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Abstract
Translation of mRNA sequences into proteins typically starts at an AUG triplet. In rare

cases, translation may also start at alternative non–AUG codons located in the annotated

5’ UTR which leads to an increased regulatory complexity. Since ribosome profiling detects

translational start sites at the nucleotide level, the properties of these start sites can then be

used for the statistical evaluation of functional open reading frames. We developed a linear

regression approach to predict in–frame and out–of–frame translational start sites within

the 5’ UTR from mRNA sequence information together with their translation initiation confi-

dence. Predicted start codons comprise AUG as well as near–cognate codons. The under-

lying datasets are based on published translational start sites for human HEK293 and

mouse embryonic stem cells that were derived by the original authors from ribosome profil-

ing data. The average prediction accuracy of true vs. false start sites for HEK293 cells was

80%. When applied to mouse mRNA sequences, the same model predicted translation initi-

ation sites observed in mouse ES cells with an accuracy of 76%. Moreover, we illustrate the

effect of in silico mutations in the flanking sequence context of a start site on the predicted

initiation confidence. Our new webservice PreTIS visualizes alternative start sites and their

respective ORFs and predicts their ability to initiate translation. Solely, the mRNA sequence

is required as input. PreTIS is accessible at http://service.bioinformatik.uni-saarland.de/

pretis.

Author Summary

Ribosome profiling data and mRNA sequence features can be used to build reliable classi-
fication models with accuracies of about 80% for start codon and open reading frame pre-
diction in human. All predicted start sites of one transcript are postulated to have the
potential to initiate translation. They could, for example, be used in different tissues or in a
specific cellular condition, such as stress response. Although there exist already several
other approaches to predict translational initiation start sites, so far none of them consid-
ers all in– and out–of–frame AUG and near–cognate codons. The provided web service
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PreTIS considerably simplifies and assists the analysis of mRNA sequences in terms of pre-
diction of possible translation start sites and their visualization.

This is a PLOS Computational Biology Methods paper.

Introduction

Translational initiation is a more complex process than reported in common textbooks. Exper-
imental work showed that the canonical AUG–Methionine translational start is not always
used to initiate eukaryotic translation [1–5]. Further alternative codons located upstream of
the annotated AUG start can also serve as additional functional start sites and form additional
or alternative ORFs. Those non–AUG triplets are postulated to differ from AUG by one nucle-
otide and hence comprise CUG, UUG, GUG, AAG, ACG, AGG, AUA, AUC and AUU [6].
Translation can proceed in–frame as well as out–of–frame relative to the main open reading
frame [7]. This can, for example, lead to (small) upstream ORFs resulting in short peptides or
to extended proteins when translational initiation takes place at an in–frame start codon
located upstream of the canonical start.

Ribosome profiling data provides information on the density of ribosomes located at differ-
ent regions of the transcript upon application of small chemicals that block the elongation pro-
cess [4, 8]. Regions which are protected by ribosomes are not digested in the next step when
the mRNA is treated with nucleases [9]. These ribosome footprints (RNA) have a length of
about 30 nucleotides and are sequenced after nuclease treatment and subsequently mapped to
a reference genome [9]. For example, Lee et al. (2012) applied ribosome profiling to human
embryonic kidney 293 (HEK293) cells [3]. As translational inhibitors they used Cycloheximide
(CHX) and Lactimidomycin (LTM), which both bind to the ribosome E-site [3]. While CHX
can bind to both, initiating and elongating ribosomes, LTM prefers initiating ribosomes with a
tRNA-empty E-site [3]. Thus, by combining both inhibitors, it is possible to differentiate initi-
ating from elongating ribosomes [3]. Lee et al. identified 16,863 potential start sites out of
about 10,000 transcripts whereby start sites were allowed to be located in the 5’ UTR, at the
annotated start site, in the coding region, or in the 3’ UTR, respectively.

Possible biological reasons underlying alternative translation initiation are the expansion of
biological variety, regulatory processes as well as targeting of the proteins to different compart-
ments [10–12]. Touriol et al. (2003) proposed that alternative translation initiation results in
different proteoforms that can exhibit different functions as well as various cell localizations,
which is of great importance for cell fate [12]. Some codons (e.g. AUG or CUG) are more fre-
quently used as translation initiation starts than other codons [3, 4].

So far, several bioinformatics studies have addressed the task of predicting alternative trans-
lational start sites or ORFs. The majority of these studies only considered AUG starts. Hatzi-
georgiou (2002) applied an artificial neural network (ANN) embedding a linear search for
AUG starts [13]. They achieved 94% accuracy and were able to predict the correct start site in
60% of human cDNAs. Saeys et al. (2007) developed a meta–tool that combines three simple
AUG start site predictors that consider either position–weight–matrices, k–mer frequencies or
the number of stop codons downstream of a start site. This combination of several simple pre-
dictors, named StartScan, resulted in a sensitivity of 80%, tested on human chromosome 21
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[14]. Sparks and Brendel (2008) argued that when one only searches for one translational start,
predicting the leftmost (i.e. the most upstream) AUG as sole correct translational start yielded
specificity and sensitivity of 94%, respectively [15]. Chen et al. (2014) used a flexible window
and represented human DNA as k–tupels that reflect the nucleotide composition and also inte-
grated the physicochemical properties of amino acids [16]. For AUG codons, their method
achieved an accuracy of 98%. A webservice of their algorithm is available. Besides, there also
exist several web–based tools for ORF identification. ORF Finder searches for ORFs given the
accession number or sequence and the genetic code [17]. ORF–Predictor provides an ab initio
prediction of ORFs based on expressed sequence tag (EST) or cDNA sequences and BLASTX
alignments or intrinsic sequence signals [18].

Only few studies involved ribosome profiling data or considered in– and out–of–frame start
codons differing from AUG. Ivanov et al. (2011) studied annotated human 5’ UTRs via
sequence alignments with orthologous species followed by a manual evaluation [6] to detect
non-AUG initiation in human sequences. They predicted 42 novel genes with non–AUG
upstream translation initiation. For 25 of these genes non–canonical translation initiation
could be experimentally validated using Western blot as well as ribosome profiling data. They
also confirmed 17 alternatively translated genes that were known at this time. Crappé et al.
(2013) applied an SVM approach to ribosome profiling data to detect small conserved open
reading frames (sORFs) in mouse that code for micropeptides (10 − 100 amino acids) [19].
Baranov and colleagues (2014) used ribosome profiling data to calculate translational initiation
probabilities [20]. In contrast to our work, they focused on the initiation strength of a putative
start site as a function of the number of ribosome footprints.

To our best knowledge, no study so far has evaluated the general properties of human start
codons considering both AUG and all near–cognate codons, in- and out–of–frame, based on
start sites identified by applying ribosome profiling, and exploited this to predict the initiation
confidence from the mRNA sequence.

The aim of this work was to analyze alternative translational start sites (AUG and near–
cognate codons) with respect to sequence–based features to differentiate between true and
false start sites. We used start sites that were identified by applying ribosome profiling to
HEK293 cells [3, 5] and mouse embryonic stem cells [4] as our primary datasets. Based on
mRNA sequence information we generated support vector machines as well as a linear regres-
sion model for human and mouse sequences. The learned model can then be applied to
mRNA sequences not covered by ribosome profiling data or to investigate the impact of muta-
tions in the flanking sequence context of a start site on its translation initiation confidence.
Our webservicePreTIS visualizes putative alternative start sites and the predicted initiation
confidence in human.

Materials and Methods

Datasets

Annotated genomic mRNA sequences for human and mouse were retrieved from Ensembl bio-
mart (Ensembl version 77 [21]). We only included curated mRNA sequences with available
mRNA RefSeq identifier (starting with NM_). It was recently shown that 85% of the start sites
used to initiate translation are conserved between human and mouse [3]. Thus, we used
homologous pairs of human and murine sequences to calculate the conservation of putative
start codons as well as the 5’ UTR sequence conservation (see below). We identified the respec-
tive murine orthologous mRNA sequences using the approach by Ivanov et al. (2011) and used
the first blastn [22] hit as the respective ortholog (default blastn parameters).
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To identify putative start sites, each 5’ UTR was scanned for all AUGs and for alternative
near–cognate start codons that differ from generic AUG by one nucleotide (CUG, UUG, GUG,
AAG, ACG, AGG, AUA, AUC und AUU) and that are located either in–frame or out–of–
frame with the main open reading frame. Different sequence–based features were then calcu-
lated for all putative start codons that have a downstream in–frame stop codon.

To establish reliable true positive and true negative translational start site datasets for train-
ing and testing purposes, we used the findings from different ribosome profiling experiments
[3–5]. Each dataset was analyzed independently. Note that the datasets used here contain
translational start sites derived from ribosome profiling data by the original authors (gene
accession number, position relative to annotated start site, codon). We did not include raw
ribosome profiling (footprint) data in our approach. In total, we trained two start site predic-
tion models: a human prediction model based on the HEK293 dataset [3] and a mouse predic-
tion model based on the Mouse ES dataset [4]. The third HEK293–AUG dataset [5] was used
as validation set to further evaluate the reliability and robustness of the developed prediction
model.

For training and testing of every classifier, we considered each start site (AUG and near-cog-
nate) that matched a start codon found by ribosome profiling as a true start. False start sites
were defined as follows: remaining candidate start sites (AUG and near-cognate) that were not
detected by ribosome profiling and that are, based on the assumption of a linear scanning
model, located at least 99 nts downstream of the transcription start site as well as upstream of
the most downstream reported true translation initiation start. Fig 1 shows an example mRNA
sequence that illustrates the grouping of true positive and true negative start sites for training
and testing purposes based on ribosome profiling data. This start sites categorization was exe-
cuted for each of the three datasets, each time based on the individual ribosome profiling
experimental results [3–5].

Features based on mRNA sequence information

All features used here are solely based on information derived from the mRNA sequences.
Position–weight–matrix (PWM). In mammalian cells, some codons (e.g. AUG and

CUG) are more frequently used to initiate translation compared to other codons (e.g. AUA or

Fig 1. Example mRNA sequence showing the categorization of true positive and true negative start sites. Suppose that a ribosome profiling

experiment detected the following start sites for a given mRNA sequence: CUG at position -78 and CUG at position -120 (blue colored codons). These

start sites were then assumed to be true positive start sites. In consequence, all near-cognate start sites not listed in the ribosome profiling dataset and

upstream of the most downstream reported true start site were assumed to be true negatives (dark red colored codons). The light red colored codons

are start sites not considered as false starts in the analyses since they are located downstream of the most downstream reported true start site. Note

that the grey colored downstream part depicts the annotated CDS sequence whereas the italic (purple) upstream part marks the -99 upstream window

needed to calculate some of the features (see below). All marked start sites (true positive and true negative) exhibit a surrounding window of ±99

nucleotides as well as a downstream in–frame stop codon. In total, this mRNA sequence would provide 2 true start sites and 9 false start sites out of 23

putative starts.

doi:10.1371/journal.pcbi.1005170.g001
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AGG) [3, 4]. In the HEK293 dataset used here, 26.1% of the reported upstream initiation start
codons are AUGs and 29.8% are CUGs [3], see S1 Fig. The start codon information was consid-
ered using position-weight-matrices (PWMs). To account for the important role of the flank-
ing sequence context for translation initiation, we considered a window ranging from -15 to
+10 with respect to the start site in a set of sequences S. First we calculated from the data in the
training set a position–frequency–matrix(PFM) with the nucleotides nt 2 {A,C,U,G} as the
rows and the sequence position i as the columns. The matrix entries were filled by dividing
the sum of occurrences of a nucleotide at position i by the total number of sequences
contained in S. The PWM was then calculated by dividing each entry in the PFM by the respec-
tive nucleotide background frequency and taking the natural logarithm, i.e.

PWMðnt;iÞ ¼ log
PFMðnt;iÞ

bgnt

� �

where the background frequency bgnt is defined as the actual nucleotide frequency of the 5’
UTR in S. We calculated three PWMs, one based on the true start sites (PWMpositive), one
based on the false start sites (PWMnegative), and one based on the log–ratio between true and
false start sites (PWMratio) in the training set. The PWMscore for a sequence s was then com-
puted as

PWMscoreðsÞ ¼
XlenðsÞ

i¼0

PWMnti;i

where nti is the nucleotide occurring at position i in sequence s. With PWMpositive, a PWMscore

greater than zero indicates that the given sequence s is more likely a true start than a false start
while a PWMscore less than zero suggests a higher probability of being a false start site.
Start site conservation. To calculate the conservation of a putative start site, sequence

alignments between pairs of human and mouse sequences (5’ UTR and CDS), found by apply-
ing blastn, were generated using MUSCLE [23]. For this, 5’ UTR and CDS were translated into
all three possible reading frames and were aligned accordingly. We then translated the protein
alignment back into the associated (gap-free) nucleotide alignment (compare with [3]). A
human start site was assumed to be conserved if it shares the same codon or amino acid with
the murine ortholog at the respective position. This yielded two binary features: codon and
amino acid conservation. We also calculated the average degree of 5’ UTR sequence conserva-
tion, using the human–mouse mRNA sequence alignment. For this we divided the number of
matching nucleotides by the length of the 5’ UTR sequence. Gaps were ignored.
Start codon flanking sequence context. The flanking sequence context was assessed in

two ways where we considered either only the positions -3R (R = purine) and +4G, which were
determined to be crucial for initiation [24, 25], or experimentally determined translational
start codon efficiencies [26]. In the first approach, the Kozak sequence context was discretized
into strong (A or G at -3 and G at +4), intermediate (A or G at -3 and no G at +4), weak (no A
and no G at -3 and G at +4) and no Kozak context. These categories were presented as the val-
ues 1 (no), 2 (weak), 3 (intermediate) and 4 (strong). In the second approach, we used the raw
translation efficiency values reported by Noderer et al. (2014) as feature for the respective
flanking sequence context of a start site. These authors investigated the translational efficiency
of all possible 11–nt–long (position -6 to +5) flanking sequence contexts around the AUG
translational start using high–throughput sequencing combined with fluorescence signaling
[26]. We assumed that alternative starts behave similarly as AUG codons and therefore use the
same translational efficiency values for the alternative starts.
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Minimum free energy of mRNA secondarystructure. Secondary structure is an impor-
tant factor for translation initiation [25, 27, 28]. Dependent on the propensity of the mRNA
secondary structure downstream of a putative start codon, the ribosome scanning in down-
stream direction can pause and translation is initiated [28]. It was shown that a secondary
structure with a minimum free energy of DG ¼ � 19 kcal

mol that starts 12–15 nt downstream of the
translational start site can prevent leaky scanning and compensate for an unfavorable flanking
sequence context [28, 29]. A secondary structure starting 14 nts from the translational initia-
tion site was observed to have the largest effect [28]. Here, we considered different windows for
calculating the minimum free energy of the secondary structure and then selected the most
suitable one to differentiate between true and false start sites: a 60–nt window starting at posi-
tion +14, a 60–nt window starting at position +20, a window from position -10 to +50 and a
window from -50 to +50. Minimum free energies were calculated using RNAfold [30].
GC–content. It was shown that the GC–content continuously decreases from 5’ UTR

across the CDS to the 3’ end in human [31]. We therefore analyzed whether the GC–content
differs between true and false start sites using the same windows as for the minimum free
energy (see above). Note that the minimum free energy of an mRNA secondary structure and
its GC–content are related to each other since G–C pairs possess a higher degree of stability
than A–U pairs due to their additional hydrogen bond [32].
Open–reading–frame(ORF) length. It appears plausible that the length of ORFs that

code for functional proteins is generally longer than the ones resulting from arbitrary start sites
in the mRNA sequence. Therefore, we also considered the length of the putative open reading
frame.
5’ UTR nucleotidedistribution. As mentioned before, the GC–content varies between 5’

UTR and CDS. If a part of the annotated 5’ UTR is actually used as CDS this may result in a dif-
ferent nucleotide composition compared to the actual 5’ UTR. Therefore, we calculated the
percentage of all four nucleotides (e.g. #A

50UTR length) in the entire 5’ UTR. This resulted in four addi-
tional features.
5’ UTR length. We also tested the 5’ UTR length with respect to significant differences

between true and false start sites by defining the 5’ UTR (nucleotide) length as further feature.
K–mer search. We counted the frequency of all possible k–mers of length k = 1 (position–

specific k–mers) and k = 3 (codon and respective amino acid k–mers) in a window from -99 to
+99 around the start site. k-mers were defined as all possible combinations of subsequences of
length k, given an alphabet, here nucleotides {A, C, U, G}. We considered in–frame and out–
of–frame k–mers as well as k–mers upstream and/or downstream of the start site as suggested
in [33]. In total, this yielded 1,229 k–mers: position–specific k–mers in the predefined window
of ±99 amount to 198 positions × 4 nucleotides = 792 (e.g. “K-mer: position -12 is C”), 64
codons × 5 (counted in the complete ±99 region, the upstream region, the downstream region
as well as in–frame–downstream and in–frame–upstream) = 320, 20 amino acids × 5 = 100, 1
stop codon × 5 = 5, and 4 nucleotides (k = 1) × 3 (complete ±99 region, upstream region and
downstream region) = 12. This sums up to 792 + 320 + 100 + 5 + 12 = 1,229 k–mers.

In total, we considered 1,252 features, with three features based on PWMs, 20 biologically–
motivated features (e.g. conservation or the flanking sequence context) and 1,229 features
found by a k–mer search for k = 1 and k = 3.

Regression approach

The prediction approach, shown in Fig 2, was applied to the human HEK293 [3] and mouse ES
datasets [4].
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First, as mentioned, all putative start sites in the 5’ UTR were defined as true positives or
true negatives based on the reported ribosome profiling data and their location in the mRNA
sequence. We then balanced the size of the dataset so that it contains the same number of true
and false start sites by randomly under–sampling from the larger dataset. We repeated the data

Fig 2. Flowchart of the regression approach. Data balancing was repeated ten times to investigate model robustness. Significant features were

identified by the Wilcoxon-rank sum test.

doi:10.1371/journal.pcbi.1005170.g002
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balancing as well as the assignment of random training and test sets 10 times to evaluate the
model robustness and reported the average performance. We applied Wilcoxon–rank sum test
and Bonferroni correction (with a significance threshold of 0:01

1;252
¼ 8� 10� 6, with the total

number of features as the denominator) to test for the statistical significance of the biological,
the k–mer, and the PWM features to differentiate between true and false start sites. We subse-
quently calculated all pairwise Pearson correlations between the significant biological and
PWM features as well as for the 50 most significant k–mer features and only used uncorrelated
(|r|< 0.7) features in the training step. If two or more features were correlated, the one with
the smallest p–value was used. The PWMs were calculated in each training step iteration to
guarantee that the test set is independent on the calculated PWMs. All features were normal-
ized (mean zero and unit variance) to ensure comparability.

Next, we generated simple linear as well as support vector (SVR) regression models on 70%
of this data and tested them on the remaining 30% of the data, using three different kernels for
the SVM approach: linear, radial basis function (RBF) and polynomial. We applied 10–fold
cross–validation to find the best penalty parameter C in [0.1, 1, 10, 100] and �-tube parameter
in [0.01, 0.1, 1, 10] for the training data set when applying SVR models. The remainder of
parameters were kept at default values.

Since we applied a regression approach, we subsequently applied 100 classification thresh-
olds 0.0� t� 1.0 in steps of 0.01 to the predicted output outpred in order to classify every start
site as true or false based on its model outcome and the given threshold. These thresholds can
be interpreted as initiation confidence where start sites with a regression value outpred � t are
predicted as true start sites and the ones with outpred < t as false start sites. If a start site is pre-
dicted with an initiation confidence> 1, we substituted this value by 1. The same holds for
start sites with a predicted confidence< 0, which were substituted with zero. We then com-
pared the predicted class with the correct class and used the common measures accuracy, speci-
ficity, sensitivity, precision and area under the curve (AUC) as metrics for model assessment.
The final model for the prediction of new mRNA sequences and for a SNP analysis was subse-
quently determined by comparing different model performances.

The implementation was done in Python (version 2.7) and using the Scikit–learn package
(version 0.17) for the machine learning part [34].

In silico SNP analysis

To investigate the effect of putative single nucleotide polymorphisms (SNPs) within the flank-
ing sequence context of the start sites (position -15 to +10), we substituted (in silico) one nucle-
otide position at a time by all 3 remaining nucleotides, yielding 75 different contexts (the start
codon itself was not mutated). We then recalculated the needed sequence features to investigate
the mutational impact and subsequently applied our final prediction model to all contexts. We
then report the effect of these substitutions on the predicted initiation probabilities.

Results

In this work we used ribosome profiling data from HEK293 cells [3] and mouse ES cells [4] to
analyze sequence encoded differences between true and false translational initiation sites
located in the mRNA 5’ UTR. A third dataset, only containing AUG starts, was used as valida-
tion set [5]. Calculated sequence-based features were subsequently used to build a prediction
model. In the following, we present the datasets used, the results of the regression approach, its
application and an implementation as webservicePreTIS.
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Filtered dataset

The start sites reported by ref. [3–5] based on ribosome profiling data were filtered to include
only starts matching AUG and near–cognate codons in the 5’ UTR. For HEK293 cells [3], this
yielded 4,482 true start sites (i.e. reported in the experimental analysis) and 49,520 false start
sites in 3,566 mRNAs. For mouse ES cells [4], this gave 3,009 true start sites and 19,864 false
start sites in 1,632 mRNAs. True (reported) starts were assumed to be true positives (TP) and
false (not reported and upstream of the most downstream reported) starts were assumed to be
true negatives (TN). For comparison, we also included a smaller dataset of Ohler and col-
leagues [5] who only determined AUG starts in HEK293 cells. Table 1 displays the three data-
sets. All reported analyses are based on these filtered datasets.

Among the considered AUG and near-cognate start codons, AUG (human: 26%, mouse:
16%), CUG (human: 30%, mouse: 34%) and GUG (human: 13%, mouse: 19%) were the most
prevalent translational start codons, see S1 Fig. Thus, CUG and GUG are more often used in
mouse compared to human. This is in accordance with [3, 4] and shows that the start codon
itself is very important for translational initiation.

Regression approach

Table 1 illustrates that the negative sets outnumber the positive sets by factors of 7 (mouse ES)
and 11 (HEK293). To avoid a class size dependent bias, we randomly under–sampled the same
number as true positive start sites from the true negative set. Next, we trained on 70% and
tested on 30% of the data (randomly assigned).

Table 2 lists the performance of human and mouse models together with the optimal
thresholds t. All human models perform very similarly with accuracies of about 80% while the

Table 1. Datasets used in this study.

Cell line Description Genes Start codons TPs TNs Used for Source

HEK293 Human embryonic kidney cells 3,566 AUG and near-cognate 4,482 49,520 Human prediction model [3]

HEK293 Human embryonic kidney cells 391 AUG 332 447 Validation set [5]

Mouse ES Mouse embryonic stem cells 1,632 AUG and near-cognate 3,009 19,864 Mouse prediction model [4]

Three different datasets were used in this study to establish a human and mouse prediction model and to cross-validate the regression models. The

numbers indicate the filtered start sites used in the prediction approach.

doi:10.1371/journal.pcbi.1005170.t001

Table 2. Evaluation of the regression approach.

Accuracy Specificity Sensitivity Precision AUC Threshold

HEK293

Linear SVR 0.80±0.01 0.80±0.01 0.81±0.01 0.80±0.01 0.80±0.01 0.62±0.01

RBF SVR 0.82±0.01 0.81±0.01 0.83±0.02 0.82±0.01 0.82±0.01 0.55±0.02

Polynomial SVR 0.80±0.01 0.80±0.01 0.81±0.02 0.80±0.01 0.80±0.01 0.59±0.02

Linear Regression 0.80±0.01 0.80±0.01 0.81±0.01 0.80±0.01 0.80±0.01 0.55±0.01

Mouse ES

Linear SVR 0.75±0.01 0.75±0.01 0.76±0.01 0.75±0.01 0.76±0.01 0.65±0.03

RBF SVR 0.76±0.01 0.76±0.01 0.76±0.02 0.76±0.01 0.76±0.01 0.58±0.03

Polynomial SVR 0.75±0.02 0.75±0.01 0.76±0.02 0.75±0.02 0.75±0.02 0.62±0.03

Linear Regression 0.76±0.01 0.75±0.01 0.76±0.01 0.75±0.01 0.76±0.01 0.55±0.01

The prediction was repeated 10 times to evaluate the model robustness. Shown are the average performance measures.

doi:10.1371/journal.pcbi.1005170.t002
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average performance of the mouse model is lower with average accuracies of about 76%, see
Table 2. We also computed receiver operating characteristic (ROC) curves and the associated
area under the curve (AUC). In accordance with the other metrics, also the AUC values were
satisfactory with average values of about 80% and 76% for the human and mouse models,
respectively (Table 2).
Best performing predictionmodel. Since all models gave a very similar performance with

accuracies of about 80%, we decided to choose the simple linear regression model that can be
interpreted well. The best performing and nicely balanced human linear regression model was
obtained in run 2 (the prediction was repeated 10 times). This model had an accuracy of 83%, a
sensitivity of 84%, a specificity of 82% and a precision of 83% on the test data. It was then
applied to predict unknown start sites of a gene of interest and to conduct an in silico mutation
analysis. Moreover, it is embedded in the webservicePreTIS. Therefore, this model is analyzed
in more detail in the following.

Fig 3 displays the predicted codon distribution when applying the best performing linear
regression model of run 2 to the mRNA sequences in the test set and using the threshold
t = 0.54 that gave the best overall performance.

The distribution of predicted codons agreed with the preferences found experimentally [3,
4]: AUG and CUG are the most prevalent start codons whereas AUA or AAG are more often
classified as true negatives. Nevertheless, our predictor also detects true negative AUGs and
CUGs and true positive AUAs and AAGs.

Fig 3. Codon distribution of the test samples in the best performing human model. AUG, CUG and GUG were the most prevalent true positive start

sites (t = 0.54).

doi:10.1371/journal.pcbi.1005170.g003
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The features that were used to build this prediction model are displayed in Table 3. The
most significant feature is the length of the 5’ UTR (p< 10−310). The 5’ UTR was found to be
shorter on average for true starts sites (414±270 nts) compared to false start sites (675±545 nts).
The second most significant biologically–motivated feature with a p–value of p = 8.2 × 10−190

was the conservation of the 5’ UTR. The values of 0.4±0.16 for the true start sites and 0.33±0.16
for false start sites suggest that 5’ UTRs harboring true start sites are in general more conserved.
Another highly significant feature (p = 5.1 × 10−144) was the number of upstream AUGs. Con-
sidered false start sites had more upstream AUGs (0.59±0.9) than considered true start sites
(0.22±0.57), see Table 3. This can be explained as follows: if AUG is located upstream of another
putative start site, the linear scanning model of Kozak [35] implies that it is more probable that
the AUG is used as start site instead.

PWMpositive was also found to be highly significant (p = 5.5 × 10−173). The PWMs were recal-
culated for each training sample to achieve unbiased test samples in each run. The background
frequency of the best performing run 2 is bgA:0.16, bgC:0.29, bgU:0.21 and bgG:0.34, while the
average background frequency of all training and test runs was calculated as bgA:0.21±0.06,
bgC:0.27±0.06, bgU:0.22±0.06 and bgG:0.3±0.06. Thus, as expected [31], Guanine and Cytosine
are prevalent in the 5’ UTR. Fig 4 shows the PWM scores calculated for the test samples in the
run with best overall performance (run 2) based on the PWM generated using the true training
samples (PWMpositive) in this run. The scores of the true (test) start sites were significantly
higher (2.75 ± 1.5) than those of the false (test) start sites (−0.14 ± 2.82).

Interestingly, the distribution of the false start sites was found to be bimodal. Thus, one
might speculate that some of these considered false start sites with higher PWM values (i.e.
start sites not found by the ribosome profiling technique and located upstream of the most
downstream reported true start, which are therefore considered as true negative starts, see also
Fig 1) might be used as actual start sites in different cell types or cellular conditions. This also
explains the overlap between the true positive and true negative start sites in Fig 4.

Another biologically important feature that also represents the flanking sequence context is
the “Kozak sequence context” feature (see methods) with a p–value of 9.2 × 10−95. As expected
from experimental findings [35], true start codons more often exhibit a strong or intermediate
Kozak context compared to false start sites that often show no Kozak context at all, see Table 3
and S2 Fig. This is also in agreement with the observation that A at position -3 (p = 3.4 × 10−35)
and G at position +4 (p = 2.3 × 10−25) were found (by the k–mer search) to be important for
translational initiation. Similarly, the translational efficiency of the flanking sequence context,
experimentally investigated in [26], was also highly significant (p = 1.1 × 10−83). The average
efficiency of true start sites is, as expected, higher than the one calculated for the false start sites.
Moreover, true start codons were found to be more often conserved between human and mouse
sequences compared to false start sites (p = 3.2 × 10−36). Start site conservation was also men-
tioned in the original publication of the HEK293 dataset we used here [3].

Many significant features detected by the k–mer search contained upstream G–C–patterns
(e.g. “K-mer: upstream CCG” or “K-mer: upstream CGG”) at higher frequencies for true start
sites compared to false start sites. This reflects the generally higher GC–content in the 5’ UTR
compared to the CDS and is in accordance with the finding that the GC–content decreases
from the 5’ UTR to the CDS [31].

Consistent with the p–values of the features used in the best performing human linear
regression model are the feature (weight) coefficients determined by the model training step,
see S3 Fig. The highest coefficients were assigned to the PWMpositive and the number of
upstream AUGs (“K-mer: upstream AUG”).
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Table 3. Mean value and standard deviation of the 44 features that were used in the best human model.

Feature True starts False starts P–value

1. 5’ UTR length 414.41±270.48 675.41±545.35 < 10−310

2. 5’ UTR conservation 0.4±0.16 0.33±0.16 8.2 × 10−190

3. PWM positive 2.75±1.5 -0.14±2.82 5.5 × 10−173

4. K-mer: upstream AUG 0.22±0.57 0.59±0.9 5.1 × 10−144

5. 5’ UTR: percentage A 0.18±0.05 0.2±0.05 9.6 × 10−100

6. Kozak sequence context 2.67±1.07 2.3±1.11 9.2 × 10−95

7. Translational efficiency of flanking sequence 83.75±20.11 77.12±21.4 1.1 × 10−83

8. K-mer: position -12 is C 0.13±0.34 0.3±0.46 2.7 × 10−77

9. K-mer: upstream Asparagine 1.25±1.37 1.61±1.61 4.0 × 10−43

10. K-mer: downstream AUG 1.14±1.15 0.92±1.1 9.2 × 10−41

11. K-mer: upstream A 17.24±7.43 18.81±7.89 4.0 × 10−40

12. K-mer: in-frame upstream Alanine 3.69±2.6 3.16±2.29 4.0 × 10−37

13. K-mer: upstream Alanine 10.27±4.5 9.38±4.6 6.2 × 10−37

14. 5’ UTR: percentage G 0.32±0.06 0.31±0.05 7.1 × 10−37

15. Codon conservation 0.23±0.42 0.12±0.32 3.2 × 10−36

16. K-mer: position -3 is A 0.31±0.46 0.2±0.4 3.4 × 10−35

17. K-mer: upstream CCG 2.98±2.43 2.56±2.31 7.1 × 10−34

18. K-mer: downstream CCA 2.04±1.54 1.75±1.45 1.1 × 10−32

19. K-mer: position -12 is A 0.3±0.46 0.19±0.4 4.0 × 10−32

20. K-mer: in-frame upstream Methionine 0.07±0.29 0.2±0.48 3.3 × 10−31

21. K-mer: upstream Arginine 12.15±4.34 11.33±4.64 1.5 × 10−29

22. K-mer: upstream Histidine 1.7±1.52 1.97±1.65 2.2 × 10−27

23. K-mer: GCC 6.4±3.87 5.77±3.75 1.1 × 10−25

24. K-mer: position 4 is G 0.37±0.48 0.28±0.45 2.3 × 10−25

25. K-mer: upstream Threonine 3.56±2.08 3.91±2.19 4.9 × 10−25

26. K-mer: upstream CGG 3.14±2.51 2.77±2.41 3.2 × 10−24

27. K-mer: upstream C 30.4±8.98 28.96±9.04 1.0 × 10−23

28. K-mer: position -2 is G 0.23±0.42 0.32±0.47 1.2 × 10−23

29. K-mer: upstream Stop 2.3±1.71 2.66±2.0 1.4 × 10−23

30. K-mer: UAG 1.34±1.2 1.57±1.35 5.6 × 10−23

31. K-mer: upstream CAU 0.58±0.85 0.73±0.95 3.4 × 10−22

32. K-mer: upstream Serine 9.44±3.29 8.93±3.14 5.7 × 10−22

33. K-mer: downstream Glutamine 3.57±2.01 3.26±1.88 2.4 × 10−21

34. K-mer: AGG 4.29±2.51 4.7±2.69 2.1 × 10−20

35. K-mer: AGC 4.4±2.43 4.02±2.19 2.1 × 10−20

36. K-mer: downstream ACC 1.45±1.26 1.27±1.17 2.0 × 10−19

37. K-mer: UAA 1.22±1.42 1.51±1.76 6.2 × 10−19

38. K-mer: downstream Proline 9.3±5.63 8.56±5.47 3.5 × 10−18

39. K-mer: upstream CAA 0.75±0.92 0.91±1.06 1.3 × 10−17

40. K-mer: in-frame upstream Histidine 0.54±0.77 0.67±0.87 1.7 × 10−17

41. K-mer: upstream GAU 0.63±0.85 0.77±0.96 2.1 × 10−16

42. K-mer: in-frame upstream GCC 1.21±1.4 1.02±1.22 6.7 × 10−16

43. K-mer: in-frame upstream GCG 1.14±1.42 0.97±1.27 6.2 × 10−14

44. PWM negative 1.94±1.34 1.59±1.09 1.6 × 10−08

Mean value and standard deviation of the 44 features that were used in the best human model (biologically-motivated and PWM features are shown in

bold). All 4,482 true and 49,520 false start sites were considered for this analysis. All listed features showed significant differences between true and false

start sites (P–values < 1.6 × 10−8). Note that due to numerical reasons, very small p–values (< 10−310) are represented as 0.0 in python programming

language (scipy version 0.17.0). The PWM–scores are based on the test data (compare to Fig 4).

doi:10.1371/journal.pcbi.1005170.t003
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Transferability of the prediction model

To investigate the transferability of our best human prediction model, we analyzed its perfor-
mance using the mouse ES data as well as the HEK293–AUG dataset, see Table 4. With the
threshold of t = 0.54 that was found to be optimal for the trained HEK293 dataset, we obtained
for the mouse ES dataset an accuracy of 76%, a sensitivity of 72% and a specificity of 77%. By
scanning all possible thresholds, see S4(A) Fig, we found that t = 0.52 yields a more balanced
performance of 75%, 76% and 74% for accuracy, sensitivity and specificity, respectively.
Decreasing the threshold seems to be advantageous for the mouse data set, since some true
positives seem to possess weaker features for translational initiation (e.g. a weak flanking
sequence context or a less common initiation codon), but are nevertheless true positive starts.

Fig 4. Frequency distribution of PWMpositive scores for the test samples of the best performing run 2. The PWM was established using the true

start sites in the training data of run 2. The difference between TPs and TNs was found to be highly significant (p = 5.5 × 10−173, Wilcoxon–rank sum test).

doi:10.1371/journal.pcbi.1005170.g004
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We then applied our best regression model to the start sites reported in the HEK293–AUG
dataset that only contains AUG starts [5]. The categorization of true positive and true negative
start sites was conducted as above for the HEK293 dataset (see Fig 1), with the only difference
that the HEK293–AUG dataset only contains AUG start sites instead of AUG and all near-cog-
nate codons. Thus, we defined again the false start sites as all AUG starts located in the 5’ UTR
that were not detected by ribosome profiling and are located upstream of the most downstream
true start site.

Differentiating only between true and false AUG start sites is particularly difficult because
the AUG itself is a very strong signal for a true start site and just by random chance there
might be AUGs with, for example, good flanking sequence, which are not used as translational
start sites (or are not reported in the dataset). Moreover, our prediction model was trained on
all possible cognate codons instead of AUG alone.

Our best model with the determined threshold of t = 0.54 detected 77% of the true AUG
starts in the HEK293–AUG dataset (sensitivity of 77%). Nevertheless, the specificity of this pre-
diction is only 44% and thus the overall accuracy is only slightly better than a random decision
(58%), compare to Table 4. However, when increasing the threshold from t = 0.54 to t = 0.65,
we were able to increase the overall accuracy to 63%. A threshold of t = 0.65 was found to be
optimal for this dataset, see S5(A) Fig.

Problematic was here the precision (i.e. the number of true positives out of all samples clas-
sified as positive ( TPs

TPsþFPs)). Many starts that we assumed to be true negatives actually show prop-
erties of true positives and are therefore classified as false positives. Especially if the dataset is
highly unbalanced (e.g. the number of mouse ES true starts is only 15% of the false start sites)
this effect has a strong influence on the precision. When we balanced our datasets, the precision

Table 4. Performance of the best human HEK293 model applied to the mouse ES and human HEK293–AUG datasets.

Unbalanced datasets

Mouse ES Mouse ES HEK293–AUG HEK293–AUG

Threshold t = 0.54 t = 0.52 t = 0.54 t = 0.65

TP TN TP TN TP TN TP TN

Predicted positive 2,161 4,569 2,273 5,072 257 249 207 160

Predicted negative 848 15,295 736 14,792 75 198 125 287

Total 3,009 19,864 3,009 19,864 332 447 332 447

Accuracy 0.76 0.75 0.58 0.63

Sensitivity 0.72 0.76 0.77 0.62

Specificity 0.77 0.74 0.44 0.64

Precision 0.32 0.31 0.51 0.56

Balanced datasets

Mouse ES Mouse ES HEK293–AUG HEK293–AUG

Threshold t = 0.54 t = 0.52 t = 0.54 t = 0.64

TP TN TP TN TP TN TP TN

Predicted positive 2,161 689 2,273 763 257 185 211 125

Predicted negative 848 2,320 736 2,246 75 147 121 207

Total 3,009 3,009 3,009 3,009 332 332 332 332

Accuracy 0.74 0.75 0.61 0.63

Sensitivity 0.72 0.76 0.77 0.64

Specificity 0.77 0.75 0.44 0.62

Precision 0.76 0.75 0.58 0.63

doi:10.1371/journal.pcbi.1005170.t004
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increased drastically from 31% to 75% for the mouse ES dataset and t = 0.52 and from 56% to
63% for the HEK293–AUG dataset and t = 0.64, see Table 4.

Applications of the prediction model

The established prediction model can, for example, be used to predict translational start sites
which are not covered by ribosome profiling experiments or to analyze the impact of mutations
in the flanking sequence around the start site.
Prediction of unknown start sites. We applied the final model to a gene of interest,

GIMAP5 (ENST00000358647), that was not contained in the human ribosome profiling data.
GIMAP5 codes for a GTPase binding GTP (Guanosine TriPhosphate) and is involved in the
survival of T–cells [36]. The scan of GIMAP5 resulted in 27 candidate start sites with an in–
frame stop codon and a surrounding window of ±99 nts to calculate the k-mer features in.
Fig 5 shows the predicted initiation probabilities of the putative start sites.

Out of these 27 candidate start sites, we found eight start codons with a confidence value
above t = 0.54. Among these starts, we found one hot candidate (AUG at position -203) with a
very high confidence value of 0.92 of being a true start site. Moreover, a CUG at position -36
was also predicted with a high confidence value of 0.81. We postulate that these start sites are
able to initiate translation in a specific cell type or cellular condition (for instance cellular stress
response).

In this manner, the webservicePreTIS can be used to visualize all putative start sites and
subsequently to predict unknown translational start sites.

In silicomutation analysis. As an outlook where this methodology could be helpful as
well, we investigated the effect of fictitious SNPs on the translational initiation confidence

Fig 5. Alternative start codons of human gene GIMAP5. Predicted start sites were subdivided into four confidence groups and highlighted by different

colors and dashed lines: very high (hot/best candidates with c� 0.9), high (0.8� c < 0.9), moderate (0.7� c < 0.8) and low (t = 0.54� c < 0.7) initiation

confidence c. For this gene, we found one hot candidate with a very high confidence value of 0.92 of being a true start site (AUG at position -203).

doi:10.1371/journal.pcbi.1005170.g005
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around all start sites of gene GIMAP5. We used the same surrounding window of -15 to +10
that was used to calculate the PWMs. Fig 6 shows three possible scenarios how in silico muta-
tions in the flanking sequence context of a putative start site affect its predicted initiation
confidence.

In the first example, the initiation confidence value is, independent of the SNP, always
above the threshold. This means that the start site is always predicted as true start site since the
overall advantageous properties are not changed severely by a single SNP that is inserted (see
Fig 6A).

In the second case, the predicted initiation confidence value changes dependent on the SNP
that is artificially inserted into the flanking sequence (see Fig 6B and 6C). Take for instance,

Fig 6. SNP analysis of gene GIMAP5. Mutation matrix showing the impact of the flanking sequence context of four putative start sites of gene GIMAP5 on

the predicted initiation confidence. In each case, only one nucleotide is mutated with respect to the reference sequence (top line). Grey means that the start

was predicted as true translational start (predicted initiation confidence is greater than 0.54) whereas white means that the start was classified as false

start. Mutations at the start sites itself were not considered. The numbers reflect the predicted initiation confidence values. A: CUG at position -36. B: CUG

at position -44. C: AUA at position -237. D: CUG at position -160.

doi:10.1371/journal.pcbi.1005170.g006
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CUG at position -44 (Fig 6B): a C\G at position +4 increases the initiation confidence from
0.53 (see Fig 6) to 0.60. The same holds for a U\A SNP and U\G SNP at position -3 that
increase the predicted initiation confidence to 0.66 and 0.57, respectively. For the AUA start
site at position -237 (Fig 6C), an U\A SNP and a U\G SNP at position -3 increased the initia-
tion confidence from 0.48 to 0.63 and 0.55, respectively. Positions -3 and +4 were mentioned
beforehand to be crucial for translation initiation [24, 25]. Moreover, SNPs at position -12, also
found to be significant by the k–mer search (Table 3), seem to have an important influence on
the translation initiation. A G\C SNP entails a dramatic drop of the initiation confidence value
to 0.33 (Fig 6C) since far less true starts contain Cs at position -12 (0.13) compared to false
starts (0.3), see Table 3.

Finally, it may also happen that the initiation confidence is always below the given thresh-
old, independent of the SNP that is inserted (Fig 6D). This is based on the overall disadvanta-
geous properties of a start site such that a single mutation cannot “boost” the overall disability
of this start to initiation translation. The results of the in silico mutation analysis of all other
GIMAP5 start sites can be found in S6 Fig.

To investigate the influence on the predicted initiation confidence (IC) on a more general
scale, we calculated the difference in the initiation confidence of a mutation (A, C, U and G)
compared to the wildtype sequence (ICdifference = ICmutation − ICwildtype) for all start sites in the
3,566 genes of the HEK293 dataset. The results are shown in Fig 7. For example, if adenine or

Fig 7. In silico mutation analysis considering all 3,566 genes of the HEK293 dataset. The flanking sequences of all possible start sites in the HEK293

dataset were mutated. Shown is the difference in the predicted initiation confidence (ICdifference = ICmutation − ICwildtype). Positions -3 and -12 are prevalent

and seem to have the largest influence on the prediction. Positions at the start site were not mutated.

doi:10.1371/journal.pcbi.1005170.g007
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guanine are inserted at position -3, the initiation confidence value increases, with median val-
ues of 0.11 and 0.06, respectively (see Fig 7). As mentioned, position -12 seems to play an
important role in translational initiation. By comparing all start sites and possible mutations, a
cytosine at this position lowers the initiation confidence by 0.16 on average.

Moreover, it was experimentally shown that positions +5 and +6 are important for efficient
translation initiation, especially in non-AUG initiation [37]. More precisely, it was shown that
the second codon (i.e. positions 4, 5 and 6) being GAU or GCU enabled an efficient translation
initiation while GUA ablated initiation. Thus, an AU or CU seem to be important at position
+5/+6 while UA is disadvantageous for translation initiation. This experimental finding can
also be observed in Fig 7: A and C at position +5 increase and U at position +5 decreases the
confidence value, while on the other hand at position +6, a U increases the confidence value.

Discussion

We were able to identify highly significant features belonging to three different feature classes
(biologically-motivated features, PWM as well as k–mer features) that distinguish between true
and false translation initiation sites. A simple linear regression model based on significant and
uncorrelated features enabled us to reliably differentiate between true and false start sites.
While a k–mer search enabled an unbiased scan, the biologically–motivated features reflect
experimental observations regarding translation initiation. The PWM accounts for the flanking
sequence context that is crucial to initiate translation. Also, it reflects the role of the start codon
itself since it was shown that some codons (e.g. AUG and CUG) are used more often by the
ribosome to initiate translation in mammals [3, 4].

Problematic was the inhomogeneous data set that most likely contains some FPs and misses
some TPs. Reasons for this may be experimental drawbacks, the processing steps of the raw
data, or the cell line that was used (some start sites may only be used in specific cell lines). In
general, several experimental steps have an influence on and can alter the data output: cell har-
vesting, nuclease treatment and library generation [9]. The key idea of ribosome profiling is the
inhibition of translation. This may introduce certain biases into the data. For example, if inhi-
bition is slow, ribosomes can artificially accumulate at specific positions [9]. Moreover, RNA
fragments (e.g. non-coding RNAs) can distort the translation readouts. Especially in sequence
analysis, the mapping of the sequence reads from similar regions of different transcript variants
is challenging. This is further complicated by the short length (about 30 nucleotides) of ribo-
some footprints [9]. Moreover, it is currently not possible to apply ribosome profiling to single
cells, in contrast to mRNA-seq for instance [9].

Without doubt, the ribosome profiling technique is a huge innovation to understand trans-
lational initiation. However, it appears that the start codon selection based on the experimental
outcome is challenging. For example, a GUG start in gene RPLP1 at position -107 determined
by Lee et al. (2012) has the following flanking sequence context: GCC GCC AAG GUG CUC
[3]. In the light of the findings of Kozak [25, 38, 39], one may speculate whether the upstream
AAG codon would be the more appropriate start codon. Nevertheless, the deep analyses of the
different datasets presented here was able to point out crucial sequence features for which a
solid experimental evidence exists (for example Kozak context) that significantly differed
between the considered true and false start sites. This verifies and draws confidence that the
overall ribosome profiling dataset(s) are suitable for the prediction of translational start sites.

Although, we used ribosome profiling applied to a specific cell line (HEK293) for training
and testing, we propose that the predicted start sites have the potential to initiate translation in
other cell types as well since the features used are only based on sequence properties. As a rather
extreme example, we showed that the classifier trained on human HEK293 cells works

PreTIS: A Tool to Predict Non-canonical Translational Start Sites

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005170 October 21, 2016 18 / 22



reasonably well, albeit with lower accuracy, on mouse ES cells. Interestingly, we observed that
the codon distribution of predicted start sites in the test set was similar to that of the experimen-
tally observed start sites. This provides confidence in the quality of our prediction approach.
Moreover, applying regression instead of classification enabled us to provide an initiation confi-
dence value ranging from 0.0 to 1.0 rather than a strict decision between true and false start site.
Subdividing start sites into different confidence classes c (very high: c� 0.9, high: 0.8� c< 0.9,
moderate: 0.7� c< 0.8 and low: t = 0.54� c< 0.7) helps to identify hot candidate start sites
with very high initiation confidence values. The analysis of SNPs in the start site flanking
sequence context showed that mutations can have a large impact on the initiation confidence.
This not only holds true in our prediction approach but also in the context of in vivo transla-
tion. Kozak found that individual mRNA positions (-3, +4) are crucial for initiation [24, 25].

Webservice PreTIS

PreTIS is a webservice to predict the initiation confidence of all reading–frame independent
start sites (AUG and all near-cognate codons) located in the 5’ UTR of human mRNA
sequences. Thereby, the best human prediction model described here is used as underlying
regression model. The webservice application PreTIS requires the mRNA sequence and is
accessible at http://service.bioinformatik.uni-saarland.de/pretis.

Based on the given human mRNA sequence, all possible AUG and near-cognate start sites,
with a surrounding window of at least ±99 nts (needed to calculate k-mers) and an in–frame
downstream stop codon, are located in the 5’ UTR. PreTIS then calculates the required sequence
features (see Table 3) for all detected start sites and subsequently predicts the initiation confi-
dence. Based on the predicted initiation confidence value and the given prediction threshold of
t = 0.54, a start site is categorized into different initiation confidence classes. For start sites with
confidence values c greater than the given threshold t, the four confidence groups were defined
as follows: very high (hot/best candidates with c� 0.9), high (0.8� c< 0.9), moderate (0.7�
c< 0.8) and low (t� c< 0.7) confidence, respectively. Especially start sites with very high con-
fidence values can be considered as hot candidates for translational initiation.

The predicted initiation confidence for each start site is visualized by barplots with the x-
axis displaying the mRNA position (compare to Fig 5). This enables a comprehensive compari-
son of, for example, different flanking sequence contexts. Features calculated for each start site
can also be downloaded as.csv file for further analyses. For the calculation of some features, an
orthologous mouse sequence is required. This is automatically implemented by the embedded
blastn [22] search. The mRNA sequence found by blastn can be inspected afterwards and
replaced, if desired. Furthermore, each job is given a Session– and a Job–ID, which enables
unambiguous accession to the prediction results.

Thus, PreTIS is an intuitive tool that solely requires the human mRNA sequence as input. It
gives access to various calculated sequence-encoded and experimentally shown important
sequence properties for translational initiation. In addition, an initiation confidence value for
each start site is calculated using an established regression model that is based on recent experi-
mental data. AUG as well as alternative start codons—in and out of the main reading frame—
are considered.

Supporting Information

S1 Fig. Relative frequencyof different start codons.Distribution of different true start
codons in human HEK293 cells (4,482 true starts) and in mouse ES cells (3,009 true starts).
(TIFF)
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S2 Fig. Kozak sequence context. The flanking sequence context of the 4,482 true starts (left
columns) and the 49,520 false starts (right columns) with respect to positions -3 and +4, which
were shown to be crucial for translation initiation. The definitions of different “Kozak types”
are described in the methods section.
(TIFF)

S3 Fig. Linear regressionmodel. Linear regression coefficients of the best human linear
regression model trained on HEK293 data.
(TIFF)

S4 Fig. Different prediction thresholds to classify start sites of the mouse ES dataset.The
solid line corresponds to the threshold of t = 0.54 whereas the dashed line displays results for
t = 0.52. A: Unbalanced dataset. B: Balanced dataset.
(TIFF)

S5 Fig. Different prediction thresholds to classify start sites of the HEK293–AUG dataset.
The solid line corresponds to the threshold of t = 0.54 whereas the dashed line displays results
for t = 0.65 and t = 0.64, respectively. A: Unbalanced dataset. B: Balanced dataset.
(TIFF)

S6 Fig. GIMAP5 in silicomutation analysis results of all start sites.Mutation matrices show-
ing the impact of the flanking sequence context of all putative start sites of gene GIMAP5 on
the predicted initiation confidence. In each case, only one nucleotide is mutated with respect to
the reference sequence (top line). Grey means that the start was predicted as true translational
start (predicted initiation confidence is greater than 0.54) whereas white means that the start
was classified as false start. Mutations at the start sites itself were not considered. The numbers
reflect the predicted initiation confidence.
(PDF)
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