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To the Editor:

t(8;21) is among the most common chromosomal translo-
cations associated with human leukemia [1-4]. The
RUNXI-ETO (RUNXI-RUNXITI, AMLI-MTGS8) fusion
gene, generated by t(8;21), has been extensively investi-
gated in the field; however, its mechanistic basis remains to
be fully understood. Clinical features of t(8;21) leukemia
include: (1) association with acute myeloid leukemia
(AML) M2 subtype in the FAB classification, characterized
by granulocytic maturation in morphology, (2) positivity for
the following immunophenotypic markers, HLA-DR™,
CD117(c-KIT)*, CD34", CD38*, CD13*, CD33", CD19%,
and CD56", (3) chloroma, (4) predominant onset in ado-
lescent and young adults (AYA), but not in aged popula-
tion, (5) higher prevalence in Asia, and (6) requirement of
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additional genetic abnormalities such as mutations in c-KIT,
FLT3, RAS, ASXLI, and ZBTB7A, -9q, or -Y [2, 3].
Although a number of attempts have been made to generate
its mouse model, RUNX1-ETO induction alone did not
induce leukemia in most cases [5—10]. Even when leukemia
developed, the penetrance was low and the latency was 1
year or longer. In addition, leukemia phenotypes did not
recapitulate clinical features. As such, no tractable murine
models are currently available.

We reasoned that the failure in the previous efforts for
the generation of RUNXI-ETO mouse model is due to
insufficient expression and inappropriate cells of origin.
RUNXI1-ETO mRNA amount per one single leukemia cell
at clinical onset time is shown to be significantly higher
than that at remission state [11]. To achieve sufficient
expression, Rosa26 locus which allows for abundant
expression of RUNXI1-ETO was employed to generate
conditional knock-in (KI) mice carrying a heterozygous
floxed allele of Rosa26-LSL-RUNXI1-ETO-IRES-EGFP
(Fig. 1A, Tables S1 and S2, Supplementary Methods). This
mouse line was crossed with eR1-CreER™? transgenic mice
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(Tg) which targets RUNX1-ETO expression predominantly
to hematopoietic stem cells (HSCs) [12]. In all earlier stu-
dies by others, induction of RUNX1-ETO in the conditional
models was conducted at adult stages. However, the
RUNXI-ETO gene was documented to be detectable as
early as in neonates [13]. Therefore, in this study, the
RUNXI-ETO was induced at various ages including
childhood [postnatal day 3 (P3), 2-, 3- and 4-week-old]
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besides adult (8- and 16-week-old) (Fig. 1B). eR1-CreER™
Tg; Rosa26-LSL-RUNXI1-ETO-IRES-EGFP mice are
referred to as RUNX1-ETO mice, and individual induction
groups are stated to be P3 or 2-, 3-, 4-, 8- and 16-week
cohorts, respectively. For complete information about the
generation of mice, hematological and flow cytometric
analyses, and other experimental details, see Supplemental
Methods.
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Fig. 1 RUNX1-ETO induces abnormal myeloid progenitor (AMP)
at pre-leukemic stage. A Schematic representation for the Rosa26-
LSL(LoxP-Stop-LoxP)-RUNX1-ETO-IRES-EGFP targeted and LSL
excised alleles. LoxP sequences are indicated as black triangles. In the
presence of Cre recombinase, the LSL cassette is excised and the
inserted RUNX1-ETO and EGFP genes are induced by ubiquitously
active Rosa26 promoter. GFP serves as a surrogate marker for
RUNXI1-ETO expression. B Experimental design for tamoxifen
(TMX) injection and follow-up intervals of serial collection of per-
ipheral blood (PB). TMX (0.05 mg/g x1) was intraperitoneally injected
at indicated ages. Collected PB is subjected to complete blood cell
counts (CBC) and flow cytometry analysis for frequency check of GFP
* cells. C Representative flow cytometry profiles at asymptomatic pre-
leukemia status in the RUNX1-ETO mice showing the expansion of
abnormal myeloid progenitor (AMP). Bone marrow (BM) cells col-
lected from the RUNX1-ETO and littermate wild-type control mice in
2-week cohort at 4 weeks after TMX injection were analyzed. Contour
plots at left-end two columns represent frequencies of indicated
compartments of hematopoietic stem progenitor cells (HSPCs). His-
tograms at middle two columns exhibit frequencies of GFP* cells in
the corresponding fractions gated in the contour plots. Numbers in the
histograms represent GFP percentages. (D, E) An age-dependent dif-
ference in the frequencies of AMP. Representative flow profiles for
AMP at three distinct age cohorts and control (D) and mean fre-
quencies of AMP in c-Kit"Sca-1"Lin~ (KL) populations (WT, P3, 2w,
n=4; 4w, n=3) (E) are shown. Asterisk(s) represents significant
differences [*P <0.05, **P <0.01, ***P<0.001, two-way analysis of
variance (ANOVA) with subsequent Bonferroni test]. Time course
kinetics of white blood cell counts (WBC) (F) and percentages of GFP
* cells (G) in the PB. Individual lines represent mean values of
parameters in individual cohorts, excluding diseased mice at final
stages. H Kaplan—Meier survival curves of RUNXI-ETO mice in
individual cohorts. 2- and 3-week cohorts show significantly shorter
survival as compared to other indicated cohorts (P3, n=6; 2w, n=35;
3w, n=06; 4w, n = 10; 8w, n = 8; 16w, n = 8). Asterisk(s) represents
significant differences (*P <0.05, **P <0.01, ***P <0.001, Log-rank
test). Abbreviations: KL, c-Kit"Sca-1"Lin"; KSL, c-Kit"Sca-1"Lin;
LT-HSC, long-term hematopoietic stem cells; ST-HSC short term
HSCs, CMP common myeloid progenitors, GMP granulocyte mac-
rophage progenitors, MEP megakaryocyte erythrocyte progenitors.

The efficiency of RUNXI1-ETO induction by a single
injection of tamoxifen (TMX, 0.05 mg/g) was first exam-
ined by flow cytometry. As GFP acts as a surrogate marker
of RUNXI1-ETO induction, the comparison of frequencies
of GFP' cells at 24h after TMX injection confirmed
comparable induction efficiencies between distinct age
groups (P3 versus 4-week cohorts, Fig. S1A, B, Table S3).
Next, to identify the initial effects of the RUNXI1-ETO
induction on hematopoietic cells, hematological analyses
were conducted 1 month after TMX injection. Flow cyto-
metry analysis exhibited prominent expansion of c-Kit"Sca-
1"Lin"CD34 FcyR™ compartment, hereinafter referred to as
abnormal myeloid progenitor (AMP), at various frequencies
in childhood cohorts (Figs. 1C-E and SI1C-F). The fre-
quency of AMP declined with age and was already very low
in the 4-week cohort. Kuo et al. reported that an
immunophenotypically-similar AMP fraction is also gen-
erated in another RUNXI related mouse model carrying

Cbfp-SMMHC fusion gene which inhibits RUNX1 function
like RUNX1-ETO [14]. The formation of AMPs in two
distinct mouse models is a good indication that our
RUNXI1-ETO model is a suitable platform to address the
core molecular effects directly induced by the fusion gene at
the pre-leukemic stage.

White blood cell counts and GFP" percentages in the
peripheral blood serially collected from the TMX-
administered mice exhibited a gradual increase of
RUNXI1-ETO-expressing cells in an age-dependent manner
(Figs. 1F, G and S1G). Starting from 8 weeks after TMX
induction, RUNXI1-ETO mice died due to hematological
malignancies (Fig. 1H), characterized by leukocytosis,
anemia, thrombocytopenia, and hepatosplenomegaly. Two-
and three-week cohort mice, followed by P3 cohort,
developed diseases with short latency and complete pene-
trance, whereas 4-, 8- and 16-week cohort mice exhibited a
long latency and/or incomplete penetrance.

Hematological malignancies were classified into five
distinct subtypes, according to their GFP percentages,
immunophenotypic and morphological features (Table S4,
Figs. 2, S2A-D, and S3A). Diseases with 10% or above
GFP™ cells in any single hematopoietic tissues were diag-
nosed as leukemia, based on the result of Euclidian distance
analysis as stated in the footnote for Table S4. In addition,
according to their differentiation property, leukemia was
further classified into three subtypes: AML M1, character-
ized by c-Kit"" immature myeloid cells without matura-
tion; AML M2a, with granulocytic maturation (Gr-1 = 30%,
B220<30%); and AML M2b, exhibiting granulocytic
maturation with B cell features (Gr-1>30%, B220 > 30%).
In the morphological analysis, immature myeloblasts with
basophilic cytoplasm were prevalent in MI1 subtype,
whereas mature myeloid cells were expanded in
M2 subtypes (Fig. S3A). Surprisingly, some diseased mice
did not show any obvious increase in GFP™ cells (Fig. 2C,
D), although they definitely suffered from fatal symptoms
including huge splenomegaly (Fig. 2B). As their blood cells
revealed granulocytic maturation, the disease was con-
sidered myeloproliferative disorder (MPD). Based on their
features of differentiation, MPD cases were classified into
two subtypes, MPD a (Gr-1 2 30%, B220 < 30%) and MPD
b (Gr-1230%, B220>30%). To exclude the possibility of
silencing of GFP expression in the MPD cases, namely the
residual RUNXI1-ETO expression in the GFP™ fraction,
semi-quantitative polymerase chain reaction (PCR) and
quantitative reverse transcription-PCR (qRT-PCR) were
conducted on genomic DNAs and RNAs extracted from 6
MPD cases, respectively (Fig. S3B, C). The results showed
a good correlation of GFP™ percentages with the intensities
of excised bands and the RUNX1-ETO mRNA expression
level. Cell differentiation-related silencing was also not
observed, as abundant expression of RUNX1-ETO mRNA
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was confirmed in sorted Gr-17 cells (Fig. S3D). Further-
more, transplantation assay clearly demonstrated no disease

development in the
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recipients of sorted GFP~ cells from

MPD cases, although the recipients of GFP™ cells or whole
bone marrow cells developed leukemia (Fig. S4). Leukemia
subtypes in these recipients were more aggressive than
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Fig. 2 RUNX1-ETO induces an age-dependent myeloid spectrum
disorder. A Incidence of indicated acute myeloid leukemia (AML)
and myeloproliferative disorder (MPD) subtypes in each age cohort. B
Weight of spleen and liver, white blood cells (WBC), hemoglobin
(Hb), and platelet (PIt) counts of mice of indicated disease subtypes
and wild type (WT). Asterisk(s) represents significant differences
(*P<0.05, **P<0.01, ***P <0.001, Student t-test). C Representative
flow cytometry profiles of malignant cells from indicated disease
subtypes. Histograms at top row show GFP% in the BM. Contour plots
below exhibit positivity for indicated antigens on total bone marrow
(BM) cells. D Frequency of GFP™ cells in the BM, Spleen and per-
ipheral blood (PB) in indicated disease subtypes. E Heatmap for the
percentages of individual antigen™ cells in total BM cells (M1, n=7;
M2a, n=9; M2b, n=7; MPD a, n=5; MPD b, n = 3). Asterisk(s) in
white and black represents a significant increase or decrease, respec-
tively, against the corresponding WT population [*P <0.05, two-way
ANOVA with subsequent Bonferroni test]. F, G Expression levels of
RUNXI1-ETO in the present mouse model, human clinical cases, and
commonly used experimental materials such as human leukemia cell
lines (Kasumi-1 and SKNO-1) and a mouse leukemia cell line EML
retrovirally traduced with RUNXI-ETO9a, in quantitative reverse
transcription-polymerase chain reaction (F) and western blot analysis
(G). F mRNA expression level of RUNX1-ETO is shown as % against
that in Kasumi-1. BM patients, blast, or BM from mouse represent
non-sorted mononuclear cells from t(8;21) leukemia patients (n = 8),
sorted GFPc-Kit"Gr1 "B220~ blast cells (n = 7), or non-sorted whole
bone marrow cells (n=7) from this mouse model, respectively. G
Protein expression levels of RUNXI1-ETO, GFP, and f-actin (an
internal control) in the indicated materials are shown. %GFP in indi-
vidual samples are given at the bottom of panels.

original subtypes seen in the primary diseased mice.
Therefore, the GFP silencing phenomenon was unlikely and
we postulate that the small number of RUNXI-ETO
expressing cells may cause hematological malignancies in
a non-cell autonomous manner in the MPD cases
(Fig. S3F). Besides differences in immunophenotypic
markers, AMP frequencies and disease latencies also varied
amongst disease subtypes (Figs. S2E-G and S3E). To
exclude leakiness of the inducible system, 4 non-TMX-
administered mice were observed for at least 10 months,
and no GFP™ cells were detected during this period (data
not shown).

Besides latency and penetrance, the incidence of disease
subtypes also differed with age of RUNX1-ETO induction
(Fig. 2A). AML M1 was predominantly seen in P3 cohort
and declined with age. M2a was persistent throughout all
cohorts, whereas M2b subtype was only seen from 2- to 8-
week cohorts. MPD occurred in 3-week or later cohorts.
Such age-dependent development of malignant myeloid
diseases, particularly M2a and M2b subtypes, seems to
recapitulate clinical features seen in human t(8;21) leuke-
mia, such as AYA onset and AML M2 subtype character-
ized by granulocytic maturation with B cell features. MPD
subtypes in this model also mimic human t(8;21) disease, as
t(8;21) is found in smoldering myelodysplastic syndrome as
well [15]. Extramedullary manifestation, such as chloroma

in the skin, is well documented to occur in t(8;21) leukemia
patients [4]. Interestingly, skin lesions in the face (eyelid,
mouth, and ear), limbs, and tail were also observed in this
mouse model in an age- and TMX dosage-dependent
manner. As NRAS mutations are frequently found in human
t(8;21) leukemias, Nras G12D mutation was additionally
introduced into the RUNX1-ETO model. When TMX was
injected at 4 weeks old, eR1-CreER™? Tg; Rosa26-LSL-
RUNXI1-ETO-IRES-EGFP; Rosa26-LSL-NrasG12D mice
developed leukemia with complete penetrance and shorter
latency as compared to RUNXI-ETO alone model
(Fig. S5). This result suggests that Nras G12D accelerates
leukemia development by RUNX1-ETO, and RUNX1-ETO
per se might be insufficient for full-blown leukemogenesis.
Lastly, qRT-PCR and western blot analyses demonstrated
that the expression level of RUNXI-ETO mRNA and
protein in this mouse model is comparable to that in t(8;21)
clinical samples, and not as high as those in RUNX-ETO
expressing human leukemia cell lines, Kasumi-1 and
SKNO-1, and a mouse cell line retrovirally transduced with
RUNX-ETO9a (Fig. 2F, G). Altogether, our newly gener-
ated RUNXI1-ETO model appears to be a long-awaited
clinically relevant tractable t(8;21) leukemia murine model
that will serve as a platform for molecular dissection of
leukemogenesis and drug efficacy testing. The non-cell
autonomous and age-dependent t(8;21) leukemogenesis
unveiled and confirmed in this model will provide us with
novel insights into the mechanistic basis and novel ther-
apeutic strategy.
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