and Model. We analyzed 290 samples
with 11385 genes. After normalization, 103 feature genes were
selected by the CFS. All samples were used to create the
model. It was tested by tenfold cross-validation and achieved
100% correct rate, which is higher than any other study’s gene
expression-based diagnostic, most of which vary from 70% to
100% [11, 20]. To diagnosewhether a patient suffers fromSCZ,
the information from the patient’s gene expression (Table S1)
can be added to the existing datasets. Using the LWLclassifier,
whichwas themost effective dataset classifier in this study, we
can know whether this person is an SCZ patient.

3.2. Validity of the Data Processing. For data-processing
validation, this study used a comprehensive mathematical
evaluation of the results. Table 2 shows the results of 10-
fold cross-validation on the dataset before and after CFS

processing. Tenfold cross-validation is reported to be a useful
tool for testing validity of result [21]. This analysis randomly
divided the dataset into 10 groups, where 1 groupwas used for
the test and the others were used for training. This is another
widely used testing method.The result of assessment is listed
in Table 2, and the result of evaluation in full training is listed
in Table S2.

Compared with the unprocessed data, the processed data
contains the same samples with a smaller number of genes
(103 feature genes), avoiding the risk of falling into the
“Curse of Dimensionality.”The selected gene subset is highly
correlated with SCZ mathematically, and it excluded many
redundant genes which would influence classification.There-
fore, all the evaluation indicators were improved, reaffirming
the validity of our data processing.

The CCI shows the percentage of instances of correct
classification, directly describing the effectiveness of the
classifier. RRSE represents the sum of absolute errors of n
experiments and divides by the summation of the difference
between actual value and average value. The lower this
indicator is, themore accurate the classifier is.The𝐹-measure
is the harmonic mean of precision and recall. It is widely
used in the field of IR (information retrieval) and is one of
the crucial indicators to show the validity of a classifier. A
good classifier’s𝐹-measure should be close to 1.TheROCarea
measures the area of ROC, and the PRC is the area below the
correctly classified instances/all instances. A good classifier’s
ROC and PRC indicators should be close to 1.

After processing the data with the CFS algorithm, every
evaluation indicator in the different classifier was improved.
The LWL classifier shows the highest correct rate (100%) and
is the ideal classifier in this model. This result indicates that
our model is effective and reliable in the mathematical sense.
From the table, it is clear that all evaluation indicators were
improved after processing the original data, seen in Figures
2(a) and 2(b).

3.3. Pathway Analysis of 103 Feature Genes. After analysis,
we obtained 9 pathways, which contained no less than 2
genes (𝑃 < 0.05). All the pathways selected have significant
differences between the patient and control group (Table 3).
Each of the pathways contains several input feature genes and
some background genes. A lower𝑃 valuemeans feature genes
are more enriched in certain pathways.

http://kobas.cbi.pku.edu.cn/
http://www.kegg.jp/kegg/pathway.html
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Figure 2: The comparisons of evaluation indicators before and after data processing. (a) Comparison of classifier training (NativeBayes)
values. (b) Comparison of 𝐹-measure values.

Table 3: The pathway results of significant differences between patient and control group.

Feature ID Input number Background number 𝑃 value
Parkinson’s disease hsa05012 6 108 7.96𝐸 − 05
Oxidative phosphorylation hsa00190 4 98 0.003793377
TGF-beta signaling pathway hsa04350 3 66 0.009126485
Metabolic pathways hsa01100 14 1118 0.010961336
Alzheimer’s disease hsa05010 4 139 0.012275212
Primary immunodeficiency hsa05340 2 34 0.021039942
Huntington’s disease hsa05016 4 165 0.021326367
Vascular smooth muscle contraction hsa04270 3 109 0.032774232
ABC transporters hsa02010 2 44 0.033204998
Nonalcoholic fatty liver disease hsa04932 3 129 0.049322146
Note: the KEGG pathway analysis shows genes in these pathways are significantly differently expressed (𝑃 < 0.05). In addition, each pathway contains no fewer
than 2 genes.

4. Discussion

4.1. Effectiveness of Material and Normalization. We selected
datasets from 4 groups of different schizophrenia patients to
enlarge the sample size. At the same time, the normalization
method we chose was consistent with the standard and
proved effective [22]:

(1) About XPN: Multidatasets across platform normal-
ization results can maintain the highest interplatform
concordance, but the number of samples contained in
different, independent datasets should be similar.

(2) About DWD: This method can make up for the
deficiency of XPN. If there is a substantial difference
between samples in different datasets, DWD could be
used to normalize cross-platform datasets to reduce
the loss of gene expression signals.

Finally, we obtained and studied a merged dataset which
contains the largest sample size and the most features.

4.2. Biofunctional Verification. Biological studies verify the
rationality of our feature genes distributed in pathways. For
instance, the smallest 𝑃 value is shown in Parkinson’s disease.
Parkinson’s disease is reported to represent a strong, genet-
ically defined level of comorbidity with schizophrenia [23].
Similarly, oxidative phosphorylation is enriched by feature
genes we selected. The study of brain tissue from people with
SCZ reveals that an oxidative phosphorylation defect caused
metabolic disorders and is closely related to SCZ [24]. In
addition, we predicted that TGF-beta has some connection
with SCZ. Interestingly, research shows that the TGF-beta
signaling pathway is highly associatedwith SCZ [25]. Overall,
this suggests that feature genes are highly correlated with
SCZ. Additionally, SCZ and Alzheimer’s disease share the
same molecular background [26]. Alzheimer’s disease in
our pathway analysis represents a relatively small 𝑃 value.
Additionally, primary immunodeficiency is an immune dis-
order and schizophrenia is correlated with the immune
system [27]. From our results, the vascular smooth muscle
contraction pathway should have some relationship with



6 BioMed Research International

Environmental
information
processing
22%

Metabolism
11%

Organismal systems
11%

Human diseases
56%

Neurodegenerative
diseases
34%

Other
22%

Figure 3: Functional category by pathways.

SCZ. Interestingly, it is one of the significant pathways in our
prior study of SCZ [28].

Among 103 feature genes, 11 were found to be highly
correlated with SCZ in previous research. Low functioning
Asn107 variant NPSR1 causes a disorder of the neuropeptide
S (NPS) neurotransmitter system. NPSR1 is identified to
be associated with SCZ [29]. Additionally, NPSR1 is one of
the feature genes separated by the CFS algorithm. Com-
pared with normal controls, a lower level of expression of
SLC3A2 in peripheral white blood cell is shown in people
with schizophrenia [30]. Patients with SCZ show elevated
TSPO binding in PET in vivo brain imaging [31]. These
studies indicate that, at the genetic level, some of our feature
genes’ relationships with SCZ is demonstrated biologically by
previous research.

4.3. Pathway Distribution. We performed bioinformatics
analysis of feature genes, and the result is shown in Figure 3.
Of the 56% of pathways that are found in human diseases,
neurodegenerative diseases make up 34%. This shows a
strong connection between SCZ and degeneration of nerves.
Environmental information processing, which contains 22%
of all pathways, also plays a role in SCZ. Metabolism and
organismal systems show some influence on the pathology of
schizophrenia.

The enrichment of neurodegenerative disease-related fea-
ture genes provides supporting evidence for the role of neu-
rodegenerative dysfunction in schizophrenia [32]. Recently,
a study on mice showed that SCZ is associated with a
disorder in environmental information interaction, which is
influenced by environmental information processing [33].

5. Conclusion

Using mathematical and biological verification to examine
whether the CFS-LWL algorithm is an effective method to
distinguish people with SCZ from normal controls, and we
find the superiority of CFS-LWL algorithm in testingwhether
a sample is an SCZ patient:

(1) The correlation-based feature selection (CFS) algo-
rithm was proposed and a model for SCZ diagnosis
was built. The whole blood gene expression data,
including 152 individuals with schizophrenia (SCZ)
and 138 normal controls, were analyzed based onCFS.

(2) 103 significantly differentially feature genes were
selected from the random 10 groups of samples,
and the feature genes were enriched in Parkinson’s
disease, oxidative phosphorylation, and TGF-beta
signaling pathways, which were previously reported
to be associated with SCZ.

(3) The cross-validation showed that the model we con-
structed achieved nearly 100% classification accuracy.
The mathematical evaluation of the datasets before
and after data processing proved the effectiveness of
our algorithm.
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