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Abstract: Osseointegrated prostheses are widely used following transfemoral amputation. However,
this technique requires sufficient implant stability before and during the rehabilitation period to
mitigate the risk of implant breakage and loosening. Hence, reliable assessment methods for the
osseointegration process are essential to ensure initial and long–term implant stability. This paper
researches the feasibility of a vibration analysis technique for the osseointegration (OI) process by
investigating the change in the dynamic response of the residual femur with a novel implant design
during a simulated OI process. The paper also proposes a concept of an energy index (the E–index),
which is formulated based on the normalized magnitude. To illustrate the potential of the E–index,
this paper reports on changes in the vibrational behaviors of a 133 mm long amputated artificial femur
model and implant system, with epoxy adhesives applied at the interface to simulate the OI process.
The results show a significant variation in the magnitude of the colormap against curing time. The
study also shows that the E–index was sensitive to the interface stiffness change, especially during the
early curing process. These findings highlight the feasibility of using the vibration analysis technique
and the E–index to quantitatively monitor the osseointegration process for future improvement on
the efficiency of human health monitoring and patient rehabilitation.

Keywords: osseointegration implant; structural health monitoring; vibrational analysis

1. Introduction

The traditional treatment for transfemoral amputation is the prosthetic socket system,
which consists of an artificial socket providing a secure connection between the residual
limb and the prostheses for the transfemoral amputee [1,2]. While enormous advances in
the material and design have been utilized to improve the comfort and performance of
the socket system, there are several major drawbacks, which include skin irritation and
pressure sores as compression occurs between the residual limb and socket transfers via
the soft tissue, which compromises the quality of life of the amputee [1,3–5]. Further-
more, for extremely short or severely wounded residual femurs, socket devices may not
be an appropriate treatment to provide adequate stability and prompt osseointegration
(OI) [1,6,7].

The state–of–the–art method that has been widely investigated and employed is
the use of osseointegrated prostheses, consisting of a metal implant that is inserted into
the skeletal system, providing a direct connection between the artificial limb and the
residual leg [8,9] without the interference of the soft tissue [6,8,10]. A common material
for the implant is titanium alloy due to its excellent biocompatibility and high resistance
to corrosion and repeated stress loading [11,12]. Amputees treated with a transfemoral
osseointegrated implant (TFOI) require a two–stage surgical procedure to accomplish a
successful implantation. During the first stage, the metal implant is inserted into the
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medullary cavity and left unload for typically six months [2,13]. Afterwards, the loading on
the implant will gradually increase until the TFOI is capable of the full weight load bearing.
This process is known as the rehabilitation period, which may take up to 18 months [14].
The direct mechanical connection formed during the OI process provides better joint
mobility and improves the control of the prostheses compared to the socket system [9,10,14].
Osseointegrated prostheses also offer further advantages, including better bone conditions,
reducing the risk of skin infection, and sensory feedback from the ground during the
movement [3,6,15,16].

Even though the OI system has significantly eliminated some limitations of the socket
system, there are various challenges that remain for osseointegrated implants; in par-
ticular, a long rehabilitation is required to conservatively ensure the implant is securely
bonded with residual femur [4,13,17]. The OI system requires sufficient implant stability
before and during the rehabilitation period to prevent any potential implant breakage
and loosening [1,4,14,15]. In addition, the works in [18,19] reported that periprosthetic
infections next to the exposed metal surface could lead to implant loosening.

Hence, reliable assessment methods for the OI process are essential to ensure initial and
long–term implant stability. Moreover, early recognition of the implant loosening could also
aid in the detection of the infection to prevent severe consequences such as amputations
and sometimes death. Currently, various examination methods such as clinical X–ray
and magnetic resonance imaging are used to assess the in vivo implant stability [2,20,21].
Nonetheless, these conventional methods are known to be subjective and qualitative since
their accuracies are mainly based on the interpretation and judgment of the surgeon
rather than using quantitative justifications (i.e., the stiffness of the connection) [1,21–24].
Furthermore, current amputees are also at potential risk of being exposed to radiation [1,25].
Moreover, the applications of these techniques are limited by the measurement accuracy
due to the diffraction effect of the metal intramedullary part [21,22,25]. Therefore, there
is an increasing need to quantitatively monitor the degree of OI and prevent implant
loosening in long–term applications.

Recently, there is significant interest in the structural health monitoring techniques,
which are widely used in monitoring the integrity of structures in the OI system, aiming to
increase the reliability and accuracy of assessment of the OI and implant stability. Vibration
analysis methods have been actively investigated and used as a non–invasive technique to
assess osseointegration–related structures, such as dental implants [17,20,22,26] and total
hip arthroplasty implants [2,25,27–31]. Furthermore, the research on vibration analysis
methods has extended to the field of transfemoral implants, and the dynamic responses of
the OI system are utilized to assess the OI process and implant stability using resonance
frequency analysis (RFA) and modal analysis [2,20,21,32–34].

In the research on dental implant stability conducted by Huang et al. [35], an implant
was installed into predrilled cavities of 3.75 and 5 mm in six rabbits to simulate secure–fit
and loose–fit conditions, respectively. The result demonstrated that the femur with the
loose–fit implant had a lower initial resonance frequency, compared to the one with a
secure–fit condition. In addition, during the OI stage, the resonance frequency significantly
increased and peaked under both conditions when the implant was fully bonded with the
femur. Similarly, the research on the OPRA implant presented by [2] conducted nine tests
during the rehabilitation process of a 40–year–old male patient. The result demonstrated a
reduction in resonance frequency after the first weight bearing, which indicated a lack of
osseointegration. Then, the resonance frequency gradually increased until the patient was
capable of a full bodyweight load.

However, several authors suggested that the RFA should be used in combination with
other assessment methods to determine the dental implant stability [36–38]. The research on
dental implants reported by [39,40] demonstrated a poor correlation between RF and bone–
implant contact. These findings may hinder the future application of RFA in monitoring the
stability of transfemoral OI implants. Moreover, the research conducted by [20,21] showed
that the modal analysis is possible to assess the degree of OI, except with using particular
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modes over a specific frequency range. Hence, there is still a significant need for universal
and robust monitoring techniques for the transfemoral osseointegrated implant.

This paper investigates the feasibility of a vibration analysis technique on the OI
process by investigating the change in the dynamic response of the residual femur with a
novel implant design during a simulated OI process. The novel osseointegrated implant
was developed based on the design concept proposed by Russ, Fitzgerald, and Chiu
(US20200188140) [41]. This study also proposes the concept of using normalized energy
difference to formulate an energy index (E–index), which could quantify the stages of OI.
Moreover, this paper also investigates the effect of implant stiffness on the accuracy of the
E–index using different intramedullary stem designs.

2. Materials and Methods
2.1. Specimens

An amputated 133 mm long Sawbone® composite femur specimen, which represents
the most common osteotomy level of 250 mm above the knee, was adopted in this ex-
periment. The femur model was prepared with three specifically designed 3D–printed
plastic osseointegrated implants. The first implant model, shown in Figure 1a, consists of
three components: an extramedullary (EM) strut, an intramedullary (IM) stem, and a stem.
The EM strut aimed to provide initial stability when first inserted into the remnant stem.
During the rehabilitation period, the bone tissue slowly grew on the surface of the IM stem,
forming a secure connection between the femur and implant. The extended base, which
was modified from the prostheses stem, provided a striking point for the experiment. The
second implant model, shown in Figure 1b, is the same as the first model but with a hollow
IM stem of 0.5 mm in thickness. In addition, amputation normally occurs at different
locations. The anatomic cross–section of the remnant stem is not exactly same (refer to
Figure 2). Therefore, two oval–shaped implant models, which have the same IM stem and
extended strut dimension as the triangular implants, were investigated (see Figure 3).
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Figure 3. Oval–shaped implant model and dimension developed based on Patent US20200188140:
(a) implant with solid IM stem and (b) implant with hollow IM stem.

An epoxy adhesive with a setting time (gel time) of 5 min and a fully cured time of 16 h
was used to simulate the process of OI [23,24,42–45]. The application of epoxy adhesive
is not an accurate representation of the OI process; however, the change in the material
properties as a result of the curing process mimics the behavior during OI [24]. Due to the
OI mainly occurring at the surface of the IM stem, the epoxy was applied to the interface
between the femur model and the IM stem. The diameter of the IM stem was slightly
reduced by 2 mm, (see Figure 4), allowing the adhesive to have a similar thickness of bone
tissue coverage required for the in vivo implant [1]. Triangular and oval implant conditions
were carried out four and three times, respectively, to investigate the effect on the E–index
due to the variance in the curing time, adhesive quality, and cross–section shape. The
results of the tests were notated as ‘Shape–Solid–number’ or ‘Shape–Hollow–number’; for
example, Tri–Solid–3 represented test 3 under a triangular solid condition.
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2.2. Experimental Setup

The proximal end of the residual femur was clamped by a 3D–printed vice, which
had jaws fitted with the shape of the femur head, providing relatively rigid fixation. An
instrumented impact hammer (B&K Type 8206 Hottinger Bruel & Kjaer UK Ltd., Royston,
Hertfordshire, UK) was used to provide a torsional moment input for the femur–implant
system. The input force was intentionally not recorded, allowing the force variation during
the experiment to aid the assessment of the reliability of the measurement technique
proposed [46]. Two unidirectional accelerometers (B&K Type 4507 Hottinger Bruel & Kjaer
UK Ltd., Royston, Hertfordshire, UK) were attached to the locations S1 and S2, measured in
the y–direction as described in Figure 5. The measuring range of the accelerometers was set
up before the measuring process started according to the expected values of the vibration.
The voltages from the accelerometers were recorded and analyzed by B&K RT Pro Photon
(Hottinger Bruel & Kjaer UK Ltd., Royston, Hertfordshire, UK) with a frequency bandwidth
of 14.4 kHz and a frequency resolution of 1.125 Hz. The sampling rate of the B&K RT
Pro Photon was 32,768 Hz. The spectra were averaged over 10 samples to achieve a good
signal–to–noise ratio. The time of the first recorded experimental data is the reference time
(0 s). A total of 1140 s of cure time were recorded. The cross–spectrum of the two sensors
was obtained at 30 s intervals for the first 300 s and 60 s intervals for the remaining 840 s.
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The application of the two–sensor setup was developed in our earlier work [42,46,47]
to identify the bending/torsional modes and to determine the integrity of the signal
via a coherence function. However, in the work presented, the ability to separate these
vibrational modes is not crucial in determining the E–index.

To aid with the visual identification of the dynamic response during the cure time,
MATLAB 2020a (MathWorks, Natick, MA, USA) was used to generate the cross–spectrum
and colormap with a normalized magnitude on a logarithmic scale. The cross–spectrum
and colormap demonstrated the magnitude change along with the frequency at certain
time points and continuous time from 0 to 1140 s, respectively. Furthermore, a quantitative
parameter: the energy index (E–index) based on the previous research by Ong et al. [48,49],
Vien et al. [24,50], and Wing et al. [23,47], was also adopted in this study to reveal the
association between vibrational response and stage of OI. The E–index was defined as the
area under the magnitude plot within a certain frequency bandwidth, from f0 to fi, relative
to the total area ( f0 to f1), as below:

E(t) = E f i(t)/Etotal(t) (1)

E fi (t) =
∫ fi

f0

M2( f , t)d f (2)

Etotal(t) =
∫ f1

f0

M2( f , t)d f (3)

where M( f , t) is the normalized magnitude at frequency f and cure time t, Etotal(t) is the
area covered by the cross–spectrum plot from f0 to f1 at cure time t, and E fi

is the area
covered by the cross–spectrum plot from f0 to fi at cure time t.

Additionally, the coherence function, which was used to determine the frequency
bound of the E–index, is calculated for the two sensors as defined below:

Coherece =

∣∣∣G11( f )G22( f )
∣∣∣2

G11( f )G22( f )
(4)

where G11( f ) and G22( f ) are the autospectra of sensors 1 and 2, respectively, and G11( f ) is
the complex conjugate of G11( f ).

The determination of the upper ( f1) and lower ( f0) bound frequency will be discussed
in the next section.

3. Results
3.1. Determination of Upper Frequency Bound

The coherence of the two accelerometers in the frequency ranged from 0 to 14.4 kHz
for Tri–Solid conditions against the cure time, as shown in Figure 6. The result showed that
the coherence under 10 kHz was general above 0.8, indicating a good signal–to–noise ratio.
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A similar phenomenon also occurred in the result of the Tri–Hollow and Oval conditions.
Therefore, the upper ( f1) bound frequency was set to 10 kHz to reduce the error caused by
the noise.
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3.2. Triangular–Shaped Implant
3.2.1. Colormap of Magnitude

Figure 7 shows the normalized magnitude development as the function of cure time
for the frequency range of 0 to 10 kHz for Tri–Solid–2. During the early curing of the epoxy,
the implant was not fully integrated with the femur; the dampening effect of the soft epoxy
suppressed the high–frequency modes leading to a flat cross–spectrum, except for several
strong vibrational modes located below 1000 Hz. The comparison of the cross–spectrum
over the cure time suggested that several peaks in the high–frequency range appeared as the
curing of the epoxy, such as the frequencies 3279 Hz and 4124 Hz, indicated in Figure 7a,b.
As the cure time increased, the magnitudes of 3279 Hz and 4124 Hz significantly decreased
by 4.064 dB and 5.940 dB, respectively, relative to their baseline (at 0 s) magnitude (Table 1).
Similar phenomena were also discovered, as shown in Figures 8 and 9, for the implant
with a solid and hollow IM stem, respectively. From 0 s to 300 s, the resonance peaks
were hard to distinguish. After the first 300 s, the resonance peaks in the frequency band
from approximately 2000 to 8000 Hz became noticeable for both solid and hollow implants,
especially for the resonance peak within 3000 to 4000 Hz, marked by the dotted line. This
was consistent with the five–minute setting time of the epoxy used in this experiment,
meaning that the sensitivity of early curing is significant after the initial bonding provided
by the adhesive at the interface. The plots also demonstrate that the magnitude of the
several modes below 1000 Hz was not affected by the interface stiffness change due to the
simulated OI process. Therefore, the lower frequency ( f0) for the E–index formula was set
to 1000 Hz to increase the sensitivity of E–index on the OI–related stiffness change.

Table 1. Normalized magnitude in log scale for frequencies of 3279 and 4124 Hz.

Frequency
(Hz) 0 s 150 s 300 s 600 s 1140 s Change in dB

(Relative to 0 s)

3279 −6.010 −7.425 −7.965 −9.623 −10.074 −4.064
4124 −5.195 −6.684 −7.610 −9.391 −11.135 −5.940
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3.2.2. E–Index against Frequency

Figure 10 demonstrates the variation in the E–index at five different times (0, 150,
300, 600, and 1140 s) of Tri–Solid–2 for the frequency ranges of 0–14.4 kHz, 0–2 kHz, and
1–10 kHz, respectively. The E–index in the frequency range 1–10 kHz showed a significant
change along the cure time; nevertheless, no change in E–index for the other two frequency
ranges was demonstrated in the plot. This result indicated that the energy of the vibrational
modes within the frequency range 1–10 kHz was sensitive to the stiffness change in the
femur–implant interface caused by the simulated OI process.

The plots of the E–index as the function of frequency at five different times (0, 150,
300, 600, and 1140 s) are shown in Figures 11 and 12 for the solid IM stem and hollow IM
stem conditions, respectively. For both conditions, the E–index for a frequency range of
2000 Hz to 6000 Hz gradually increased over time and became stable around 1, except
for the Tri–Hollow–3 condition, which was stable at 0.41. After 300 s, the gradient of the
E–index approached zero as the femur fully bonded with the implant. The difference
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between 0 s and 1140 s gradually decreased as the frequency increased from 2000 Hz to
6000 Hz. Moreover, based on Figures 8 and 9, which demonstrate significant changes in
the magnitude at approximately 3500 Hz, this means that the vibrational modes at this
frequency would be more sensitive to the femur–implant interface stiffness change as
compared to other frequencies. There was a significant change (at least 57%) in the E–index
at the end of the experiments, related to the baseline at 3500 Hz for both solid and hollow
conditions, which are recorded in Table 2. Moreover, the averaged difference of the hollow
condition was larger when compared to that of the solid condition. Except for this, there
was no significant pattern in the E–index difference and frequencies between the solid and
hollow conditions. These two conditions shared a similar trend of the E–index over the
cure time.
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Table 2. Difference (relative to 0 s for each condition) at 3500 Hz.

Test Difference (%)

Solid Hollow

1 132.82 516.53
2 354.55 142.80
3 71.81 713.73
4 439.45 57.17

Averaged 249.66 355.04

3.2.3. E–Index against Cure Time

The following graphs in Figure 13a,b for the solid and hollow conditions, respectively,
were generated based on the E–index formula at 3500 Hz. Figure 13a evidences that for the
solid condition, the E–index increased dramatically for the first 300 s, then the gradient of
the plots approached zero, and the value stabilized above 0.8 as the implant was initially
bonded with the femur. The distinct gradient change around 300 s coincided with the
setting time of the epoxy adhesive. The E–index for the hollow condition shared similar
behavior to that of the solid conditions. However, for Tri–Hollow–3 in Figure 13b, the
E–index showed some fluctuations during and after the adhesive setting time. This result
is noticeably different from the other data presented in this paper, which will be discussed
in the discussion section. Except for this, the plots of the E–index under the solid and
hollow conditions showed a clear trend that could be used to identify the stage of the OI
process. The E–index offered a quantitative approach to monitor the OI process rather than
one based on visual inspection of the colormap or selecting and identifying the specific
frequency peaks/modes on the cross–spectrum.
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3.3. Oval–Shaped Implant
3.3.1. Colormap of Magnitude

The colormap (refer to Figure 14) for the oval–shaped implant presented a similar
trend to that of the result of the triangular implant. A significant magnitude change was
identified at 300 s for both the solid and hollow conditions. In addition, the change in the
magnitude against cure time for the modes located below 1000 Hz was hard to distinguish.
These results coincide with those for the triangular implant, proving that the colormap
of the magnitude was not affected by the cross–section of the residual femur. This result
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evidences the potential of the colormap in detecting the initial bonding of the OI process
for different geometry at a fixed length of the residual femur of 133 mm.
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3.3.2. E–Index against Cure Time

Similar to the triangular implant, Figure 15 presents the E–index comparison between
each specimen over the cure time. It is shown that the E–index steadily increased along
the cure time, being stable around 0.9 at 300 s as the implant bonded with the femur. The
curing of the adhesive resulted in a relatively high gradient for the first 300 s. There was an
increase (at least 28%) in the E–index over the curing time for both the solid and hollow
conditions, which are recorded in Table 3. However, the gradient of the E–index of the solid
condition was smaller compared to that of hollow condition. In addition, the difference in
the E–index relative to 0 s indicated that the hollow condition had a larger change in the
E–index compared to that of the solid condition, which was coincident with the result of
the triangular condition. This can be attributed to the fact that the similar stiffness change
caused by the adhesive curing was relatively smaller in the solid implant system due to the
additional stiffness of the solid IM stem. These reductions in the stiffness change between
solid and hollow implant system implied that the E–index was sensitive to the stiffness of
the femur–implant system, evidencing that the E–index could be a quantitative parameter
to determine the degree of OI.

Table 3. Difference (relative to 0 s for each condition) for oval–shaped implants.

Test Difference (%)

Solid Hollow

1 32.05 81.53
2 44.93 36.46
3 28.11 152.37

Averaged 35.03 90.12
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4. Discussion

The variation in the magnitude on the colormap revealed that during the early curing
of the epoxy, the implant was not fully integrated with the femur; the vibration of the system
was hindered by the high dampening effect of the adhesive, leading to a flat cross–spectrum,
except for several strong fundamental vibrational modes located below 1000 Hz, which
were not affected by the OI. Due to the increase in stiffness at the femur–implant interface
provided by the adhesive, several peaks above 2000 Hz appeared as the curing of the epoxy,
leading to an increase in the E–index, shown in Figures 11 and 12. These results indicate
that with the additional axis of the time variation, the colormap could be used to visually
inspect the change in the magnitude along with the simulated OI process. More importantly,
the result from the oval implant indicated the colormap possesses favorable universality
for different cross–section geometries of the residual femur. Based on the appearance of
the resonance peaks and the clear step change in the magnitude, the colormap is capable
of identifying the change in the femur–implant interface condition, thereby indicating the
initial stage of OI.

The result of the E–index over time indicated that E–index was sensitive to the interface
stiffness change, especially during the early curing process. This finding suggested that the
E–index could potentially be used as a quantitative justification to help with the detection
of the initial stage of the OI process. Moreover, the E–index comparison between the solid
and hollow conditions indicated the difference in the E–index due to the additional stiffness
provided by the solid IM stem, illustrating that the E–index was sensitive to the stiffness
change. In addition, the result of the oval–shaped implant demonstrated the capability of
the E–index in monitoring the OI process without selecting or identifying the most sensitive
resonance frequency based on the geometry of the residual femur. However, there were
some fluctuations in the E–index over the cure time. The potential cause of this might
be due to the adhesive epoxy not being properly mixed or the adhesive layer not being
applied uniformly, which consequentially results in uneven curing at different areas of the
IM stem. This added variations in the full cure time and adhesive quality. Furthermore, the
maximum bond time for this glue is around 16 h, which is much larger than the experiment
time of 19 min. This means that the manual excitation may introduce damage to the
interface before the connection reaches its full strength, leading to an unstable E–index.

After the experiment, the implant model was removed from the femur to inspect
the condition of the adhesive layer between the femur and implant. Upon inspection,
there were clear differences in glue fracture markings between Hollow–3 and the other



Sensors 2022, 22, 1685 13 of 16

specimens after implant removal. The surfaces of those sufficiently bonded had indications
of bonding contacts with glue shear marks, whereas, in Hollow–3, there were minimal
indications of these marks (refer to Figure 16). Furthermore, there is evidence that the
glue seeped into the medullary cavity and, as a result, did not provide adequate bonding
due to an insufficient amount of glue. Nevertheless, this represents a real–life scenario of
insufficient OI. According to Figure 13, the E–index with sufficient bonding presented a
distinct gradient change around 300 s and was stable above 0.8. However, Tri–Hollow–3
demonstrated irregular fluctuations and was unable to reach a steady value of the E–
index along the stimulated OI process. Even though the result of Tri–Hollow–3 showed
a clear increase in the level of E–index related to the baseline after 300 s, the inadequate
bonding caused by less adhesive, as compared to the other conditions, was identified
in the E–index with a clear reduction in value from above 0.8 (which was anticipated as
sufficient bonding) to 0.41. In addition, this insufficient interface stiffness was not capable
of providing sufficient resistance to the manual excitation, resulting in damage in the
connection, which represented a large variation in the E–index, as shown in Figure 13b.
These significant differences in the E–index evidenced that the E–index is able to identify
insufficient implant stability and that it is also capable of dynamically monitoring the
femur–implant connection during the OI process. Nevertheless, future work will validate
the robustness of this strategy by simulating common implant and interface failures.
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Overall, the results displayed a clear trend of the E–index along the stimulated OI
process, evidencing the potential of the E–index as a quantitative approach for monitoring
the stages of OI. Additionally, the similar trend between the triangular and oval condi-
tions suggests that the E–index is less affected by the geometry of the residual femur’s
cross–section. Compared to the RFA [2] and modal analysis [20] for the femur–implant
system, the E–index quantified the change in the system’s energy for a fixed frequency
range during the OI process rather than selecting and identifying the specific frequency
peaks/modes for a certain implant design or length of the residual femur. In addition,
the E–index demonstrated a large increase of 80% and 50% for the triangular– and oval–
shaped implants, respectively, compared to the 3% for the RFA [2] and 10–47% difference
and modal analysis [20]. The application of the E–index could be possibly employed
as a universal way to assess the OI process for various implant designs and remaining
lengths. However, further investigation of the E–index on various lengths of the residual
femur and clinical studies are required to develop a robust monitoring technique for the
femur–implant system.

The work presented here has outlined the potential of determining implant stability
with a sensor located on the external portion of the implant. However, we expect our future
work to include an investigation into potential sensing techniques by embedding sensors
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on the extramedullary struts and/or intramedullary stem, which could assess implant
stability under in vivo conditions.

5. Conclusions

A vibration analysis method has been demonstrated in this paper to assess novel
implant stability and monitor the integration of the femur and the implant. The colormap
of normalized magnitude against time revealed changes in the resonance peaks at the
frequency band of 2000 Hz to 8000 Hz as the adhesive cured, identifying the beginning
of the stimulated OI process. Moreover, the energy method mentioned in this paper,
the E–index, increased by 80% and 50% for the triangular– and oval–shaped implants,
respectively, along the cure time related to the time of 0 s during the experiment. These
results indicate that the introduction of the E–index quantified the bonding quality between
the femur and the implant for continuous monitoring of the OI process. This demonstrates
the feasibility of this novel vibrational method for monitoring the OI process. Further work
is currently in progress to further investigate the accuracy and reliability of the E–index.
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