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Abstract
Genome-wide association studies (GWAS) have generated sufficient data to assess the

role of selection in shaping allelic diversity of disease-associated SNPs. Negative selection

against disease risk variants is expected to reduce their frequencies making them overrep-

resented in the group of minor (<50%) alleles. Indeed, we found that the overall proportion

of risk alleles was higher among alleles with frequency <50% (minor alleles) compared to

that in the group of major alleles. We hypothesized that negative selection may have differ-

ent effects on environment (or lifestyle)-dependent versus environment (or lifestyle)-inde-

pendent diseases. We used an environment/lifestyle index (ELI) to assess influence of

environmental/lifestyle factors on disease etiology. ELI was defined as the number of publi-

cations mentioning “environment” or “lifestyle” AND disease per 1,000 disease-mentioning

publications. We found that the frequency distributions of the risk alleles for the diseases

with strong environmental/lifestyle components follow the distribution expected under a

selectively neutral model, while frequency distributions of the risk alleles for the diseases

with weak environmental/lifestyle influences is shifted to the lower values indicating effects

of negative selection. We hypothesized that previously selectively neutral variants become

risk alleles when environment changes. The hypothesis of ancestrally neutral, currently dis-

advantageous risk-associated alleles predicts that the distribution of risk alleles for the envi-

ronment/lifestyle dependent diseases will follow a neutral model since natural selection has

not had enough time to influence allele frequencies. The results of our analysis suggest that

prediction of SNP functionality based on the level of evolutionary conservation may not be

useful for SNPs associated with environment/lifestyle dependent diseases.

Author Summary

We reviewed several thousand genome wide association studies that were conducted to
identify genetic variants influencing risk of human diseases. We tested the hypothesis that
single nucleotide polymorphisms (SNPs) that influence disease risk undergo positive or
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negative selection more frequently than an average SNP in the human genome. We found
no evidence for excess of positive selection on disease-associated SNPs. At the same time
we found that alleles associated with a higher disease risk undergo negative selection. We
also demonstrated that risk alleles for diseases with strong influence of environment/life-
style factors (e.g. Type II diabetes) show little evidence of negative selection, while risk
alleles for diseases with weak influence of environment/lifestyle factors (e.g. Pathological
myopia) show clear signs of negative selection. The approach used in this study can be
used to estimate the number of genetic variants in the human genome influencing risk of
human diseases.

Introduction
Diseases play a central role in human evolution, influencing population frequencies of genetic
polymorphisms directly or indirectly through hitchhiking or bottle neck effect [1–3]. Nonethe-
less, the role of selection in the shaping of population frequencies of the genetic variants associ-
ated with risk of common human diseases is poorly understood.

Environment/lifestyle diseases
Both environmental and genetic factors influence risk of common human diseases, however,
the relative significance of genetic and environmental factors in disease etiology differs for dif-
ferent diseases. A number of common human diseases including cardiovascular diseases and
type 2 diabetes are believed to predominantly result from changes in lifestyle and environment
[4,5] Having environment or lifestyle as a major risk factor does not rule out an influence of
genetic polymorphisms. An assessment of the effects of selection on the risk alleles of the com-
mon diseases stratified by the importance of the environmental/lifestyle component has never
been conducted before.

Selection and disease associated SNPs
A number of methods to detect signatures of recent positive selection have been proposed,
including Tajima’s D [6,7], selective sweep [8], tests based on fixation index used as a measure
of population differentiation [9], haplotype analysis [10], tests based on the ratio of nonsynon-
ymous and synonymous substitutions [11], and others [12–15]. The aforementioned methods
work well when adaptation is driven by a single polymorphic locus (monogenic model); how-
ever, in the situation when adaptation is driven by multiple loci (polygenic model) selection
may not produce the classical signature of selective sweep [16], see also [17] and [18]. Fixation
of a beneficial mutation is also strongly affected by temporal variation in population size and
selection pressure [19].

Some studies suggest that SNPs with the signature of recent positive selection tag regions
associated with common human diseases [20]. Raj et al. 2013 [21] found that several loci linked
to the risk of inflammatory diseases carry genomic signatures of recent positive selection. It
also has been demonstrated that SNPs associated with the risk of type II diabetes carry signa-
ture of recent positive selection [22]. Then again, other studies found no evidence of positive
selection at loci linked to common human diseases [23,24].

Unfortunately, the cited studies do not provide an answer to the important question
whether the SNPs with a signature of recent positive selection have higher likelihood to be
detected (and reported) as disease-associated compared to those without such signature. Wang
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and Pike [25] suggested that allelic spectra of SNPs associated with common diseases should
be similar to the allelic spectra for the entire human genome (which basically follow neutral
model). They built their hypothesis based on the fact that the number of disease loci for com-
mon disease is usually high and each locus makes only a minor contribution to a disease. They
argue that natural selection has been operating weakly and for a short time, suggesting that the
majority of SNPs associated with common disease may be near-neutral.

We and others hypothesized that disease-associated SNPs experience negative selection
[26–30]. Detection of negative selection is more challenging than detection of recent positive
selection because it does not reshape genetic variation in selected region. The main indicator of
negative selection is deviation of allelic frequencies from the distribution expected under the
neutrality model towards lower values [28,31]. Lower minor allele frequency expected as a
result of negative selection cannot be estimated for individual SNPs but only for SNP classes,
e.g. nonsynonymous or disease risk-associated SNPs. Even though it has been shown that dis-
ease associated SNPs tend to occur in evolutionary conserved regions [32] the effect of negative
selection on disease risk associated SNPs is poorly understood.

Genome-wide association studies (GWAS)
Genome-wide association studies are widely used to identify SNPs associated with risk of com-
mon diseases. Thousands GWASs have been conducted with the results reported in several
databases. One of the most comprehensive databases is the catalogue of published GWASs
(CPGWAS) [33] (http://www.genome.gov/gwastudies/). More than 7,000 SNPs linked to
nearly 5,000 genes have been reported in CPGWAS making it a valuable resource to study the
role of natural selection in the shaping of genetic variation of common human disease.

The goal of our study was to evaluate the effect of positive and negative selection on allelic
spectra of SNPs associated with the risk of common human diseases and to assess how allelic
spectra differ for environment/lifestyle dependent versus environment/lifestyle independent
diseases.

Results and Discussion

The number of SNPs with a signature of recent positive selection on
commonly used genotyping platforms
Fig 1 shows the proportions of the SNPs with the signature of recent positive selection across
commonly used genotyping platforms. The lowest proportion was on Illumina OmniChip
2.5M platform—0.58%, and the highest proportion was on Illumina Human Hap550 platform
—0.91%. The average proportion of SNPs with the signature of recent positive selection across
all genotyping platforms was essentially the same as the proportion of SNPs with the signature
of recent positive selection among GWAS-detected disease associated SNPs reported in
CPGWAS—0.75%±0.09% versus 0.76%±0.17% (x2 = 0.09, df = 1, P = 0.95). A comparison
of the proportion of SNPs with the signature of recent positive selection among CPGWAS-
reported disease-associated SNPs with proportions of the SNPs on individual platforms dem-
onstrated that it was significantly higher for Illumina 1M platform (P = 0.03) and lower for
OmniChip 2.5M (P = 0.02). The differences, however, became statistically non-significant after
multiple testing adjustments. Table 1 shows details of the estimation of the proportions of
SNPs with the signature of recent positive selection on the 10 most commonly used genotyping
platforms.

Therefore we found that among GWAS detected SNPs the proportion of SNPs with evi-
dence of recent positive selection is the same as the proportion of the SNPs on genotyping
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platforms. This result suggests that recent positive selection does not increase (or decrease) the
chance that a SNP will be reported as disease-risk associated. This also suggests that reported
evidence of positive selection on disease risk associated SNPs [21,34,35] may largely result
from simple random overlap between disease associated and positively selected SNPs.

Minor risk alleles (MiRA)
Minor Risk Alleles (MiRA) were defined as risk-associated alleles with frequency less than
50%. We used MiRA proportion as an estimator of the effect of negative selection on allelic

Fig 1. Proportions of SNPs with the signature of recent positive selection on the most commonly
used genotyping platforms. The red horizontal line shows the proportion of SNPs with signature of recent
positive selection among GWAS-detected SNPs associated with risk of common human diseases.

doi:10.1371/journal.pgen.1005371.g001

Table 1. Absolute number and the proportion of selected SNPs on the most popular genotyping platforms.

Genotyping Platform # of SNPs SNPs with evidence of positive selection (EPS) % SNPs with EPS SE*

Affymetrix 250K 250,000 2,115 0.85 0.02

Affymetrix 5.0 500,500 3,368 0.67 0.01

Affymetrix 6.0 906,600 6,376 0.70 0.01

Human Exome 12v1 240,000 314 0.63 0.01

Illumina Human1M 1,000,000 8,934 0.89 0.01

Illumina HumanHap550 550,000 4,984 0.91 0.01

Illumina HumanHap650 650,000 5,849 0.90 0.01

Illumina OmniExpress 730,500 5,808 0.80 0.01

Illumina Omni Express Exome 730,500 5,571 0.76 0.01

Illumina OmniChip 2.5M 2,015,000 5,650 0.58 0.01

* SE—Standard Error

doi:10.1371/journal.pgen.1005371.t001
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frequencies. If the probability to be risk-associated or protective does not depend on allelic fre-
quency, the expected MiRA proportion will be 0.5. Table 2 shows MiRA proportions for the
diseases with at least 20 CPGWAS reported risk associated SNPs. Analyses of Variance
(ANOVA) show significant variation of the MiRA proportion among common diseases:
F = 2.3, df = 24, P = 0.000001. The MiRA proportions vary from 0.45±0.1 for Graves' disease to
0.96±0.04 for chronic kidney disease.

There is a considerable heterogeneity between diseases by GWAS sample sizes. A larger
sample size translates into a higher statistical power to detect SNPs with a low minor allele fre-
quency (MAF). However it is unlikely that the sample size will influence the probability that a
minor allele will be associated with risk rather than protection. Consistent with this expectation
we found that larger studies were more likely to detect rare (MAF�0.05) SNPs (Spearman rank
order correlation = 0.14, N = 1,657, P = 0.00002). However, no association was found between
the sample size and direction of the effect of minor alleles (MiRA) (Spearman rank order corre-
lation = -0.04, N = 1,657, P = 0.56).

Environment/lifestyle index (ELI)
Text mining is a powerful tool to infer the relationships between diverse biological entities
[36,37]. We used it to assess the role of environment/lifestyle factors in disease etiology. We
cannot simply search for publications linking disease to environmental or lifestyle factors
because we will find such publications for any human disease. A more objective measure of

Table 2. Proportions of minor risk alleles (MiRA) in GWAS studied diseases.

Disease MiRA # of SNPs SE

Crohn's disease 0.61 151 0.04

Rheumatoid arthritis 0.68 120 0.04

Inflammatory bowel disease 0.50 116 0.05

Breast cancer 0.64 85 0.05

Type 2 diabetes 0.51 79 0.06

Ulcerative colitis 0.56 77 0.06

Prostate cancer 0.63 71 0.06

Coronary heart disease 0.61 56 0.07

Obesity 0.55 55 0.07

Systemic lupus erythematosus 0.71 55 0.06

Schizophrenia 0.47 47 0.07

Age-related macular degeneration 0.52 42 0.08

Myopia (pathological) 0.72 51 0.07

Type 1 diabetes 0.55 38 0.08

Alzheimer's disease (late onset) 0.58 36 0.08

Parkinson's disease 0.55 33 0.09

Colorectal cancer 0.66 32 0.09

Celiac disease 0.59 32 0.09

Asthma 0.58 31 0.09

Psoriasis 0.61 28 0.09

Chronic lymphocytic leukemia 0.54 28 0.10

Chronic kidney disease 0.96 27 0.04

Primary biliary cirrhosis 0.63 27 0.09

Multiple sclerosis 0.60 25 0.10

Graves' disease 0.45 22 0.11

doi:10.1371/journal.pgen.1005371.t002
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influences of environment/lifestyle factors on disease etiology is needed. It is reasonable to sug-
gest that the proportion of papers simultaneously referring to a disease and environment/life-
style factors will be higher for diseases with strong environment/lifestyle influences. Table 3
shows estimated environment/lifestyle indices (ELIs) for the diseases that were targeted by at
least 3 independent GWASs. The highest ELIs were detected for obesity and type II diabetes,
112.8 and 76.4 correspondingly, and the lowest for pancreatic cancer and primary biliary cir-
rhosis, 10.9 and 9.6 correspondingly.

To test stability of ELI-based ranking of human diseases we extended the ELI by including
the additional term: “exposure”. S1 Table shows disease ranking based on ELI and extended
ELI. In the ranking based on the extended ELI, lung cancer moved from 29th position to 9th fol-
lowing obesity, asthma, atopic dermatitis, type 2 diabetes, major depressive disorder, mela-
noma, autism, and attention deficit hyperactivity disorder. Overall disease ranking was similar
for ELI and extended ELI (S1 Fig). Out of the top 10 ELI-defined environment/lifestyle depen-
dent diseases all except “bipolar disorder” are also among the top 10 environment/lifestyle
dependent diseases defined based on the extended ELI. The correlation coefficient between ELI
and extended ELI was 0.92, N = 44, P = 1.6x10-17. Replacing ELI by extended ELI for disease
ranking did not change our conclusions. Analysis of the extended ELI demonstrates that (i) the
ELI-based approach for identification of environment/lifestyle dependent disease is not perfect
and can rank some diseases (such as lung cancer) lower than we may think is accurate, and (ii)
overall ELI based classification provides a sufficiently accurate and robust assessment of envi-
ronmental and lifestyle related effects on disease risk to capture most known influences on dis-
ease risks. Analysis of the human disease with extended ELI suggests that the proposed
classification works effectively on the large collection of diseases used in this analysis.

ELI and risk allele frequencies
We found that risk allele frequencies were higher for environment/lifestyle dependent diseases:
Spearman rank order correlation coefficient between risk allele frequencies and ELI was 0.1
(P = 0.0002). We further subdivided diseases in tertiles based on ELI and estimated MiRA pro-
portions in each tertile (Fig 2). There was a significant variation among tertiles by the MiRA
proportions: ANOVA-test F = 5.02, df = 2, P = 0.007. The proportion was highest in the first
and lowest in the third tertile. The analysis indicates that the risk alleles for environment/life-
style dependent diseases tend to be more common compared to the risk alleles for environ-
ment/lifestyle independent diseases.

We additionally performed nonparametric Spearman rank order correlation analysis. Sig-
nificant positive association between risk allele frequency and ELI was detected (Spearman
R = 0.12, N = 1547, P = 4 x 10−6). This result supports the conclusion that risk alleles for envi-
ronment/lifestyle dependent diseases tend to have a higher frequency compared to the risk
alleles for environment/lifestyle independent diseases.

To get a more detailed picture of the association between risk allele frequency and disease
dependences on environmental/lifestyle factors we assessed risk allele frequency distributions
for the diseases from the first, second and third ELI tertiles (Fig 3a). The diseases were selected
based on the condition that they have at least 50 reported risk associated SNPs to allow a reli-
able estimation of the frequency distribution. We took 3 individual diseases from the first
tertile (rheumatoid arthritis, systemic lupus erythematosus and pathological myopia) and com-
pared them to 3 environment/lifestyle dependent diseases—those from the third tertile (type 2
diabetes, coronary heart disease and obesity). The distributions of the risk allele frequencies for
environment/lifestyle independent diseases were asymmetrical and shifted to the left, indicat-
ing effect of negative selection (Fig 3b). The distributions of the risk allele frequencies for
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Table 3. Environmental and lifestyle indexes (ELIs) for the GWAS-studied diseases.

Disease N of publications containing: ELI

Disease Name (DN) DN AND "environment" DN AND "lifestyle"

Obesity 210416 7892 15834 112.8

Type 2 diabetes 113333 2180 6477 76.4

Major depressive disorder 96868 3626 3466 73.2

Asthma 147762 9239 1152 70.3

Atopic dermatitis 19705 1100 144 63.1

Autism 28552 1437 98 53.8

Attention deficit hyperactivity disorder 25208 1160 164 52.5

Melanoma 98871 4546 237 48.4

Schizophrenia 112478 4004 949 44.0

Bipolar disorder 38944 1016 524 39.5

Coronary heart disease 262453 4267 5647 37.8

Psoriasis 37149 1208 167 37.0

Type 1 diabetes 68482 1561 875 35.6

Alzheimer's disease (late onset) 2958 56 35 30.8

Multiple sclerosis 63493 1565 331 29.9

Age-related macular degeneration 21515 506 111 28.7

Migraine 29512 569 264 28.2

Sudden cardiac arrest 25821 487 229 27.7

Breast cancer 292315 4727 2742 25.6

Migraine with aura 4446 89 23 25.2

Amyotrophic lateral sclerosis 18004 394 49 24.6

Amyotrophic lateral sclerosis (sporadic) 18004 394 49 24.6

Inflammatory bowel disease 74179 1425 351 23.9

Prostate cancer 123622 1855 1040 23.4

Colorectal cancer 172036 2470 1356 22.2

Crohn's disease 41342 732 178 22.0

Ulcerative colitis 36344 600 168 21.1

Parkinson's disease 76837 1368 248 21.0

Lung cancer 245974 4112 916 20.4

Myopia (pathological) 3990 77 2 19.8

Chronic kidney disease 117185 1281 961 19.1

Endometriosis 21212 342 59 18.9

Bladder cancer 62487 884 289 18.8

Systemic sclerosis 22938 387 36 18.4

Systemic lupus erythematosus 58576 929 110 17.7

Rheumatoid arthritis 120346 1578 393 16.4

Testicular germ cell tumor 27123 313 99 15.2

Ovarian cancer 86537 888 353 14.3

Graves' disease 18020 196 45 13.4

Celiac disease 20718 213 55 12.9

Acute lymphoblastic leukemia 32530 335 57 12.1

Chronic lymphocytic leukemia 19285 209 23 12.0

Pancreatic cancer 73158 622 172 10.9

Primary biliary cirrhosis 12347 93 25 9.6

doi:10.1371/journal.pgen.1005371.t003
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environment/lifestyle dependent diseases were more symmetrical indicating a weak influence
of negative selection (Fig 3c). The differences between environment/lifestyle dependent and
independent diseases were more evident when we compared the proportions of risk alleles
averaged across diseases (Fig 3d). The distribution of the risk alleles for environment/lifestyle
independent diseases was shifted towards a predominance of rarer SNPs while the distribution
of proportions of the risk alleles for environmental lifestyle dependent diseases was almost per-
fectly symmetrical and bell-shaped.

Common human diseases may create conditions for positive selection for disease protective
alleles, while risk associated alleles are expected to be slightly deleterious [26,27,30] and there-
fore to be under pressure of negative selection. Based on these considerations we expected that
GWAS detected disease-associated SNPs will show signals of positive and/or negative selection.
We found, however, that the proportion of GWAS-detected SNPs with the signature of recent
positive selection does not differ from the proportion of SNPs with the signature of recent posi-
tive selection on genotyping platforms, suggesting that disease associated SNP have the same
chances to be positively selected during the process of GWAS analysis as an average SNP in the
human genome. On the other hand, our analysis supports the hypothesis that risk-associated
alleles frequently undergo negative selection. We found that risk-associated alleles are more
common among minor alleles. The overall distribution of the risk alleles is shifted to lower fre-
quencies indicating an effect of negative selection against risk-associated variants. We further
hypothesized that the effects of negative selection on allelic spectra may be different for envi-
ronment/lifestyle dependent versus environment/lifestyle independent diseases. We found
environment/lifestyle dependent diseases tend to have a higher frequency of the risk associated
variants suggesting a weaker effect of negative selection.

It is widely accepted that the majority of genetic variants in human populations are neutral
[38,39]. It is also known that selective value of the variants depends on the environment

Fig 2. The proportions of minor risk alleles (MiRA) in the first, second and third tertiles defined based
on the environment/lifestyle index (ELI).

doi:10.1371/journal.pgen.1005371.g002
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[40,41]. A neutral variant may become advantageous (or disadvantageous) when environment
changes. For example, mutations controlling lactose tolerance were initially neutral and
became advantageous about 5,000–8,000 BC, after domestication of cattle [42,43]. It is becom-
ing more and more evident that many common human diseases are caused by changes in
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Fig 3. Frequency binned distributions of the risk alleles for different common diseases. F—frequency of the risk-associated allele. Area under each
curve equals 1. Black line shows the distribution expected under the assumption that the probability of the allele to be risk associated is independent of its
frequency. a) Proportions of the risk alleles in the 5 frequency categories for diseases stratified by the ELI tertiles. b) Proportions of the risk alleles for 3
individual diseases from the first tertile (environment/lifestyle independent diseases). c) Distributions of risk alleles for 3 individual diseases from the third ELI
tertile (environment/lifestyle dependent diseases). d) Proportions of the risk alleles averaged for the 3 environment/lifestyle dependent (red line) and 3
environment/lifestyle independent (blue line) diseases.

doi:10.1371/journal.pgen.1005371.g003
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environment and/or lifestyle [44–48]. Changes in environment or lifestyle may redefine func-
tional significance of existing neutral SNPs. One can expect that the majority of risk associated
variants for environment/lifestyle dependent diseases are recently recruited from the pool of
selectively neutral variants. Whether those formerly neutral variants will be risk-associated or
disease protective depends on how they influence biology. It is unlikely that direction of the
effect (risk-associated or protective) of a recently neutral variant will depend on its frequency.
Let’s assume, for example, that there is a SNP that slightly modulates the expression level of
some gene and its effect is selectively neutral. In this case the frequency of the allele associated
with a low expression level is not influenced by selection, so this variant can be minor (<50%)
or major (>50%). Let’s assume that changes in environment or lifestyle made a low expression
level of the gene associated with increased risk. In this scenario the distribution of the risk-asso-
ciated alleles will initially follow the neutral model even though it is not selectively neutral any-
more. It will take time (tens to hundreds generations, depending on the selective pressure) for
the negative selection to reduce the frequency of the risk alleles.

Therefore, even though many formally neutral risk variants are (currently) deleterious, their
allelic spectra will follow the neutral model for some time. Fig 4 depicts the hypothesis of
recently neutral, currently deleterious risk-associated variants. The figure shows a hypothetical
example with individual selection coefficients (upper panel) and frequency distributions of the
risk alleles (lower panel). According to the proposed model, changing environment reassigns
selective values of existing SNPs which is indicated by different profile of selection coefficients
(upper panel) before and after the change in the environment took place. Immediately after
changes in the environment the frequency distribution of risk associated alleles is symmetrical.
Negative selection against risk alleles reduces their frequencies, shifting the distribution to the
left and making it asymmetrical.

Environmental diseases are defined as diseases whose incidence can be directly related to
effects of environmental factors. Disease-causing environmental factors include but are not
limited to stress, physical and mental abuse, diet, exposure to toxins, pathogens, radiation, and
chemicals. Many common human diseases are considered to be environmental [49–51]. In the
context of this study by environment/lifestyle factors we mean recent (less than several genera-
tions away) changes in lifestyle and environment. Such changes redefine selective profiles on
existing SNPs, but because they are recent, there is not sufficient time for selection to change
allelic frequencies.

Based on the results of our analysis, risk-associated alleles can be roughly divided into two
categories: evolutionarily old and evolutionarily young. Old alleles have a long history of being
risk associated so natural selection has had enough time to influence their frequencies. Young
risk alleles recently came from the pool of selectively neutral variants and because of that his-
tory, selection has not had sufficient time to influence their frequencies. One can expect that
alleles associated with the risk of environment/lifestyle dependent diseases will most often be
young whereas the alleles associated with the risk of environment/lifestyle independent dis-
eases will more often be evolutionarily old. The proportions of young and old alleles for a given
disease can be roughly estimated by comparing the frequency distribution of risk variants with
the distribution expected under the null, under which the probability to be risk associated is
frequency independent. Currently the frequency distribution of risk variants can be reasonably
estimated for a limited number of well-studied diseases only, but with the advance of GWASs
this information will be available for more and more diseases.

The hypothesis of recently neutral, currently disadvantageous risk-associated alleles has sev-
eral practical implications. First of all, recently neutral, currently deleterious alleles do not
carry a signature of positive or negative selection which makes the prediction of their function-
ality based on the level of evolutionary conservation questionable. Besides, because frequency
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spectra of the risk-associated variants follow the neutral model, one may predict the number of
risk-associated variants in different frequency groups (under the neutral model we assume that
the effect size is independent of allelic frequency) which can be used to estimate the sample size
required for the detection of SNPs from a specified frequency range. The results of our analysis
suggest that the nearly-neutral model is applicable to common disease variants resulting from
recent changes in environment and/or life style which convert neutral variants into slightly del-
eterious (risk associated) or advantageous (protective).

Materials and Methods

Disease-associated SNPs
SNPs associated with the risk of human diseases were retrieved from the Catalogue of Pub-
lished Genome-Wide Association Studies (CPGWAS) (http://www.genome.gov/26525384/)
[33]. The CPGWAS was accessed on December 15, 2014. SNPs with reported P-values of
5�10−8 or lower were used in the analysis.

SNPs with a signature of recent positive selection
All tests for detecting the signature of recent positive selection are quantitative and a decision is
made based on specified thresholds [12,52]. As a result, the lists of the SNPs with the signature
of recent positive selection vary depending on the method and thresholds chosen. We used
24,060 SNPs with the signature of recent positive selection reported in the database of positive
selection in human populations (dbPSHP)[53]. Those SNPs were identified by applying a set
of stringent filters that are consistent across 6 most commonly used approaches to detect a sig-
nature of recent positive selection: Tajima’s D, Integrated Haplotype Score, Extended Haplo-
type Homozygosity, Cross-Population Composite Likelihood Ratio, Difference of Derived
Allele Frequency, and Fixation Index [53].

Assessing effects of negative selection on allelic spectra
Both minor alleles (those with the frequency< 50%) and major alleles (those with the fre-
quency>50%) can be risk associated—risk alleles. The frequency distribution which includes
frequencies of both minor and major alleles of the SNPs by definition will be symmetrical,
since the absolute majority of the SNPs (more than 95%) are biallelic with one minor and one

Fig 4. Expected evolutionary dynamics of currently deleterious, recently neutral risk associated alleles.Upper panel shows the distribution of
selection coefficients: negative values imply negative and positive values positive selection. A change in the environment or life style leads to changes in
selective values of existing variants making some of previously neutral variants deleterious and others advantageous. The lower panel shows frequency
distributions of risk alleles immediately after changes in environment/life style and after the negative selection took place.

doi:10.1371/journal.pgen.1005371.g004
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reciprocal major allele. If a minor allele has the same chance to be risk-associated as the recip-
rocal major allele, the frequency distribution of the risk alleles should be symmetrical.

Note that overall distribution of SNP’s allele frequencies is symmetrical and U-shaped [54].
This is because proportion of rare SNPs in the human genome is higher than proportion of
common SNPs. Distribution of the GWAS-detected disease-associated SNPs is bell-shaped
because common SNPs are overrepresented on genotyping platforms and also because GWASs
are underpowered to detect rare disease-associated SNPs.

Negative selection against risk-associated variants will increase the proportion of the risk-
associated variants among alleles with minor frequency. We used the proportion of the risk
alleles with minor allele frequencies—minor risk alleles (MiRA) as an estimator of the effect of
negative selection. Under the null hypothesis—rare (minor) alleles have the same chances to be
risk associated as the reciprocal common (major) allele—MiRA proportion is expected to be
0.5. The stronger the negative selection against the risk-associated variant, the higher MiRA
proportion will be.

We also assessed the distributions of the risk-associated alleles by their frequencies. Risk
alleles were binned into 5 frequency (F) groups: 0<F<0.2, 0.2�F<0.4, 0.4�F<0.6, 0.6�F<0.8,
0.8�F<1. We chose 5 groups because it is optimal for the available sample sizes. Data on the
population frequency of the risk alleles were from original GWASs. We used reported frequen-
cies of the risk-associated alleles in controls.

We did not use ancestral/derived allele status in the analysis even though it has been shown
to be relevant to selection and risk of common diseases [55,56]. The reason for this was that
ancestral/derived status is not available for many SNPs, especially those located in intronic or
intergenic regions. Using ancestral information in this analysis would have reduced the num-
ber of SNPs we could evaluate and introduce a bias because SNPs would have been excluded
from analysis based on the level of evolutionary conservation (ancestral/derived status infor-
mation is only available for SNPs located in evolutionary conserved regions, which allows
sequence alignment from multiple species [57]).

Environment/lifestyle index (ELI)
Genetic share of the disease risk can be assessed by disease heritability. Estimated disease heri-
tability varies from less than 5% for stomach cancer [58] to almost 90% for type 1 diabetes
[59]. Unfortunately estimates of the disease heritability are not reliable [60] and can be con-
founded by shared environment [61,62].

We applied text mining to estimate relative influence of environmental and lifestyle factors
on disease etiology. Environment/Lifestyle Index (ELI) was used as a measure of the influence
of environmental and lifestyle factors on disease etiology. To estimate ELI we first searched
PubMed for the disease name, e.g. “rheumatoid arthritis”, and identified papers with disease
name in the abstract. Next we identified the number of papers mentioning together disease
name and “environment” or “lifestyle”. ELI was computed as the number of the papers men-
tioning disease name AND environment or lifestyle per 1,000 papers mentioning disease
name. As an example, there are 120,346 abstracts mentioning rheumatoid arthritis, 1,578
abstracts mentioning “rheumatoid arthritis” and “environment”, and 393 abstracts mentions
“rheumatoid arthritis” and “lifestyle” which give ELI for rheumatoid arthritis: ELIRI = (1,578
+393)/120,346�1000 = 16.4.

Analysis of the temporal dynamics of disease prevalence might be useful in identification of
diseases influenced by recent changes in environment and lifestyle. Unfortunately information
on disease prevalence is not available for many diseases, especially concerning the temporal
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dynamics in disease prevalence. This was the reason that we used environment/lifestyle index
rather than disease prevalence as a measure of disease dependence of environment/lifestyle.

Commonly used genotyping platforms
The list of 10 most commonly used genotyping platforms was obtained by reviewing platforms
listed on CPGWAS database. For each platform we retrieved the list of SNPs using manufactur-
ers’ data and among them identified SNPs with the signature of recent positive selection from
dbPSHP database [53].

Statistical analysis
Statistical analysis was done using STATA software (version 10, StataCorp LP, College Station,
TX). We used x2 test to compare observed to expected proportions. We applied nonparametric
statistical tests, e.g. Spearman rank test, for the datasets with significant deviation from normal
distribution.
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