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Abstract: Sarcopenia is a loss of muscle mass and function in elderly people and can lead to physical
frailty and fall-related injuries. Sarcopenia is an inevitable event of the aging process that substan-
tially impacts a person’s quality of life. Recent studies to improve muscle function through the
intake of various functional food materials are attracting attention. However, it is not yet known
whether probiotics can improve muscle mass and muscle strength and affect physical performance.
Lactobacillus plantarum HY7715 (HY7715) is a lactic acid bacteria isolated from kimchi. The present
research shows that L. plantarum HY7715 increases physical performance and skeletal muscle mass in
80-week-old aged Balb/c male mice. HY7715 not only induces myoblast differentiation and mito-
chondrial biogenesis but also inhibits the sarcopenic process in skeletal muscle. In addition, HY7715
recovers the microbiome composition and beta-diversity shift. Therefore, HY7715 has promise as a
functional probiotic supplement to improve the degeneration of muscle function that is associated
with aging.

Keywords: aging; probiotics; Lactobacillus plantarum HY7715; sarcopenia; skeletal muscle

1. Introduction

Skeletal muscle is one of the largest organ in the body, accounting for about 40–50% of
the body mass [1,2]. The preservation of skeletal muscle function is important to maintain
whole-body energy homeostasis and the capacity to perform activities associated with daily
living. Skeletal muscle has a high regenerative ability; moreover, cellular and molecular
signaling pathways within skeletal muscle promote myoblast activation, proliferation, and
differentiation [3]. Skeletal muscle development is a complex process that is controlled
through numerous complementary interactions that balance protein synthesis and protein
degradation [4,5]. A balance between muscle synthesis and degradation is important to
maintain appropriate muscle mass, thus preventing hypertrophy and atrophy [6].

During aging, there is an age-induced loss in skeletal muscle mass and function,
known as sarcopenia. Sarcopenia is associated with biological, structural, molecular, and
functional changes in skeletal muscle. These changes lead to decreased mobility and
increased susceptibility to falls, various diseases, and mortality [7,8]. As society ages, the
occurrence of physical limitations increases rapidly, reducing human quality of life and
increasing medical costs [9]. Therefore, it is important to study ways in which muscle
tissue can be developed and loss of muscle mass can be prevented, for example, through
nutritional intake. Moreover, recent in vitro and in vivo studies suggest that modulating
the molecular and cellular changes that occur during skeletal muscle aging is a promising
antisarcopenia strategy [10–12].

Myoblast differentiation and the growth of myogenic cells are orchestrated by the
expression of myogenic determination protein (MyoD), and myosin heavy-chain 1 (MYH1).
Briefly, sequential upregulation of MyoD and MYH1 expression is essential to develop
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muscle fibers [13–15]. In particular, the terminal differentiation mediator, MYH1, leads
to the production of muscle filaments. Several studies have investigated the cellular and
molecular changes that occur during the skeletal muscle loss and dysfunction that is
associated with sarcopenia. Degradation of muscle protein involves components of the
ubiquitin–proteasome pathway, including E3 ubiquitin ligases, such as myostatin, F-box
protein (Atrogin1), and muscle RING-finger 1 (MuRF1) [16,17]. In addition, muscle ex-
presses mitochondrial-related genes, including TFAM1, PGC1α, and UCP3, which regulate
energy metabolism and prevent physiological fatigue [18,19]. TFAM1 and PGC1α are
transcription factors associated with sarcopenia and metabolic disease during aging. UCP3
is primarily found in skeletal muscle and has a vital role in regulating mitochondrial
biogenesis and energy expenditure in skeletal muscle [20,21]. Numerous studies have
shown that the accumulation of damaged mitochondria causes myofiber death, suggesting
an association with sarcopenia. Since normal expression of these genes is important for
conserving mitochondria and maintaining cellular homeostasis, their deletion can lead to
muscle degeneration [22,23].

Probiotics are live microbiota that provide health benefits and include various strains
of Lactobacillus, Bifidobacterium, and Saccharomyces [24]. In particular, Lactobacillus plantarum
(L. plantarum) is a Gram-positive, lactic acid bacteria found in many types of food including
dairy, fish, and fermented vegetable foods. Recent studies have shown that L. plantarum has
various biological actions such as anti-oxidative, antibacterial, anti-obesity, and anticancer
effects, as well as metabolic-regulating activities and beneficial effects on gut inflammation
and intestinal health [25–29]. However, the effect of L. plantarum on physical performance,
including muscle mass and strength, has not yet been evaluated. Lactobacillus plantarum
HY7715 (HY7715) is a probiotic patented in the Korean Collection for Type Cultures (KCTC
13101BP), isolated from kimchi, and is a unique lactic acid bacterium that is resistant to
acids, including bile acid. In this study, we aimed to evaluate the effects of HY7715 on
muscle myogenesis and growth in 80-week-old, aged Balb/c mice and the C2C12 cell line.

2. Results
2.1. L. plantarum HY7715 Increases Skeletal Muscle Mass in 80-Week-Old Mice

To evaluate the effects of HY7715 in vivo, we used young mice (YM, 8-weeks-old) and
old mice (OM, 80-weeks-old). OM received orally administered 1 × 108 CFU/kg/day of
HY7715 (OM + HY) or 75 mg/kg/day of creatine (OM + C; used as a positive control)
for 5 weeks. During the experimental period, the bodyweight of OM was higher than
that of YM, and there was no significant difference in the body weight of the HY7715- or
creatine-treated OM groups (Figure 1A,B). There was no statistically significant difference
in food intake between the groups, but OM consumed more water than YM (Figure 1C,D).
As shown in Figure 1E, the plasma triglyceride concentration of the OM group treated with
HY7715 was 48.3 mg/dL, whereas the plasma triglyceride concentration in the control
groups was 79.0 mg/dL (OM), 73.7 mg/dL (OM + C), and 76.7 mg/dL (OM + HY). Next,
we measured the tissue weight of the liver, spleen, soleus muscle, and gastrocnemius
muscle. As shown in Figure 1F, HY7715 and creatine did not change the phenotypic weight
of the liver and the spleen. However, the weight of the soleus muscle and the gastrocnemius
muscle in untreated OM was markedly reduced, suggesting that the muscle mass was
decreased due to natural aging. HY7715 administration prevented this reduction and was
more effective than creatine in preventing muscle loss.
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Figure 1. The effect of HY7715 treatment on age-induced muscle loss in mice. (A) Representative
photographs of the mouse groups after 5 weeks of treatment. (B) Weekly body weight measure-
ment, (C) food intake, and (D) water consumption per day. (E) Plasma triglyceride concentrations
were detected using a commercial colorimetric enzyme-linked immunosorbent assay (ELISA) kit.
(F) Tissue weights of liver, spleen, soleus muscle, and gastrocnemius muscle were measured. Statisti-
cal significance was determined using one-way ANOVA followed by Tukey’s post hoc test (N = 6).
Datasets denoted by different letters are significantly different; p < 0.05 (a > b > c). YM, young mice;
OM, old mice; OM + C, creatine-treated old mice; OM + HY, HY7715-treated old mice.

2.2. L. plantarum HY7715 Enhances Muscle Strength in 80-Week-Old Mice

Skeletal muscle is the most abundant and regenerative organ in the mammalian body
but can be functionally compromised due to aging. Loss of skeletal muscle mass can cause
physical dysfunction and imbalance. In particular, age-related loss in skeletal muscle mass
and quality increases the risk of sarcopenia. In this study, we determined the impact of
aging and HY7715 on the formation of hindlimb muscle and muscle strength (Figure 2A).
A treadmill exhaustion test and a grip strength test were used to determine the effect of
HY7715 on exercise capacity in aged mice. We used low-intensity running up to 25 m/min
to test and record the exhausted time in mice. As anticipated, the treadmill distance of
OM was dramatically shorter than that of YM throughout the experiment (Figure 2B). The
treadmill distance of the OM + HY group was significantly longer than that of the OM
group and was slightly longer than that of OM + C at weeks 3 and 5. In the forelimb and
all-limb grip tests, HY7715-treated OM had significantly better maximal muscle strength
than untreated OM at weeks 3 and 5 (Figure 2C,D). Of note, HY7715 significantly increased
the relative forelimb (by 1.58-fold) and all-limb (by 1.22-fold) grip strength compared with
the untreated OM group.
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Figure 2. The effect of HY7715 treatment on skeletal muscle strength in aged mice. (A) Representative
photographs of hind limb muscle (top), gastrocnemius muscle (middle), and soleus muscle (bottom)
in the mouse groups after 5 weeks of treatment. (B) The running endurance of the mice was evaluated
by a treadmill test. The grip strength of the forelimb (C) and all limbs (D) was measured at 1, 3,
and 5 weeks and calculated per body weight. Statistical significance was determined using one-
way ANOVA followed by Tukey’s post hoc test (N = 6). Datasets denoted by different letters are
significantly different; p < 0.05 (a > b > c). YM, young mice; OM, old mice; OM + C, creatine-treated
old mice; OM + HY, HY7715-treated old mice. GA, gastrocnemius; SOL, soleus.

2.3. L. plantarum HY7715 Improves Physiological Fatigue in 80-Week-Old Mice

Skeletal muscle fatigue can be stimulated after intense exercise, resulting in a decreased
ability to produce physical force [30]. Exercise-induced muscle fatigue can be evaluated by
measuring biochemical markers, including lactate, AST, ALT, BUN, and creatine levels [31].
We measured the blood lactate level obtained from the tail vein immediately after treadmill
exercise at 2-week intervals and measured the plasma lactate concentration after final
dissection. At week 3, the blood lactate concentration was significantly lower in YM than
in OM groups; at week 5, there was a significant difference between the OM groups (OM,
OM + C, OM + HY). The post-exercise lactate concentration was lowest in HY7715-treated
OM (Figure 3A). Although the plasma lactate concentration was lowest in the OM + HY
group, it appears that both YM and OM maintain some degree of lactate homeostasis.
(Figure 3B). The plasma AST and ALT levels of OM + HY were not significantly different
compared with those in untreated OM but were 0.76-fold and 0.87-fold lower, respectively
(Figure 3C,D). The levels of BUN and creatinine, which are synthesized in muscle cells
and secreted into the blood, are indicators of age-related muscle damage. As shown in
Figure 3E,F, the BUN and creatinine levels were significantly higher in untreated OM than
in YM; treatment with HY7715 or creatine reduced BUN and creatinine levels close to those
observed in the YM group.
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Figure 3. The effect of HY7715 treatment on physiological fatigue in aged mice. (A) Blood was
sampled from the tail vein after the treadmill test, and lactate was analyzed using a lactate sensor.
After sacrifice, (B) plasma lactate, (C) plasma aspartate aminotransferase (AST), (D) plasma alanine
aminotransferase (ALT), (E) plasma blood urea nitrogen (BUN), and (F) plasma creatinine concentrations
were detected using a commercial colorimetric enzyme-linked immunosorbent assay (ELISA) kit.
Statistical significance was determined using one-way ANOVA followed by Tukey’s post hoc test
(N = 5). Datasets denoted by different letters are significantly different; p < 0.05 (a > b > c > d).
YM, young mice; OM, old mice; OM + C, creatine-treated old mice; OM + HY, HY7715-treated old mice.

2.4. L. plantarum HY7715 Promotes Muscle Development in 80-Week-Old Mice

We investigated the effect of HY7715 on skeletal muscle development in aged mice.
Histological analysis of the gastrocnemius muscle in the hindlimb (Figure 4A,B) showed
that HY7715 treatment increased the cross-sectional area of the gastrocnemius muscle in
OM, and this increase was greater than that produced by creatine. The fundamental medi-
ators for myogenesis, MyoD and MYH1, are necessary for muscle development and the
early response to muscle damage [32]. The change in hindlimb muscle expression of MyoD
might be associated with a lower expression of myogenic differentiation markers in aged
mice. As shown as Figure 4C,D, mRNA levels of MyoD and MYH1 in the gastrocnemius
muscle were lower (24% and 33%, respectively) in OM than in YM; oral administration of
HY7715 to OM increased the levels of MyoD and MYH1 by 61% and 49%, respectively, of
those of observed in YM and was more effective than creatine. In soleus muscle, HY7715
treatment slightly increased MyoD levels; MyoD expression was higher in HY7715-treated
mice than in uncreated OM. The expression of MYH1 in mice treated with HY7715 was
similar to that in YM (Figure 4E,F).

2.5. L. plantarum HY7715 Ameliorates Muscle Atrophy Regulators in 80-Week-Old Mice

TNFα is an inflammatory cytokine that can induce muscle atrophy and muscle degra-
dation [17]. Increased TNFα expression in OM mice paralleled skeletal muscle atrophy and
correlated with increasing levels of Atrogin-1 and MuRF1. As shown in Figure 5A, aging
increased TNFα production and HY7715 reduced TNFα production in OM. Skeletal muscle
loss can occur due to increased protein breakdown, which is mediated by the E3 ubiquitin
ligases including myostatin, Atrogin1, and MuRF1 [17]. The protein expression levels of
myostatin were higher in the untreated OM group than in YM, and HY7715 significantly
reduced the protein level of these ligases (Figure 5B,C). In addition, the mRNA level of
Atrogin1 and MuRF1 in both the gastrocnemius and soleus muscle in untreated OM was
higher, respectively, than in YM. However, HY7715 downregulated the mRNA level of
Atrogin1 and MuRF1 in the gastrocnemius and soleus muscle, respectively (Figure 5D–G).
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These results suggest that HY7715 prevents sarcopenia by inhibiting age-induced muscle
atrophy.

Figure 4. The effect of HY7715 treatment on myogenic development and differentiation in aged mice. (A) Hematoxylin
and eosin (H&E) staining of limb muscle fiber after 5 weeks of treatment. (B) The cross-sectional area (CSA) of muscle
fibers were quantified. The mRNA level of MyoD and MHY1 in gastrocnemius muscle (C,D) and soleus muscle (E,F) were
normalized to the level of GAPDH mRNA and calculated as a relative-fold value. Statistical significance was determined
using one-way ANOVA followed by Tukey’s post hoc test (N = 5). Datasets denoted by different letters are significantly
different; p < 0.05 (a > b > c). YM, young mice; OM, old mice; OM + C, creatine-treated old mice; OM + HY, HY7715-treated
old mice.

Figure 5. The effect of HY7715 treatment on age-induced sarcopenic factors in mice. (A) The plasma
level of TNFα in mice was measured using a commercial colorimetric enzyme-linked immunosor-
bent assay (ELISA) kit. (B) Western blot analysis of myostatin and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) in gastrocnemius muscle of the mice. The mRNA levels of muscle at-
rophy F-box gene (Atrogin1) and muscle RING-finger protein 1 (MuRf1) in gastrocnemius muscle.
(C) The protein level of myostatin was quantified. The mRNA level of Atrogin1 and MuRf1 in gastroc-
nemius muscle (D,E) and soleus muscle (F,G) were normalized to the level of GAPDH mRNA and
calculated as a relative-fold value. Statistical significance was determined using one-way ANOVA
followed by Tukey’s post hoc test (N = 5). Datasets denoted by different letters are significantly
different; p < 0.05 (a > b > c). YM, young mice; OM, old mice; OM + C, creatine-treated old mice;
OM + HY, HY7715-treated old mice.
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2.6. L. plantarum HY7715 Upregulates Mitochondrial Biogenesis Factors in 80-Week-Old Mice

Aging may affect mitochondrial function, in particular the regulation of the expression
of genes that regulate mitochondrial biosynthesis in skeletal muscle. This finding suggests
that preventing mitochondrial changes could be an effective therapy for sarcopenia. We
determined the impact of aging and HY7715 treatment on the expression level of TFAM1
and UCP3 in muscle. As shown in Figure 6A,B, there was no significant difference in
TFAM1 and UCP3 expression between YM and untreated OM, but TFAM1 and UCP3
expression were higher in the soleus muscle of the OM + HY group than in the other
groups. In addition, HY7715 did not significantly increase the mRNA levels of TFAM1 in
gastrocnemius muscle, but increased the level of UCP3 expression such that it was higher
than that in YM (Figure 6C,D). Furthermore, HY7715 treatment increased the protein
expression level of PGC1α in the gastrocnemius muscle (Figure 6E,F).

Figure 6. The effect of HY7715 treatment on energy metabolism factors in mice. (A) The mRNA level
of transcription factor A, mitochondrial (TFAM1), and uncoupling protein 3 (UCP3) in gastrocnemius
muscle (A,B) and soleus muscle (C,D) were normalized to the level of glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) mRNA and calculated as a relative-fold value. (E) Western blot analysis
of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and GAPDH in
gastrocnemius muscle from the mice. (F) The protein level of PGC1α was quantified. Statistical
significance was determined using one-way ANOVA followed by Tukey’s post hoc test (N = 5).
Datasets denoted by different letters are significantly different; p < 0.05 (a > b > c). YM, young mice;
OM, old mice; OM + C, creatine-treated old mice; OM + HY, HY7715-treated old mice.
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2.7. L. plantarum HY7715 Recovers the Microbiome Composition and Beta-Diversity Shift in
80-Week-Old Mice

We analyzed the difference in composition of gut microbes of each group of mice and
observed differences in the specific microbial taxa. As shown in Figure 7A, Firmicutes
and Bacteroidetes comprised 84.6% of the gut microbiome in YM and 84.5% of the gut
microbiome in the OM + HY group. However, Firmicutes and Bacteroidetes were lower
in the OM and OM + C groups; Firmicutes and Bacteroidetes comprised 73.5% of the gut
microbiome in the OM group and 72.7% of the gut microbiome in the OM + C group.
The proportion of Proteobacteria were as follows: 11.4% in the YM group, 13.8% in the
OM + HY group, 25.6% in the OM group, and 25.1% in the OM + C group. Next, we
analyzed the relative abundance of gut microbiota at the taxonomic level in each group
of mice (Figure 7B–D). At the family level, Desulfovibrionaceae were higher in the OM
and OM + C groups than in YM (p = 0.00649 and p = 0.0116, respectively). The level
of Rikenellaceae was significantly lower in YM than in the OM group (p = 0.0201) and
Lactobacillaceae were significantly higher in the OM + HY group than in untreated OM and
in the OM + C group (p < 0.0001 and p < 0.0001, respectively). To evaluate the gut microbial
diversity, the Chao1 index and PCA were measured. The Chao1 index (Figure 7E) showed
no significant difference in the α-diversity of the intestinal microbial community between
the groups. However, the scatter plots of PCA showed that some groups were separated
from other groups (Figure 7F). At a genus level, Alistipes, Duncaniella, Muribaculum, and
Lactobacillus contributed the most in dimension 2 (12.4%), and Neglecta, Phocea, Murimonas,
Bacteroides, and Intestinimonas showed an important variation in dimension 1 (18.9%). Our
data indicated that PCA based on genus-level bacterial composition was different in YM
than in untreated OM, the OM + C group, and the OM + HY group. Lactobacillus was
closely associated with the OM + HY group; while Alistipes and Duncaniella were asso-
ciated with the untreated OM and the OM + C groups (Figure 7F). Lastly, we analyzed
Spearman correlations of muscle phenotypes (such as soleus weight, gastrocnemius weight,
and treadmill distance) between the genus taxonomic levels that contributed the most in
PCA. Lactobacillus positively correlated with soleus and gastrocnemius weight, whereas
Duncaniella and Alistipes negatively correlated with soleus and gastrocnemius weight
(Figure 7G). Alistipes negatively correlated with gastrocnemius weight and treadmill dis-
tance (Figure 7G).

2.8. L. plantarum HY7715 Impacts Myogenic Activation in C2C12 Cells

The C2C12 cell line derived from murine skeletal muscle is an established model
used to investigate muscle differentiation [33–35]. To identify how HY7715 induces muscle
myogenic activation, C2C12 cells were differentiated for 5 days, and HY7715 was added
to the differentiation media for the last 48 h. Whole-cell extracts of HY7715 were lysed,
and the cytoplasmic and membrane fractions were isolated. As shown in Figure 8A, we
showed that HY7715 was cytotoxic at concentrations ≥108 CFU/well. Therefore, we used
106 CFU/well of HY7715 for subsequent experiments. The mRNA levels were compared
in the total lysate, the pellet (the cell-membrane component), and the supernatant (the
cytoplasmic component) obtained by centrifuging lysed HY7715 cells. The total lysate
(TL) was the cell fraction that reduced the mRNA level of TNFα and Atrogin1 the most in
treated C2C12 (Figure 8B,C). TNFα is known to promote atrophy of muscle cells and can
stimulate the expression of Atrogin1, a muscle degradation biomarker. We measured the
ability of HY7715 to counteract the harmful effects of TNFα on differentiating myotubes
by measuring muscle differentiation biomarkers. As anticipated, HY7715 regulated the
expression of ATP production in myoblasts; HY7715 TL also elevated MyoD and myogenin
expression in C2C12 cells treated with TNFα.
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Figure 7. The effect of HY7715 treatment on the abundance of bacterial taxa in mouse cecum. (A) The relative abundance of
phyla in each treatment group. (B–D) Family-level taxa of the most abundant bacteria. (E) The α-diversity of each group
(Chao1 index). (F) A plot of the principal component analysis (PCA) scores showing the variation of each treatment group
and the contribution of bacteria at the genus level. Dimension 1 (Dim1) explains 18.9% of the variance and dimension 2
(Dim2) explains 12.4% of variance. (G) Spearman’s correlation analysis was performed between the bacterial genus-level
taxa and the measured physiological factors (muscle mass and treadmill distance). YM, young mice; OM, old mice; OM + C,
creatine-treated old mice; OM + HY, HY7715-treated old mice; contrib; contribution. N = 5, The Mann–Whitney U test was
used for statistical analysis. Data are expressed as the mean ± SEM (* p < 0.05 and ** p < 0.01).
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Figure 8. The effect of different cell fractions of HY7715 on C2C12 myoblast differentiation.
(A) An MTT assay in the C2C12 cell line. The mRNA level of (B) tumor necrosis factor-α
(TNFα) and (C) muscle atrophy F-box gene (Atrogin1) in C2C12 cells treated with HY7715 cell
fractions were normalized to the level of GAPDH mRNA and calculated as a relative-fold value.
(D) Adenosine triphosphate (ATP) production was detected using a commercial colorimetric enzyme-
linked immunosorbent assay (ELISA) kit. The mRNA level of (E) myoblast determination protein 1
(MyoD) and (F) myogenin in C2C12 cells treated with HY7715 cell fractions were normalized to the
level of GAPDH mRNA and calculated as a relative-fold value. Statistical significance was deter-
mined using one-way ANOVA followed by Tukey’s post hoc test (N = 5). Datasets denoted by
different letters are significantly different; p < 0.05 (a > b > c > d). CON, control cells; Live: live whole
cells of HY7715; TL, total lysates of heat-killed HY7715; PL, pellet of lysates of heat-killed HY7715;
SL, supernatant of lysates of heat-killed HY7715; TNFα, 100 ng/mL TNFα-treated cells; TNFα + TL;
total lysates of heat-killed HY7715 and 100 ng/mL TNFα-treated cells.

3. Discussion

An increasing awareness of health among the public is driving interest in functional
foods and materials derived from raw material products. The effects of orally ingested
microorganisms on health and the prevention of disorders have been studied for a long
time, and the correlation between microbiota, health conditions, and disease development
is an area of active research [36]. Probiotics are live microorganisms that provide health
benefits for the host when administrated in adequate amounts. In particular, lactic acid
bacteria are a major source of probiotics that are gaining popularity due to a variety of
beneficial health effects. Lactic acid bacteria, including L. plantarum, are the major bacterial
species responsible for maintaining gut health [37,38]. According to our previous study,
L. plantarum isolated from food is safe when orally ingested and is thus suitable as a
functional nutritional supplement for treating the elderly, athletes, recuperating patients,
and other special or particularly sensitive populations [39]. The presence of various
microbiota is related to the occurrence of disorders including gastrointestinal inflamma-
tory disease, allergic reactions, cancer, colon disorders, obesity, and diabetes, as well as
brain health [40–43]. However, few studies have reported the effect of lactic acid bacteria
supplements on muscle fatigue, exercise performance, and gut microbial profile [44].

Muscle loss is a process that begins and continues from around age 30. During this
process, the amount of muscle and the size of muscle fibers gradually decreases, which
is the beginning of sarcopenia [45,46]. However, the qualitative and quantitative loss of
muscles can be partially delayed through the intake of nutrients. Recent research has
investigated the effectiveness of diet in supporting athletic performance [47]. However, the
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role of gut microbiota on muscle strength has rarely been elucidated. Therefore, we aimed
to establish a link between gut microbiota composition and physical activity, including
the notion that altering the gut microbiota composition may contribute to the physical
performance of the host. We used L. plantarum HY7715 probiotics to test this hypothesis.
To better understand the mechanism of action of HY7715 and its role in inducing muscle
health benefits, we evaluated HY7715 in vitro using C2C12 myoblasts and in vivo using
young and old mice. The in vivo effect of HY7715 (1 × 108 CFU/kg/day) was compared
with the effect of creatine (75 mg/kg/day). Creatine was used as a positive control as
it is a representative dietary supplement used to enhance exercise performance that can
ameliorate sarcopenia and muscle atrophy by activating direct anabolic and anticatabolic
pathways [48,49].

In this present study, we showed that muscle mass and function was significantly
lower in 80-week-old, aged mice than in 8-week-old mice. Skeletal muscle is constantly
depleted by the fluctuating demands of its environment, and maintenance throughout
an organism’s lifespan is mainly determined by the capacity of skeletal muscle to adapt
and grow. Interestingly, we determined that HY7715 increased the mass of the soleus
and gastrocnemius skeletal muscles without altering body weight in aged mice. The
soleus is the most sensitive and important muscle that supports the hindlimb, and the
gastrocnemius is the largest muscle in the hindlimb. Furthermore, our data indicate that
HY7715 effectively improved the muscle strength to bodyweight ratio. Our results showed
that physical endurance and grip strength increased in HY7715-treated mice to similar
levels observed in creatine-treated aged mice.

Muscle fatigue is a physiological phenomenon caused by an inability to maintain the
intensity of physical exercise [50]. Our data show that the skeletal muscle of elderly mice
shows greater fatigue and higher lactate accumulation than that of young mice during
activities that use a small amount of muscle mass. Consistent with this finding, the blood
lactate level in untreated OM increased during the treadmill exercise but decreased to the
basal level in HY7715-treated OM. Blood lactate is the glycolysis product of carbohydrates
under anaerobic glycolysis conditions, and glycolysis is the main energy source during
short-term high-intensity exercise. An increased lactate level further reduces the pH value
of muscle tissues and blood, which can induce various biochemical and physiological
side-effects. Therefore, blood lactate is an important blood biochemical parameter related
to fatigue [51]. HY7715 also modulated plasma AST, ALT, BUN, and creatinine levels in
aged mice. AST levels can be increased in a wide spectrum of clinical disorders, but an
elevated ALT level is a specific indicator of tissue necrosis. Creatinine and BUN are the two
major nitrogenous wastes found in blood, and our data suggest that increased muscle mass
resulting from dietary intake of HY7715 contributed to changes in these muscle-fatigue
factors.

Various mechanisms leading to aged-related sarcopenia have been proposed and are
largely dependent on the research model used, but it is generally accepted that sarcopenia
results from an imbalance between the breakdown and synthesis of muscle-fiber proteins.
Age-induced loss of muscle mass is associated with decreased expression of genes involved
in skeletal muscle differentiation [52,53]. The present study showed that HY7715 regulates
the expression of several genes, including MyoD and MYH1, in the soleus and gastroc-
nemius muscles of mice. MyoD is an essential factor for terminal specification in muscle
cell lineages to promote the expression of myogenic regulatory factors such as MYH1.
Our analysis of the cross-sectional area of the gastrocnemius muscle fiber showed that
the area was smaller in untreated OM than in YM and that HY7715 treatment increased
the cross-sectional area to a similar size as the increase observed with creatine treatment.
HY7715 may stimulate the myogenic activation of the gastrocnemius and soleus muscle in
OM, through a mechanism involving the induction of myoblast differentiation.

Aging is associated with chronic low-grade systemic inflammation, which is known to
increase circulating levels of certain cytokines such as TNFα in aged skeletal muscle. TNFα,
which orchestrates cellular inflammatory and apoptotic signaling pathways, contributes to
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the aging process. It is reported that TNFα levels increase with age in various tissues in-
cluding the liver, heart, and kidney and that elevated TNFα levels compromise the function
of skeletal muscle in elderly individuals. Although the role of the ubiquitin–proteasome
pathway in sarcopenia is less clear, a recent review suggested that elevated levels of pro-
inflammatory mediators including TNFα might upregulate this proteolytic pathway by
regulating the ubiquitin–proteasome system. These findings indicate that the catabolic ac-
tivity of TNFα is closely related to muscle pathology and that pro-inflammatory cytokines
are highly expressed in the patients with muscle weakness [34,54,55]. The ubiquitin E3
system is a proteolytic process required for cellular processes such as inflammatory reac-
tions, and its importance in sarcopenia has recently been attracting attention. Myostatin,
Atrogin1, and MuRF1 are expressed in skeletal muscle and inhibit cell-cycle progression
and control muscle-growth factors. In this present study, HY7715 treatment significantly re-
duced the expression of TNFα and as well as that of sarcopenic factors including myostatin,
Atrogin1, and MuRF1, which were increased in OM. Thus, our present data indicate that
HY7715 may ameliorate sarcopenia by inhibiting the myoblast pro-inflammatory cytokine
production and the expression of proteolytic atrophy factors.

Recent studies indicate that the composition of the gut microbiota gradually changes
with age, resulting in an imbalance of the microbiome [54]. We found that aging altered the
microbial composition and that aging and HY7715 administration was associated with the
presence of distinct microbial taxa. Firmicutes and Bacteroidetes are two phyla that makeup
around 90% of gut bacterial communities [55]. Our data show that the sum of Firmicutes
and Bacteroidetes were significantly lower in OM than in YM and that the level recovered in
the OM + HY group was comparable to that of the OM group. By contrast, the abundance
of Proteobacteria was higher in the untreated OM group, which means that aging increased
the abundance of harmful bacteria, resulting in an imbalance in the microbiota. In addition,
aging increased the abundance of pro-inflammatory microorganisms, including the genus
Alistipes belonging to the family Rikenellaceae. Our results also showed that the presence
of Alistipes was positively associated with aging in mice, while HY7715 treatment was
positively associated with the presence of Lactobacillus, indicating that HY7715 was stable
in the intestine. We further examined the correlation between muscle mass and the relative
abundance of microbial flora and found that Lactobacillus was positively correlated with
gastrocnemius muscle mass. This finding indicates that there is a link between HY7715
administration and muscle growth by increasing myoblast differentiation and reducing
the expression level of sarcopenic factors. Taken together, our results suggest that HY7715
treatment induces a healthy gut microbiome that correlates with improved muscle strength
in aged animals.

In our final set of experiments, we used live-cell and heat-killed fractions of HY7715-
treated cells and determined that HY7715 reduced TNFα production and the mRNA
levels of sarcopenic factors during the differentiation of C2C12 cells. This effect was most
pronounced in the cell lysate fraction. This result indicates that factors synthesized in the
HY7715 microbiota can influence improvements in muscle function; however, it is not yet
known what specific mediators are responsible for this effect, which will be investigated in
further studies.

In conclusion, the current literature and the results of this study allow us to conclude
that HY7715 supplementation is a potential dietary intervention to prevent sarcopenia. In
addition, our findings suggest the presence of a gut–muscle axis between the gut microbiota
and muscle tissues of the host, and this axis can be modulated by the administration of
HY7715 probiotics. However, it is still unknown which factors in the TL fraction of HY7715
primarily act on muscle and intestinal tissue or regulate the rate of digestion and absorption;
hence, it is unclear at present whether HY7715 will benefit elderly individuals. Therefore,
further studies involving an elderly population need to be conducted and will form the
basis of our follow-up investigation.
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4. Materials and Methods
4.1. Bacterial Culture

Lactobacillus plantarum HY7715, originally isolated from Korean kimchi was cultured
on MRS broth medium (Difco Corp., Sparks, MD, USA), and the number of colony-
forming units (CFUs) were measured. L. plantarum HY7715 was cultured in a fermenter for
15–20 h at 37 ◦C, then the cells were centrifuged (8000× g, 4 ◦C) for 20 min. For animal
administration, cells were freeze-dried. For in vitro studies, HY7715 cells were centrifuged
at 2000× g for 10 min, washed twice with phosphate-buffered saline (PBS), and pellets
were resuspended in PBS, pH 7.2.

4.2. Design of Animal Studies

Male 6-week-old and 80-week-old Balb/c mice were purchased from Doo-Yeol Biotech
(Seoul, Korea). The animal studies were approved by the Institutional Animal Care and
Use Committee (IACUC) of hy Co., Ltd. (IACUC approval number, AEC-2019-00012–Y).
The mice were initially housed for 1 week under a 12 h light/dark cycle at 20–24 ◦C
and 44–52% humidity to permit adaptation. After adaptation, the mice were randomly
allocated to four groups (n = 7 per group) and fed for 5 weeks with AIN-93G diet (crude
protein 17.9%, crude fat 7.0%, crude fiber 4.8%, moisture 7.0%, and ash 4.2%; Zeigler
Bros., Inc., Gardners, PA, USA). Over the same period, HY7715 (1 × 108 CFU/kg/day) or
creatine (75 mg/kg/day) in an equal volume of vehicle was orally administered daily to
the mice. The doses of HY7715 administered to the mice were derived from human doses
(1 × 109 CFU/kg/day) using a mathematical table, as previously described. The body
weight, food intake, and water consumption of the mice were checked weekly. At the
end of the experimental period, the mice were fasted for 12 h and euthanized using the
gradual-fill method of carbon dioxide euthanasia. The tissues were collected for analysis
and the organs were weighed carefully.

4.3. Microbiome Analysis Using Bacterial 16S rRNA Amplicon Sequencing

The bioinformatic analysis of cecal DNA samples of mice was carried out at Macro-
gen (Seoul, Korea). Total stool genomic DNA samples were extracted using a DNeasy
PowerSoil kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.
PCR amplification of 16S rRNA sequences was conducted to prepare DNA sequencing
templates. The V3 and V4 hypervariable region of the 16S rRNA gene sequence was
amplified using primers targeted to the universal F/R PCR primer region according to the
manufacturer’s instruction (Illumina, San Diego, CA, USA). The universal primer pairs
with Illumina adapter sequences for the first set of amplifications were as follows: V3-F:
5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′,
V4-R: 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTA
ATCC-3′. The PCR conditions were as follows: heat activation at 95 ◦C for 3 min, 25 cy-
cles of denaturation at 95 ◦C for 30 s, annealing at 55 ◦C for 30 s, extension at 72 ◦C for
30 s, and a final extension at 72 ◦C for 5 min. PCR products were purified with AMPure
beads (Agencourt Bioscience, Beverly, MA, USA) and quantified using the qPCR quantifi-
cation protocol guide (KAPA library quantification kits for Illumina sequencing platforms).
Paired-end sequencing was performed by Macrogen using the Illumina MiSeq platform
(Illumina, San Diego, CA, USA). After trimming [56], paired-end sequences were created
using FLASH software (v. 1.2.11) [57]. The raw data were analyzed using the QIIME v. 1.9.0
program [58]. The sequencing data were filtered for low-quality reads, and mismatched
indexes were trimmed. The sequences were clustered into operational taxonomic units
(OTUs) with a 97% cutoff value using CD-HIT-OTU analysis [59]. After OTU clustering,
the OTUs were aligned and assigned with the NCBI 16S microbial database, and taxonomy
information was based on the BLAST+ database (v. 2.9.0). The Chao1 index was measured
using the QIIME platform. Principal component analysis (PCA) and correlation analysis
were performed and visualized using the FactoMineR package (v. 4.0.3) (available online:
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https://www.r-progect.org accessed on 11 December 2020) [60]. All datasets have been
deposited in NCBI Gene Expression Omnibus with the accession code GSE180087.

4.4. Grip Strength Test

The maximal muscle strength of the mice was determined by measuring grip strength
at 1, 3, and 5 weeks using a grip strength meter (Columbus Instruments, OH, USA). At the
end of the oral administration period, mice were placed with their forelimbs or all limbs on
a grid and the grip strength was measured immediately before mice fell from the bar.

4.5. Treadmill Exercise Test

Before the treadmill exercise, mice were adapted for 1 week to become familiar with
the treadmill (6-lane treadmill, JD-A-09; Jeung Do Bio & Plant Co., Ltd., Seoul, Korea). The
exercise consisted of treadmill running at speed of 5 m/min for 10 min, 10 m/min for
10 min, 15 m/min for 10 min, 20 m/min for 10 min, 25 m/min for 10 min, and 25 m/min
with no inclination of the treadmill at 1, 3, and 5 weeks. If mice declined to run, then they
were motivated by a transient and mild electric stimulation from the treadmill exercise
platform. The total distance traveled by each mouse was calculated at the time the mice
became exhausted.

4.6. Serum Biochemical Analyses

Blood was collected via the abdominal vein at the time of euthanasia. After clotting,
plasma was separated by centrifugation at 6000× g for 10 min at 4 ◦C. The lactate, triglyc-
eride, creatinine, blood urea nitrogen (BUN), aspartate aminotransferase (AST), and alanine
aminotransferase (ALT) concentrations were measured by commercial ELISA.

4.7. Hematoxylin and Eosin Staining

The gastrocnemius muscle in hindlimb samples was fixed with 4% paraformaldehyde
at room temperature for 24 h. The tissues were then paraffin embedded, and the resulting
blocks were cut into 4 µm sections and stained with hematoxylin and eosin (H&E) to assess
the histology. Sectioned tissues were analyzed using a Nikon Eclipse E600 microscope
(Nikon Corporation, Tokyo, Japan). The muscle fiber size in hematoxylin and eosin staining
data of GA muscle calculated using relative average area of 25–30 muscle fibers were
quantified per the same area using Image J software

4.8. Quantitative Reverse-Transcription Polymerase Chain Reaction Analysis

RNA was isolated from adipocytes or homogenized tissues using an Easy-Spin total
RNA extraction kit (iNtRON Biotechnology, Seongnam, Gyeonggi-do, Korea). cDNA was
then obtained from 1 µg RNA on a thermal cycler (Bio-Rad) using a Maxime RT PreMix
(iNtRON Biotechnology) for 60 min. The cDNA was analyzed by qRT-PCR (Applied
Biosystems, Carlsbad, CA, USA) using the TaqMan probe-based gene expression anal-
ysis system in combination with TaqMan gene expression master mix containing ROX
dye (Applied Biosystems). The primers of the genes used in the experiment were as
follows: myoblast determination protein 1 (MyoD, Mm00440387_m1), myogenic factor 4
(MyoG, Mm00446195_g1), myosin heavy chain 1 (MYH1, Mm01332489_m1), myosin heavy
chain type (Myf5, Mm00435125_m1), F-box protein (Atrogin1, Mm00499523_m1), mus-
cle RING-finger protein-1 (MuRF1, Mm01188690_m1), transcription factor A (TFAM1,
Mm00447585_m1), nuclear respiratory factor 1 (NRF1, Mm01135609_m1), mitochondrial
uncoupling protein (UCP3, Mm01163394_m1), and glyceraldehyde 3-phosphate dehydro-
genase (GAPDH, Mm99999915_g1). Expression data were normalized to GAPDH. mRNA
levels were calculated as a ratio, using the 2−∆∆CT method for comparing between groups
of data generated by qRT-PCR.
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4.9. Western Blotting

Muscle tissues were lysed using pro-prep buffer (iNtRON Biotechnology Inc., Seoul,
Korea) containing proteinase inhibitors and phosphatase inhibitors. Homogenates were
centrifuged at 12,000× g for 20 min at 4 ◦C, supernatants were collected, and the protein
concentration was measured using a protein assay kit (Bio-Rad, Hercules, CA, USA).
Protein samples (20 µg) were resolved on 8–12% SDS-PAGE gels, and then transferred to
PVDF membranes. Primary antibodies against the following proteins were used: SirT1
(D1D7, Cell Signaling Technology, MA, USA), PGC1α (PA5-38021, Invitrogen, Carlsbad, CA,
USA), myostatin (PA5-11936, Invitrogen), and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH, Cell Signaling Technology). The membranes were blocked with 5% non-fat dried
milk for 2 h, and then incubated with secondary antibody conjugated to IgG horse-radish
peroxidase.

4.10. Cell Culture and Treatment

C2C12 mouse skeletal muscle myoblasts (CRL-1772) were obtained from the Amer-
ican Type Culture Collection (ATCC, Manassas, VA, USA). The cells were maintained
in DMEM medium containing 10% Gibco fetal bovine serum (Thermo Fisher Scientific,
Massachusetts, MA, USA), 1% antibiotic–antimycotic solution (Thermo Fisher Scientific),
and 3.7 g/L sodium bicarbonate in a 5% CO2 humidified incubator at 37 ◦C. To differentiate
the myoblasts, 80% confluent myoblasts were incubated in DMEM containing 2% Gibco
horse serum (Thermo Fisher Scientific) for 5 days, and the medium was refreshed daily.
HY7715 medium was prepared in MRS broth (BD Difco, Sparks, MD, USA) and diluted
to a final concentration of 106 CFU/5 × 105 cells. TNFα (100 ng/mL) was used to induce
atrophy of C2C12 cell culture.

4.11. Cell Viability Test

Cells were seeded (5 × 104 cells/well) in 96-well plates and incubated overnight in
growth medium. Cells were then treated with HY7715 culture medium (103, 104, 105, 106,
107, and 108 CFU/well) and incubated for a further 24 h. Next, 0.5 mg/mL 3-(4,5-dimethyl-
2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) solution was added to each well
and the cells were incubated for 3 h. The MTT-containing medium was removed, and
150 µL DMSO was added to elute formazan crystals. The absorbances of the eluates were
measured at 595 nm on a plate reader (BioTek, Winooski, VT, USA).

4.12. Statistical Analysis

The mRNA and protein data are expressed as means and standard deviations (SDs).
Data were analyzed by one-way ANOVA, followed by Duncan’s test (IBM SPSS Statistics
Version 20.0, Chicago, IL, USA). Values indicated by letters in the figures are significantly
different, p < 0.05 (a > b > c > d). Tissue masses and microbiome data are expressed as
mean ± SD; Student’s t-test was used to analyze the data, and values were considered
significant when * p < 0.05, ** p < 0.01, *** p < 0.001. All data of the microbiome are
expressed as mean ± standard error mean (SEM). Significant differences between groups
are presented as * p < 0.05, ** p < 0.01, and *** p < 0.0001.
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