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Abstract: Salmonella, as an important foodborne pathogen, can cause various diseases, such as
severe enteritis. In recent years, various types of nucleicacid-intercalating dyes have been utilized
to detect viable Salmonella. However, in principle, the performance of existing nucleic acid dyes
is limited because they depend on the integrity of cell membrane. Herein, based on the metabolic
activity of bacteria, a novel DNA dye called thiazole orange monoazide (TOMA) was introduced to
block the DNA from dead bacteria. Recombinase-aided amplification (RAA) was then performed to
detect viable Salmonella in samples. In this study, the permeability of TOMA to the cell membrane
of Salmonella was evaluated via confocal laser scanning microscopy and fluorescence emission
spectrometry. The limit of detection (LOD) of the TOMA–RAA method was 2.0 × 104 CFU/mL in
pure culture. The feasibility of the TOMA–RAA method in detecting Salmonella was assessed in spiked
milk. The LOD for Salmonella was 3.5 × 102 CFU/mL after 3 h of enrichment and 3.5 × 100 CFU/mL
after 5 h of enrichment. The proposed TOMA–RAA assay has great potential to be applied to
accurately detect and monitor foodborne pathogens in milk and its byproducts.

Keywords: Salmonella; thiazole orange monoazide; recombinase-aided amplification; milk

1. Introduction

Nowadays, consumer’s demand for milk and milk products has been increasing be-
cause they are rich in nutrients that meet the requirements of human health [1]. However,
milk, with a neutral pH and high moisture and protein contents, can induce the growth of
microorganisms [2]. Although dairy industries have implemented measures to eliminate
these pathogens, such as pasteurization and ultra-high temperature instantaneous steriliza-
tion, outbreaks of foodborne diseases due to the consumption of contaminated milk still
occur [3,4]. Salmonella is the most common pathogen in contaminated milk [5–7], causing
harm to human health, such as fever, diarrhea, and enteritis [8,9]. To face these threats, an
accurate and specific method for detecting Salmonella in milk is imperatively required.

Conventional culture-based methods are incompetent for rapid analysis for the pres-
ence of Salmonella due to their disadvantages, including being time-consuming, labori-
ous, and inaccurate [10,11]. In recent years, isothermal nucleic acid amplification tech-
niques, such as rolling circle amplification [12,13], and loop-mediated isothermal amplifica-
tion [14,15], have emerged and been applied for bacterial pathogen detection due to the
advantage of a constant temperature. Among these, on account of the convenience and a
shorter detection time, the performance of recombinase-aided amplification (RAA) tech-
nology is superior to that of other methods and has been used in conjunction with several
methods for pathogen identification [16–18]. The RAA technology works in the presence of
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adenosine triphosphate. First, oligonucleotides pair with the recombinase protein UvsX
to form nucleoprotein complexes, which interrogate double-stranded DNA (dsDNA) to
seek their homologous sequences. Then, the replaced single-stranded DNA forms a D-loop
structure and is stabilized by a single-stranded binding (SSB) protein to prevent the ejection
of the inserted primer by branch migration. Elongation is then activated with the assistance
of DNA polymerase. Finally, the cyclic repetition of this process is implemented to achieve
the exponential amplification of dsDNA in vitro [19,20]. Hence, the RAA assay is applicable
for field tests due to its rapid analysis, low cost, and high specificity [21].

It is true that RAA technology, indeed, fails to accurately detect viable bacteria. Ac-
cordingly, various types of DNA dyes, such as ethidium monoazide (EMA) [22,23] and
propidium monoazide (PMA) [24,25], have been used to eliminate the signals of dead cells.
These DNA-intercalating dyes can be utilized in distinguishing dead cells from viable cells
based on the criterion of whether the cell membrane is disrupted. Nocker and Camper [26]
argued that considering culturability and cell membrane integrity as the criterion for bacte-
ria viability is inaccurate and conservative. Therefore, they introduced the novel concept of
“activity-labile compounds”, suggesting that metabolic activity could be used as a criterion
for bacterial viability. This compound consists of three parts: a DNA-intercalating molecule,
a cross-linkable molecule, and a linker cleaved by esterase, which is a ubiquitous enzyme
that is widely found in cells with an active metabolism. Based on the present study, a novel
DNA-intercalating dye called thiazole orange monoazide (TOMA) was introduced, which
is a combination of thiazole orange (TO) and an azide group linked by an ester bond. The
successful application of TOMA was attributed to the ability of the TO dye to permeate all
cells [27] and the ability of the azide group to integrate with DNA. As shown in Figure 1a,
in viable cells active esterase cleaves the ester bond, and the azide group is removed from
the TOMA molecule. Thus, the TOMA molecule fails to covalently cross-link with DNA in
viable cells due to the absence of the azide group. On the contrary, in dead cells lacking
active esterase, the ester bond fails to be cleaved, resulting in a TOMA molecule that can
integrate with DNA. At present, some studies have determined the properties of TOMA
and explored its potential applications in the detection of bacterial pathogens [28,29].
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Herein, a TOMA–RAA method was established as a novel, rapid, and accurate method
for detecting viable Salmonella in milk samples. The specific primers and probe were used
to guarantee the specificity of this strategy. Under optimal conditions, the target bacteria
were subjected to a TOMA treatment prior to the RAA assay to remove the signals of dead
cells. Furthermore, the properties of TOMA, as well as the feasibility and sensitivity of this
TOMA–RAA method for Salmonella detection in skim milk samples, were evaluated in this
study. All in all, this novel method provides a new research direction for the detection of
viable pathogenic bacteria.

2. Materials and Methods
2.1. Reagents and Materials

Dimethyl sulfoxide (DMSO) was obtained from Shanghai Yuanye Bio-Technology Co., Ltd.
(Shanghai, China). Proteinase K was bought from Tiangen Biotech Co., Ltd. (Beijing, China).
Antifade Mounting Medium was bought from Boster Biological Technology Co., Ltd.
Paraformaldehyde fix solution at a concentration of 4% was obtained from Servicebio
Technology Co., Ltd. (Wuhan, China). An RAA fluorescence kit was obtained from Jiangsu
Qitian Gene Biotechnology Co., Ltd. (Wuxi, China). A Wizard® Magnetic DNA Purification
System for Food was purchased from Promega Biotech Co., Ltd. (Madison, WI, USA). All
primers and probes were synthesized by Sangon Biotech (Shanghai, China). Skim milk was
purchased at the local supermarket (Rainbow, China). TOMA was provided by Ningbo
International Travel Healthcare Center (Ningbo Customs Port Outpatient Department).
The final concentration of TOMA dissolved in 20% DMSO was 1 mg/mL. It was stored at
−20 ◦C in the dark for further use.

2.2. Apparatus

A QT-RAA-B6100 constant temperature oscillometer microplate (Jiangsu Qitian Gene
Bio-Technology Co. Ltd., Wuxi, China) was used to mix these reaction units thoroughly. The
relationship between the fluorescence value and the amplification time was obtained by the
QT-RAA-F1620 fluorescence detector (Jiangsu Qitian Gene Bio-Technology Co. Ltd., Wuxi,
China). The fluorescence images after the TOMA treatment were observed by confocal
laser scanning microscopy (CLSM) (Leica TCS SP8, Solms, Germany), and the fluorescence
spectrum was obtained by a microplate reader (Varioskan LUX, Thermo Fisher Scientific,
Vantaa, Finland).

2.3. Bacterial Strains and Culture Condition

Salmonella enterica subsp. enterica serovar Enteritidis ATCC13076 was chosen as an
experimental strain for RAA in this study. All bacterial strains were cultured in Luria–
Bertani (LB) medium overnight at 37 ◦C with shaking at 180 rpm. Bacterial pellets were
collected after centrifugating at 9600× g for 5 min and resuspended in sterile phosphate
buffer saline (PBS, 0.01 M, pH 7.40). Bacterial suspensions were 10-fold serially diluted to
the appropriate concentrations (ranging from 102 to 104 CFU/mL), then grown on an LB
plate for 24 h to obtain the original concentration of bacterial strains.

2.4. RAA Reaction Program

The oligonucleotide sequences of the primers and probe are shown in Table 1. The
RAA assay was performed following an RAA fluorescence kit. Each reaction unit was
performed in a total volume of 50 µL, containing 25 µL of rehydration buffer, 12.7 µL of
deionized water, 2.1 µL of each primer (10 µM), 0.6 µL of fluorescent probe (10 µM), 2.5 µL
of magnesium acetate (280 mM), and 5 µL of DNA template, then added to the freeze-dried
powder (800 ng/µL SSB, 120 ng/µL UvsX, and 30 ng/µL DNA polymerase). Reaction
units were placed in a QT-RAA-B6100 microplate, thoroughly mixed, then transferred to a
QT-RAA-F1620 detector to obtain the curve of the fluorescence value and the amplification
time. This RAA reaction was performed at 39 ◦C within 40 min.
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Table 1. The information of primer and probe in this study.

Primer/Probe Sequence (5′-3′) Amplicon Length

invA-Forward ATTGGCGATAGCCTGGCRGTGGGTTTTGTTGTC
invA-Reverse TACCGGGCATACCATCCAGAGAAAAWCGDGCCGC 133 bp

Probe CTCKATTGTCACKGTGGTYCAGTTTATCG(FAM-
dT)T(THF)T(BHQ-dT)ACCAAAGGTTCA

Footnote: FAM: 6-Carboxyfluorescein; THF: tetrahydrofuran; BHQ: black hole quencher; phosphate: 3′ phosphate
to block elongation.

2.5. Verification of the Permeability of the Cell Membrane to TOMA

The permeability of TOMA dye was evaluated using CLSM and fluorescence intensity.
A suspension of Salmonella cells at a concentration of 108 CFU/mL was used to prepare
viable and dead cells, of which dead cells were obtained by heating at 80 ◦C for 20 min and
cooling at 4 ◦C for 5 min. The TOMA solution was added into these bacterial suspensions
and incubated for 20 min in the dark. To remove excess TOMA dye, these samples were
centrifugated at 9600× g for 5 min prior to washing with PBS. Then, these treated samples
were fixed in 4% paraformaldehyde. Finally, 10 µL of prepared samples containing anti-
quenching agent were dripped onto clean glass slides and observed by CLSM. Meanwhile,
another 100 µL of prepared samples were transferred to a microplate reader to obtain the
fluorescence spectrum.

2.6. Parameter Optimization

Viable and dead Salmonella suspensions at 106 CFU/mL were prepared to optimize
the experimental parameters, including the TOMA concentration and exposure time. All
samples were treated as follows: TOMA solution was added to prepared samples and
incubated for 20 min in the dark. Then, these mixtures were placed on the ice and exposed
for a certain time under a 500 W halogen light source with occasional shaking to ensure
uniform light. To remove excess TOMA, these samples were centrifuged at 9600× g for
5 min, and cell pellets were washed with PBS. Genomic DNA was extracted for the RAA
assay. For the TOMA concentration optimization, 0, 5, 10, 20, 30, and 50 µg/mL of TOMA
solution were tested. Exposure times including 0, 5, 10, 15, 20 and 30 min were used to
optimize the method.

2.7. Sensitivity Analysis of this TOMA–RAA Method for Viable Salmonella in Pure Culture

To determine the limit of detection (LOD) of the TOMA–RAA method for viable
Salmonella in pure culture, a 10-fold serial dilution of Salmonella culture from 2 × 103 to
2 × 107 CFU/mL was subjected to TOMA treatment, then target DNA was obtained by
following the manufacturer’s instructions for the Wizard® Magnetic DNA Purification
System for Food. Finally, the obtained DNA templates were used for the RAA assay, while
sterile deionized water replacing the target DNA template was used for the negative control.
All experimental procedures are shown in Figure 1b.

2.8. Recovery Assessment of Viable Salmonella by the TOMA–RAA Method

We prepared various bacterial suspensions to assess the accuracy of the proposed
method, including three groups: (1) 107 CFU/mL of viable cells and 106 CFU/mL of dead
cells, (2) 106 CFU/mL of viable cells and 106 CFU/mL of dead cells, and (3) 105 CFU/mL
of viable cells and 106 of CFU/mL dead cells. Subsequently, genomic DNA was extracted
and subjected to the TOMA–RAA assay to obtain fluorescence curves.

2.9. Assessment of the TOMA–RAA Method Using Artificially Spiked Skim Milk

Packaged skim milk was disturbed on an LB plate at 37 ◦C for 24 h to verify that it was
negative for pathogens. The 10-fold serially diluted Salmonella suspensions were prepared.
To prepare the spiked milk samples, 100 µL of Salmonella suspension was blended with
900 µL of skim milk to obtain concentrations from 2.1 × 102 to 2.1 × 107 CFU/mL. These
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spiked mixtures were centrifugated at 9600× g for 5 min and resuspended in 500 µL of PBS.
After TOMA treatment, proteinase K (20 mg/mL) was added to eliminate protein from
milk samples, which may affect the extraction of DNA, and target DNA was extracted for
the RAA assay to obtain the LOD of this established method in spiked skim milk.

2.10. Data Analysis

All data were obtained by RAA-F1620 software matching with an RAA-F1620 fluores-
cence detector, and calculations were conducted using Excel software. The pictures were
plotted with GraphPad Prism 8 (GraphPad Prism software Inc., San Diego, CA, USA).

3. Results and Discussion
3.1. Permeability of Cell Membrane to TOMA

As an asymmetric cyanine dye, TO can freely penetrate into all cells [30], but it
does not produce fluorescence in aqueous solution. Once TO integrates with nucleic
acids, it generates a remarkable fluorescence enhancement on account of the restriction
of intramolecular rotations between benzothiazole and quinoline heterocycles [31,32].
Accordingly, TO is often used as a fluorescent probe for nucleic acid detection [33]. In this
study, the permeability of cell membrane to TOMA was proven because the presence of
the TO structure integrated with nucleic acids showed green florescence. As shown in
Figure 2a, there was no fluorescence in both viable and dead Salmonella without TOMA
treatment at 488 nm (excitation wavelength), whereas viable and dead Salmonella with
TOMA treatment produced a strong green fluorescence. As further proof, the fluorescence
spectrum was obtained using a microplate reader (Figure 2b). The fluorescence value of
both viable and dead cells at 530 nm was close to zero. After the TOMA treatment, the
fluorescence value of viable cells reached 4.61, whereas that of dead cells reached 35.85,
indicating that TOMA could enter both viable and dead cells. These results demonstrated
that TOMA is permeable to the cell membrane. Thus, it can be used as a novel dye for
pathogen detection.

Foods 2022, 11, x FOR PEER REVIEW 5 of 10 
 

 

2.8. Recovery Assessment of Viable Salmonella by the TOMA–RAA Method 
We prepared various bacterial suspensions to assess the accuracy of the proposed 

method, including three groups: (1) 107 CFU/mL of viable cells and 106 CFU/mL of dead 
cells, (2) 106 CFU/mL of viable cells and 106 CFU/mL of dead cells, and (3) 105 CFU/mL of 
viable cells and 106 of CFU/mL dead cells. Subsequently, genomic DNA was extracted and 
subjected to the TOMA–RAA assay to obtain fluorescence curves. 

2.9. Assessment of the TOMA–RAA Method Using Artificially Spiked Skim Milk 
Packaged skim milk was disturbed on an LB plate at 37°C for 24 h to verify that it 

was negative for pathogens. The 10-fold serially diluted Salmonella suspensions were pre-
pared. To prepare the spiked milk samples, 100 μL of Salmonella suspension was blended with 
900 μL of skim milk to obtain concentrations from 2.1 × 102 to 2.1 × 107 CFU/mL. These spiked 
mixtures were centrifugated at 9600× g for 5 min and resuspended in 500 μL of PBS. After 
TOMA treatment, proteinase K (20 mg/mL) was added to eliminate protein from milk sam-
ples, which may affect the extraction of DNA, and target DNA was extracted for the RAA 
assay to obtain the LOD of this established method in spiked skim milk. 

2.10. Data Analysis 
All data were obtained by RAA-F1620 software matching with an RAA-F1620 fluores-

cence detector, and calculations were conducted using Excel software. The pictures were plot-
ted with GraphPad Prism 8 (GraphPad Prism software Inc., San Diego, CA, USA). 

3. Results and Discussion 
3.1. Permeability of Cell Membrane to TOMA 

As an asymmetric cyanine dye, TO can freely penetrate into all cells [30], but it does 
not produce fluorescence in aqueous solution. Once TO integrates with nucleic acids, it 
generates a remarkable fluorescence enhancement on account of the restriction of intra-
molecular rotations between benzothiazole and quinoline heterocycles [31,32]. Accord-
ingly, TO is often used as a fluorescent probe for nucleic acid detection [33]. In this study, 
the permeability of cell membrane to TOMA was proven because the presence of the TO 
structure integrated with nucleic acids showed green florescence. As shown in Figure 2a, 
there was no fluorescence in both viable and dead Salmonella without TOMA treatment at 
488 nm (excitation wavelength), whereas viable and dead Salmonella with TOMA treat-
ment produced a strong green fluorescence. As further proof, the fluorescence spectrum was 
obtained using a microplate reader (Figure 2b). The fluorescence value of both viable and dead 
cells at 530 nm was close to zero. After the TOMA treatment, the fluorescence value of viable 
cells reached 4.61, whereas that of dead cells reached 35.85, indicating that TOMA could enter 
both viable and dead cells. These results demonstrated that TOMA is permeable to the cell 
membrane. Thus, it can be used as a novel dye for pathogen detection. 

 
Figure 2. Characterization analysis of the permeability of TOMA to the cell membrane. CLSM im-
ages of (a) viable Salmonella and (b) dead Salmonella: (I) light image with no stain; (II) with TOMA 

Figure 2. Characterization analysis of the permeability of TOMA to the cell membrane. CLSM
images of (a) viable Salmonella and (b) dead Salmonella: (I) light image with no stain; (II) with TOMA
treatment; (III) merged image; (c) Fluorescence emission spectrum (the excitation wavelength was
488 nm) of Salmonella after the TOMA treatment.

3.2. Optimization of Parameters

The azide group in the TOMA molecule is the same as that in PMA and EMA. Under
a strong light source, the free nitrogen of the azide group is converted to a highly active
azene, which cross-links with DNA to form a stable covalent compound in situ to inhibit
DNA amplification, whereas unbound TOMA binds with water to form hydroxylamine
derivatives [28]. The reaction process is shown in Figure 1a. Some parameters should be
optimized to achieve the best performance of the TOMA treatment.

The accuracy for detecting viable bacteria was found to be affected by the TOMA
concentration. As an important parameter, low concentrations of TOMA caused a false-
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positive result because dead bacteria interfered with the RAA assay. By comparison,
excessive TOMA resulted in a false-negative result due to TOMA cross-linking with DNA
from viable bacteria. In Figure 3a, as the TOMA concentration increased from 0 to 30 µg/mL
in viable cells, no remarkable change in inhibition after the RAA assay was observed. When
the TOMA concentration was ≥30 µg/mL, the inhibition was obvious, probably because
the excessive TOMA integrated with DNA and DNA amplification was inhibited. In
dead cells, as TOMA increased from 0 to 50 µg/mL, DNA amplification was remarkably
inhibited (Figure 3b). When the TOMA concentration was 10 µg/mL, the inhibition of
DNA amplification reached a plateau. Therefore, 10 µg/mL was chosen as the optimal
TOMA concentration to ensure that no effect would be exerted on viable bacteria.
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dead cells subjected to TOMA treatment at 0, 5, 10, 20, 30, and 50 µg/mL; the fluorescence curve of
(c) viable cells and (d) dead cells after exposure for 0, 5, 10, 15, 20, and 30 min.

The exposure time, another important parameter, had a great impact on the accuracy
of the detection of viable cells. All optimized results are summarized in Figure 3c,d. No
obvious inhibition of viable cells after the RAA assay was observed with increases in
exposure time (Figure 3c). However, the inhibition of dead cells had no remarkable change
when the exposure time was over 15 min (Figure 3d). Finally, 15 min was used as the
optimal exposure time.

3.3. Specificity and Performance of this TOMA–RAA Method in Pure Culture

The primer and probe were the crucial factors that needed to be considered to ensure
the specificity of the TOMA–RAA method. Hence, the probe and primer were designed on
the basis of the specific invA gene of Salmonella [34,35] (Table 1). Eighteen bacterial strains
were used to verify the specificity of the probe and primer. A fresh bacterial culture with a
density of 108 CFU/mL was used for DNA extraction, then the RAA assay was performed.
As shown in Table 2, the RAA assay for four target strains showed positive results, while
nontarget strains showed negative results, indicating that the established TOMA–RAA
method had a high specificity for different serovars of Salmonella strains.

The LOD of the TOMA–RAA method was determined in pure culture. Under optimal
conditions, diluted Salmonella suspensions were subjected to the TOMA–RAA method. The
RAA reaction was accomplished in 40 min at 39 ◦C. Subsequently, fluorescence curves of
Salmonella suspensions ranging from 2 × 103 to 2 × 107 CFU/mL were obtained. The LOD
value was defined as the lowest concentration of Salmonella suspension whose fluorescence
signal was higher than that of the negative control group. As shown in Figure 4, the LOD
of the TOMA–RAA method for Salmonella was 2 × 104 CFU/mL in pure culture.
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Table 2. Bacterial strains used in this study and the results of the RAA assay.

Bacterial Strains Strain ID a RAA Results b

Salmonella Enteritidis ATCC 13076 +
Salmonella Typhimurium ATCC 14028 +

Salmonella Abaetetuba ATCC 35640 +
Salmonella Paratyphi A ATCC 9150 +

Klebsiella pneumoniae ATCC 700603 -

Staphylococcus aureus CMCC 26001 -
ATCC 25923 -

Methicillin-resistant
Staphylococcus aureus NCTC 12493 -

Bacillus stearothermophilus ATCC 7953 -
Escherichia coli CMCC 44102 -

ATCC 25922 -
Pseudomonas aeruginosa CMCC 10104 -
Deinococcus radiophilus ATCC 27603 -

Shigella sonnei ATCC 25931 -
Cronobacter malonaticus CMCC 45402 -

Cronobacter sakazakii ATCC 29544 -
Listeria monocytogenes ATCC 13932 -

Listeria innocua NCTC 11288 -
a ATCC = American Type Culture Collection, USA; CMCC = China Medical Culture Collection; JX-CDC = Jiang
Xi Province Center for Disease Control and Prevention, China; NCTC = National Collection of Type Cultures,
United Kingdom. b “+” represents positive result, “-” represents negative result.
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3.4. Sensitivity of this Proposed Strategy in Spiked Skim Milk

Spiked skim milk was prepared as a real matrix to assess the practicability of the
proposed TOMA–RAA method. As shown in Figure 5a, the LOD of the TOMA–RAA
method was 2.1 × 105 CFU/mL in spiked skim milk. However, the level of Salmonella in
the milk sample might be lower. Accordingly, the sensitivity of the TOMA–RAA method
for Salmonella detection after pre-enrichment in spiked skim milk was evaluated. Salmonella
suspensions ranging from 3.5 × 100 to 3.5 × 104 CFU/mL were added to skim milk at
3 and 5 h of enrichment time (Figure 5b,c). After 3 h of enrichment, the lowest con-
centration of Salmonella detected by the TOMA–RAA method was 3.5 × 102 CFU/mL
(Figure 5b). After 5 h of enrichment, the LOD of the TOMA–RAA method for Salmonella
was 3.5 × 100 CFU/mL (Figure 5c). These results suggested that this method may have
good performance in detecting Salmonella in a food matrix.
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3.5. The Recovery Assessment for the Proposed TOMA–RAA Method

In practice, there might be the presence of dead bacteria in food samples. Hence,
different ratios of viable and dead bacteria were used to assess the anti-interference ability
of the proposed TOMA–RAA method for the accurate detection of viable Salmonella. The
results of the recovery assessment are shown in Figure 6, and there was no influence on
the detection of viable Salmonella by the presence or absence of different concentrations of
dead Salmonella, indicating that this method has a strong anti-interference ability and can
be used to detect viable Salmonella.
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4. Conclusions

A new DNA-intercalating dye, namely, TOMA, was introduced and combined with
the RAA assay for detecting viable Salmonella. In the first place, CLSM and the fluores-
cence emission spectrum confirmed that TOMA was permeable to the cell membrane.
In optimized conditions, the LOD of viable Salmonella was 2 × 104 CFU/mL in pure
culture. Moreover, the TOMA–RAA method was applied to detect viable Salmonella in
spiked skim milk. The LOD was 3.5 × 102 CFU/mL after 3 h of enrichment, while it was
3.5× 100 CFU/mL after 5 h of enrichment. The presence of different concentrations of dead
Salmonella did not influence the detection of viable Salmonella. In a word, the principle of
this TOMA dye depends on the metabolic activity of viable bacteria. It was demonstrated to
be more accurate than existing DNA dyes. This method could be developed as an accurate,
qualitative, and specific method for detecting viable Salmonella without interference. Thus,
it provides a technical reference for the detection of viable pathogenic microorganisms in
contaminated milk.
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