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Bloch-like waves in random-walk potentials based
on supersymmetry
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Bloch’s theorem was a major milestone that established the principle of bandgaps in crystals.

Although it was once believed that bandgaps could form only under conditions of periodicity

and long-range correlations for Bloch’s theorem, this restriction was disproven by the

discoveries of amorphous media and quasicrystals. While network and liquid models have

been suggested for the interpretation of Bloch-like waves in disordered media, these

approaches based on searching for random networks with bandgaps have failed in the

deterministic creation of bandgaps. Here we reveal a deterministic pathway to bandgaps in

random-walk potentials by applying the notion of supersymmetry to the wave equation.

Inspired by isospectrality, we follow a methodology in contrast to previous methods:

we transform order into disorder while preserving bandgaps. Our approach enables the

formation of bandgaps in extremely disordered potentials analogous to Brownian motion, and

also allows the tuning of correlations while maintaining identical bandgaps, thereby creating a

family of potentials with ‘Bloch-like eigenstates’.
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T
he isospectral problem posed via the question ‘Can one
hear the shape of a drum?’1 introduced many fundamental
issues regarding the nature of eigenvalues (sound) with

respect to potentials (the shapes of drums). Following the
demonstration presented in ref. 2, it was shown that it is not
possible to hear the shape of a drum because of the existence
of different drums (potentials) that produce identical sounds
(eigenvalues), namely, isospectral potentials. Although the
isospectral problem has deepened our understanding of
eigenstates with respect to potentials and raised similar
questions in other physical domains3, it has also resulted in
various interesting applications such as the detection of quantum
phases4 and the modelling of anyons5.

The field of supersymmetry6 (SUSY) shares various
characteristics with the isospectral problem. SUSY, which
describes the relationship between bosons and fermions, has
been treated as a promising postulate in theoretical particle
physics that may complete the standard model6. Although the
experimental demonstration of this postulate has encountered
serious difficulties and controversy, the concept of SUSY and its
basis of elegant mathematical relations have given rise to
remarkable opportunities in many other fields, for example,
SUSY quantum mechanics7 and topological modes8. Recently,
techniques from SUSY quantum mechanics have been utilized in
the field of optics, thereby enabling novel applications in phase
matching and isospectral scattering9–12, complex potentials with
real spectra13 and complex Talbot imaging14.

In this paper, we propose a supersymmetric path for the
generation of Bloch-like waves and bandgaps without the use of
Bloch’s theorem15. In contrast to approaches based on an iterative
search for random networks16–19 with bandgaps, a deterministic
route towards bandgap creation in the case of disordered
potentials is achieved based on the fundamental wave equation.
This result not only demonstrates that long-range correlation is a
sufficient but not a necessary condition for Bloch-like waves16–19

but also enables the design of random-walk potentials with
bandgaps. Such designs can facilitate the creation of a family of
potentials with ‘Bloch-like eigenstates’: identical bandgaps and
tuneable long-range correlations, even extending to conditions
of extreme disorder analogous to Brownian motion. We
demonstrate that the counterintuitive phenomenon of ‘strongly
correlated wave behaviours in weakly correlated potentials’
originates from the ordered modulation of potentials based on
spatial information regarding the ground state, which is the
nature of SUSY. We also show that our approach for Bloch-like
waves can be extended to multi-dimensional potentials
under a certain condition, allowing highly anisotropic control
of disorder.

Results
Relation between eigenstates and potential correlations. To
employ the supersymmetric technique7,9, we investigate waves
governed by the one-dimensional (1D) Schrodinger-like equation,
which is applicable to a particle in nonrelativistic quantum
mechanics or to a transverse electric mode in optics. Without a
loss of generality, we adopt conventional optics notations for the
eigenvalue equation Hoc¼ gc, where the Hamiltonian operator
Ho is

Ho ¼
k2

k2
0
þVo xð Þ; ð1Þ

k¼ iqx is the wavevector operator, k0 is the free-space
wavevector, Vo(x)¼ –[n(x)]2 is the optical potential, n(x) is the
refractive index profile, c is the transverse field profile and neff is
the effective modal index for the eigenvalue g ¼ � n2

eff . Two

independent methods are applied to equation (1) for verification,
the Finite Difference Method20 (FDM) and the Fourier Grid
Hamiltonian21 (FGH) method, whereby both yield identical
results for the determination of bound states (see the Methods
section).

To examine the relationship between wave eigenspectra and
the correlations of potentials, three types of random-walk
potentials are analysed: crystals, quasicrystals and disordered
potentials, which are generated by adjusting the refractive index
profile. Figure 1a represents a 1D binary Fibonacci quasicrystal
(the sixth generation with an inflation number, or sequence
length, of N¼ 8, substituting A-B and B-BA for each
generation using A as the seed), where each element is defined
by the gap between the high-index regions: A (or B) for a wider
(or narrower) gap. The crystal and the disordered potential are
generated using the same definition of elements, while the crystal
has an alternating sequence (BABABAy), and the disordered
potential has equal probabilities of A and B for each element (that
is, it is a Bernoulli random sequence22 with probability P¼ 0.5).
To quantify the correlation, the Hurst exponent23,24 H is
introduced (Fig. 1b; see the Methods section). As N increases,
both the crystal and the quasicrystal have H values that approach
0 (that is, they exhibit ‘ballistic behaviour’ with strong negative
correlations24), in stark contrast to the Bernoulli random
potential, which has HB0.4 (close to ideal Brownian motion,
with H¼ 0.5).

Figure 1c–h illustrates the stationary eigenstates for each
potential, which are calculated using the FDM and the FGH
method. Consistent with previous studies16–19,25–29, Bloch-like
waves with wide bandgaps are obtained for the ordered potentials
of the crystal (Fig. 1c) and the quasicrystal (Fig. 1d), and the
Bloch-like nature becomes more apparent with increasing N
(Fig. 1f,g). By contrast, no bandgap is observed for the Bernoulli
random potential, which lacks any correlations (Fig. 1e),
especially for larger N (Fig. 1h); this lack of correlation
originates from the broken coherence of this case, which
hinders the destructive interference that is necessary for the
formation of bandgaps. It should also be noted that many
eigenstates are localized within this random potential, exhibiting
a phenomenon that is widely known as Anderson localization29.

Supersymmetric transformation for quasi-isospectral design.
In light of the results in Fig. 1, we now consider the following
question: ‘Is it possible to design nearly uncorrelated (or
Brownian) potentials with HB0.5 while preserving the original
bandgaps?’. To answer this question positively, we exploit the
SUSY transformation to achieve quasi-isospectral potentials7,9.
In equation (1), it is possible to decompose the Hamiltonian
operator as follows: Ho–g0¼NM, where N¼ � ik/k0þW(x),
M¼ ik/k0þW(x), W(x) is the superpotential that satisfies the
Riccati equation W(x)2–i[kW(x)]/k0þ g0¼Vo(x) and g0 is the
ground-state eigenvalue of Hoc0¼ g0c0. Then, the inversion of
the N and M operators yields the SUSY Hamiltonian Hs with the
SUSY partner potential Vs(x): Hs¼MNþ g0¼ k2/k0þVs(x).
From the original equation Hoc¼ gc, the relation
Hs � (Mc)¼ g � (Mc) is obtained, thus proving isospectrality
with g and the transformed eigenstates of Mc7,9. For the later
discussion of two-dimensional (2D) potentials, it is noted that the
isospectrality between Ho and Hs can also be expressed in
terms of the intertwining relation MHo¼HsM¼MNM
(MHoc¼Hs(Mc)¼ g(Mc) when Hoc¼ gc), where the
operator M is the intertwining operator30,31.

The solution W(x) is simply obtained from the Riccati
equation through W(x)¼ [qxc0(x)]/[k0c0(x)] for unbroken
SUSY7,9, which also provides the ground-state annihilation
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equation Mc0¼ [ik/k0þW(x)]c0¼O. Because Vs(x)¼ –[ns(x)]2

is equivalent to

Vs xð Þ ¼W2þ i
k
k0

W þ g0; ð2Þ

the index profile ns(x) after the SUSY transformation can finally
be obtained as follows:

ns xð Þ½ �2¼ n xð Þ½ �2þ 2
1
k2

0

d
dx

c00
c0

� �

¼ n xð Þ½ �2þ 2
1
k2

0

d2

dx2
logc0ð Þ: ð3Þ

Equation (3) demonstrates that the SUSY transformation can be
achieved deterministically based solely on the ground-state-
dependent functionality. Figure 2 illustrates an example of serial
SUSY transformations applied to the 1D Fibonacci quasicrystal
potential defined in Fig. 1, where the small value of N¼ 5
is selected for clarity of presentation. For each SUSY
transformation, all eigenstates of each previous potential, except
for the ground state, are preserved in the transformed spatial
profiles, while the shape of the designed potential becomes
‘disordered’ through ‘deterministic’ SUSY transformations.

Potentials with Bloch-like states and tuneable randomness.
Because the presence of deterministic order is essential for Bloch-
like waves and bandgaps, regardless of the presence of long-range
correlations in their spatial profiles16–19,25–29, the ‘randomly-
shaped’ potentials (Fig. 2) that can be ‘deterministically’ derived

by applying SUSY transformations to ordered potentials offer the
possibility of combining Bloch-like waves and disordered
potentials. To investigate the wave behaviour associated with
the SUSY transformation, we consider a larger-N regime in which
the wave behaviours are clearly distinguished between ordered
(Fig. 1f,g) and disordered potentials (Fig. 1h). Figure 3a,b presents
the results obtained after the 10th SUSY transformation for the
crystal (Fig. 3a,c) and the quasicrystal (Fig. 3b,d) with N¼ 144.
Although the shapes of the SUSY-transformed potentials and the
spatial information of the eigenstates in Fig. 3a,b are markedly
different from those of the corresponding original potentials in
Fig. 1c,d, the eigenspectrum of each potential is preserved, save
for the annihilation of the 10 lowest eigenstates, which is
consistent with the nature of SUSY transformations. From the
SUSY transformation Mc¼ {ik/k0þ qxc0(x)/[k0c0(x)]} �c, it is
also expected that the distribution of the ground state c0(x) with
respect to the original state c primarily affects the effective
width32 of the transformed eigenstate Mc. In crystals that have
highly overlapped intensity profiles between eigenstates, the
effective width of c decreases progressively from serial SUSY
transformations due to the ‘bound’ distribution of c0(x). For a
quasicrystal, the variation of the effective width showed more
complex behaviour owing to its spatially separated eigenstates
(see Supplementary Note 1 and Supplementary Figs 1 and 2 for
the comparison between crystal and quasicrystal potentials).

The eigenspectral conservation is apparent in Fig. 3c,d, which
depicts the variation in the effective modal index that occurs
during the SUSY transformations (up through the 20th SUSY
transformation). As shown, the eigenspectrum of each potential is
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Figure 1 | Relation between eigenstates and potential correlations. (a) Definitions of elements, illustrated for an example of a 1D Fibonacci quasicrystal

(N¼8). gA¼600 nm, gB¼ 200 nm, w¼ 120 nm, s¼ 140 nm and the wavelength is l0¼ 1,500 nm. (b) Hurst exponent H for each potential as a function of

the sequence length N. The sequence lengths N are selected to be equal to those of Fibonacci quasicrystals. The H of the Bernoulli random potential is

plotted with s.d. error bars for 200 statistical ensembles. The black dashed line represents the Hurst exponent of ideal Brownian motion (H¼0.5).

(c–e) Eigenstates of each potential. The blue curve represents the ground state of each potential, and the coloured lines represent the spectral (neff)

distributions of the eigenstates. (f–h) Evolutions of the band structures for different sequence lengths N: (c,f) for crystals, (d,g) for quasicrystals and

(e,h) for Bernoulli random potentials. Note that the eigenstate inside the gap in c and f is a surface state for an even N (or an odd number of high-index

regions) from the finite sizes of the potentials.
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maintained from the original to the 20th SUSY transformation,
save for a shift in the modal number, and, therefore, the bandgaps
in the remainder of the spectrum are maintained during the serial
SUSY transformations (B125 states after the 20th SUSY
transformation following the loss of the 20 annihilated states).
Consequently, bandgaps and Bloch-like eigenstates similar to
those of the original potentials are allowed in SUSY-transformed

potentials with disordered shapes (Fig. 3a,b) that can be classified
as neither crystals nor quasicrystals.

Figure 4a–h illustrates the shape evolutions of the crystal and
quasicrystal potentials that are induced through the SUSY
process, demonstrating the increase in disorder for both
potentials. Again, note that the SUSY-based modulation is
determined by equation (3), starting from the ground-state
profile c0(x), which is typically concentrated near the centre of
the potential (Fig. 3a,b). To investigate the correlation features of
SUSY-transformed potentials with bandgaps, we again consider
the Hurst exponent. Figure 4i,j shows the Hurst exponents for the
transformed crystal and quasicrystal potentials as functions of the
number of SUSY transformations for different sequence lengths
(N¼ 34, 59, 85 and 144).

The figures show that, for successive applications of SUSY
transformations, the Hurst exponents of the crystal and
quasicrystal potentials (H¼ 0B0.1) increase and saturate at
HB0.8. For example, at N¼ 144, the negative correlations
(Ho0.5) of the crystal and quasicrystal potentials (H¼ 0B0.1)
become completely uncorrelated, with H¼ 0.51 after the 10th
SUSY transformation; the correlations are even weaker than that
of the Bernoulli random potential (H¼ 0.35B0.48, Figs 1b and
4i,j) and approach the uncorrelated Brownian limit of H¼ 0.5.
After the 10th SUSY transformation, the correlation begins to
increase again into the positive-correlation regime (HZ0.5, with
long-lasting, that is, persistent, potential shapes), thereby
exhibiting a transition between negative and positive correlations
in the potentials. This transition from an ‘anti-persistent’ to
‘persistent’ shape originates from the smoothing of the original
potential caused by the slowly varying term @2

xflog½c0 xð Þ�g in
equation (3), which is derived from the nodeless ground-state
wavefunction c0(x).

We note that this c0(x)-dependent modulation shows a
dependence on the size (or sequence length N) of the potentials;
for a potential with a large size, c0(x) varies weakly over a wide
range, thus decreasing the relative strength of the SUSY-induced
modulation @2

x log c0 xð Þ½ �f g (Fig. 4i,j). Thereby, the number of
SUSY transformations required for extreme randomness
(HB0.5) increases with the size of the potential (Fig. 4i,j,
(SB, N)¼ (4, 34), (6, 55), (8, 89) and (10, 144), where SB is the
required SUSY transformations for HB0.5). Eventually,
the SUSY transformation to periodic potentials of infinite size
n(x)¼ n(xþL) preserves the periodicity because the SUSY
transformation with the Bloch ground state c0(x)¼c0(xþL)
will repeatedly result in periodic potentials ns(x)¼ ns(xþL).

These results reveal that the application of SUSY transforma-
tions to ordered (crystal or quasicrystal) potentials allows for
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remarkable control of the extent of the disorder while preserving
Bloch-like waves and bandgaps. Therefore, a family of potentials
with ‘Bloch-like eigenstates’, for its members have identical
bandgaps but tuneable disorders, can be constructed through the

successive application of SUSY transformations to each ordered
potential, with a range of disorder spanning almost the entire
regime of Hurst exponents indicating negative and positive
correlations (0rHr0.8), including the extremely uncorrelated
Brownian limit of HB0.5. As an extension, in Supplementary
Note 2, we also provide the design strategy of random-walk
discrete optical systems (composed of waveguides or resonators)
that deliver Bloch-like bandgaps, starting from the first-order
approximation of Maxwell’s equations, that is, coupled mode
theory33,34.

Extension of SUSY transformations to 2D potentials. In stark
contrast to the case of 1D potentials, which exclusively satisfy a
1:1 correspondence between their shape and ground state7, it is
more challenging to achieve isospectrality in multi-dimensional
potentials. Although studies have shown the vector-form SUSY
decomposition of multi-dimensional Hamiltonians35–37, such an
approach, which is analogous to the Moutard transformation38,
cannot guarantee isospectrality. This approach only generates a
pair of scalar Hamiltonians with eigenspectra that, in general, do
not overlap but together compose the eigenspectrum of the other
vector-form Hamiltonian35–37. Here we employ an alternative
route30,31,39 starting from the intertwining relation MHo¼HsM
to implement a class of multi-dimensional isospectral potentials.

Without the loss of generality, we consider the 2D
Schrodinger-like equations with the Hamiltonian of Ho ¼
�ð1

�
k2

0Þ � r2þVo x; yð Þ and its SUSY partner Hamiltonian
Hs ¼ �ð1

�
k2

0Þ � r2þVs x; yð Þ. To satisfy the intertwining
relation MHo¼HsM, the ansatz for the intertwining operator
M can be introduced30,31, similarly to the 1D case:

M ¼ MoþMd

¼ Mo x; yð ÞþMx x; yð Þ � @
@x
þMy x; yð Þ � @

@y
; ð4Þ

where Mo, Mx and My are arbitrary functions of x and y. From
equation (4), the intertwining relation MHo¼HsM can be
expressed in terms of operator commutators as follows:

r2;Md
� �

¼ � r2;Mo
� �

þ k2
0 � Vo;Md½ � þVdMð Þ; ð5Þ

where Vd is the modification of the potential through the SUSY
transformation: Vd(x,y)¼Vs(x,y)–Vo(x,y). Although here we
focus on the 2D example, it is noted that equation (4) can be
generalized to N-dimensional problems30,31 as M¼Mo(x1, x2, y,
xN)þ

P
Mi(x1, x2, y, xN) � @i while maintaining equation (5).

The derivation in the Methods section (Equations 6–21)
starting from equation (5) demonstrates that the procedure of the
1D SUSY transformation can be applied to a 2D potential for
each x and y axes independently, when the potential satisfies the
condition of Vo(x,y)¼Vox(x)þVoy(y). We also note that serial
2D SUSY transformations are possible because the form of
Vo(x,y)¼Vox(x)þVoy(y) is preserved during the transformation,
consequently deriving a family of 2D quasi-isospectral potentials.
Figure 5 shows an example of SUSY transformations in 2D
potentials, maintaining Bloch-like eigenstates. Both the x and y
axes cross-sections of the 2D original potential Vo(x,y)¼
Vox(x)þVoy(y) have profiles of N¼ 8 binary sequences
(Fig. 5a), as defined in Fig. 1. Following the procedure of
equations (17–21) in the Methods section, we apply SUSY
transformations to the x and y axes separately, achieving the
highly anisotropic shape of the potential as shown in Fig. 5b (the
5th x axis SUSY-transformed potential) and Fig. 5c (the 5th y axis
SUSY-transformed potential). It is evident that this anisotropy
can be controlled by changing the number of SUSY transforma-
tions for the x and y axes independently, and the isotropic
application of SUSY transformations recovers the isotropic
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potential shape (Fig. 5d). Regardless of the number of SUSY
transformations and their anisotropic implementations, the
region of bandgaps of the original potential is always preserved
(Fig. 5e). Interestingly, the annihilation by 2D SUSY transforma-
tion occurs not only in the ground state but also in all of the
excited states sharing a common 1D ground-state profile (for
details see the Methods section, Supplementary Note 3 and
Supplementary Fig. 9). Consequently, the width of the bandgap
can be slightly changed owing to the annihilation of some excited
states near the bandgap.

To investigate the correlation features of 2D SUSY-
transformed potentials, we quantify the angle-dependent degree
of the correlation. Figure 5f,g shows the angle-dependent
variation of the Hurst exponent for the anisotropic (the 5th
x axis SUSY-transformed potential, Fig. 5b) and isotropic (the 5th
x and y axes SUSY-transformed potential, Fig. 5d) disordered
potential. Compared with the original potential (grey symbols in
Fig. 5f,g, for Fig. 5a), H increases along the axis with the SUSY
transformations (x axis in Fig. 5f and x and y axes in Fig. 5g). The
potential is disordered at all angles, especially in the diagonal
directions (±45�), owing to the projection of the SUSY-induced
disordered potential shapes (45� profiles in Fig. 5b–d).

Discussion
To summarize, by employing supersymmetric transformations,
we revealed a new path toward the deterministic creation of
random-walk potentials with ‘crystal-like’ wave behaviours and
tuneable spatial correlations, extending the frontier of disorder
for Bloch-like waves and identical bandgaps. Despite their
weak correlations and disordered shapes, SUSY-transformed
potentials retain the deterministic ‘eigenstate-dependent order’
that is the origin of bandgaps, which is in contrast to the
hyperuniform18,40–42 disorder of pointwise networks and
deterministic aperiodic structures such as quasicrystals28,43 or

the Thue–Morse44 and Rudin–Shapiro45 sequences. We also
extend our discussion to multi-dimensions, achieving highly
anisotropic or quasi-isotropic disordered 2D potentials, while
preserving bandgaps. Our results, which were obtained based on a
Schrodinger-like equation, reveal a novel class of Bloch-wave
disorder that approaches the theoretical limit of Brownian motion
while maintaining wide bandgaps identical to those of existing
crystals or quasicrystals in both electronics and optics. We further
envisage a novel supersymmetric relation, based on the famous
SUSY theory in particle physics, between ordered potentials
and disordered potentials with coherent wave behaviours in
solid-state physics. The extension of the SUSY transformation to
non-Schrodinger equations, for example, transverse magnetic
modes in electromagnetics (as investigated in the supplementary
material of ref. 11), or to the approximated Hamiltonians
applicable to arbitrary-polarized optical elements (Supplemen-
tary Note 2) will be of importance for future applications, for
example, polarization-independent bandgaps based on dual-
polarized eigenstates46.

Methods
Details of the FDM and FGH method. The FDM utilizes the approximation of the
second-derivative operator in the discrete form20, and the FGH method, as a
spectral method, uses a planewave basis with operator-based expressions in a
spatial domain21. In both methods, the Hamiltonian matrices are Hermitian
because of the real-valued potentials, thus enabling the use of Cholesky
decomposition to solve the eigenvalue problem. To ensure an accurate SUSY
process, Rayleigh quotient iteration is also applied to obtain the ground-state
wavefunction. The boundary effect is minimized through the use of a buffer region
(n¼ 1.5) of sufficient length (30 mm¼ 20l0) on each side. Deep subwavelength
grids (D¼ 20 nm¼ l0/75) are also used for the discretization of both the 1D
and 2D potentials.

Calculation of the Hurst exponent. First, the discretized refractive index np

(p¼ 1, 2, y, N) is obtained at xp¼ xleftþ (p� 1) �D, where xleft is the left boundary
of the potential, which is of length L¼ (N� 1) �D. Partial sequences Xq of np

for different length scales d are then defined (2rdrN and 1rqrd). For the
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mean-adjusted sequence Yq¼Xq–m, where m is the mean of Xq, we define the
cumulative deviate series Zr as

Zr ¼
Xr

q¼1

Yq: ð6Þ

The range of cumulative deviation is defined as R(d)¼max(Z1, Z2, y, Zd)–min(Z1,
Z2, y, Zd). Using the s.d. S(d) of Yq, we can now apply the power law to the
rescaled range R(d)/S(d) as follows:

E
R dð Þ
S dð Þ

� �
¼ c0dH : ð7Þ

This yields log(E[R(d)/S(d)])¼H � log(d)þ c1, where E is the expectation value and
c0 and c1 are constants. H is then obtained through linear polynomial fitting:
H¼ 0.5 for Brownian motion, 0rHo0.5 for long-term negative correlations with
switching behaviours, and 0.5oHr1 for long-term positive correlations such that
the sign of the signal is persistent.

The condition for 2D isospectral potentials. By assigning M¼MoþMd

(Equation 4) to the intertwining relation MHo¼HsM with explicit forms of Ho and
Hs, it becomes MoþMdð Þ � � 1=k2

0

	 

� r2 þVo

� �
¼ � 1=k2

0

	 

� r2 þVs

� �
�

Mo þMdð Þ. Thus, we obtain equation (5); r2;Md½ � ¼ � r2;Mo½ � þ k2
0�

Vo;Md½ � þVdMð Þ, where Vd¼Vs–Vo. Each commutator in equation (5) is also
expressed as

r2;Md
� �

¼ r2Mx
	 


� @
@x
þ r2My
	 


� @
@y
þ 2 � @Mx

@x

� �
� @

2

@x2
þ @My

@y

� �
� @

2

@y2

� �

þ 2 � @My

@x
þ @Mx

@y

� �
� @

2

@x@y
;

ð8Þ

r2;Mo
� �

¼ r2Mo
	 


þ 2 � @Mo

@x

� �
� @
@x
þ @Mo

@y

� �
� @
@y

� �
; ð9Þ

Vo;Md½ � ¼ � Mx �
@Vo

@x

� �
þMy �

@Vo

@y

� �� �
: ð10Þ

It is noted that the higher-order (Z2) derivatives in equation (5) originate from the
third and fourth terms in the right-hand side of equation (8). Comparing
equation (8) with equations (9,10), all of the higher-order derivatives should be
removed to satisfy equation (5). This then directly leads to the preconditions Mx

and My; qxMx¼ 0, qyMy¼ 0 and qxMyþ qyMx¼ 0, which hold only for
Mx(x,y)¼Mx(y)¼ ax–by and My(x,y)¼My(x)¼ ayþ bx where ax, ay and b are
arbitrary constants.

By applying Mx(y), My(x), and equations (8–10) to equation (5), we achieve two
linear and one nonlinear equations for three unknowns Mo, Vo and Vd as

@Mo

@x
¼ 1

2
� k2

0Vd � ax � byð Þ; ð11Þ

@Mo

@y
¼ 1

2
� k2

0Vd � ay þ bx
	 


; ð12Þ

�r2 þ k2
0Vd

	 

Mo ¼ k2

0 ax � byð Þ � @Vo

@x

� �
þ ay þ bx
	 


� @Vo

@y

� �� �
: ð13Þ

As a particular solution, we consider the case of b¼ 0 for simplicity. In this case,
from equations (11,12), Mo and Vd are determined in the form of Mo¼ f(r) and
Vd¼ @rf(r), where r¼ k0

2 � (axxþ ayy)/2 is the transformed coordinate and f is an
arbitrary function of r. By substituting Mo and Vd, equation (13) then becomes

@Vo

@r
¼ 2

k2
0 a2

x þ a2
y

� � � f rð Þ � @f
@r
� 1

2
� @

2f
@r2

; ð14Þ

which reveals the proper form of the 2D potential Vo for SUSY transformations

Vo r; xð Þ ¼ 1

k2
0 a2

x þ a2
y

� � � f 2 rð Þ� 1
2
� @f
@r
þ g xð Þ; ð15Þ

where x¼ k0
2 � (cxxþ cyy)/2 is the transformed coordinate perpendicular to r, with

ax � cxþ ay � cy¼ 0. The supersymmetric potential Vs¼VoþVd then becomes

Vs r; xð Þ ¼ 1

k2
0 a2

x þ a2
y

� � � f 2 rð Þþ 1
2
� @f
@r
þ g xð Þ: ð16Þ

Using equations (15,16), now we can implement the procedure of serial 2D
SUSY transformations. First, because of equation (15), Vo should have the form of
Vo(r,x)¼Vor(r)þVox(x) for two Cartesian axes of r and x. In this case, the
corresponding f(r) is obtained by solving the following Riccati equation:

Vor rð Þ ¼ 1

k2
0 a2

x þ a2
y

� � � f 2 rð Þ� 1
2
� @f
@r
þ gor; ð17Þ

Its particular solution is listed as f rð Þ ¼ � ½k2
0 � ða2

x þ a2
yÞ � @rj0 rð Þ�= 2 � j0 rð Þ½ �

(ref. 47); where j0(r) is the nodeless ground state with the eigenvalue gor in the
corresponding 1D Schrodinger-like equation

� k2
0

4
a2

x þ a2
y

� �
� @

2j
@r2
þVor rð Þj ¼ grj: ð18Þ

With the obtained f(r), we finally achieve the SUSY-transformed potential along
the r-axis satisfying the isospectrality, Vs(r,x)¼Vo(r,x)þ qrf(r), or

Vs r; xð Þ ¼ Vo r; xð Þ� 1
2
� k2

0 a2
x þ a2

y

� �
� d2

dr2
logjo rð Þð Þ: ð19Þ

Equivalently, the SUSY transformation along the x axis is

Vs r; xð Þ ¼ Vo r; xð Þ� 1
2
� k2

0 c2
x þ c2

y

� �
� d2

dx2 logfo xð Þð Þ; ð20Þ

where f0(x) is the nodeless ground state with the eigenvalue gox in the following
equation:

� k2
0

4
c2

x þ c2
y

� �
� @

2f
@x2 þVox xð Þf ¼ gxf: ð21Þ

Note that, after the SUSY transformation for the r or x axes, Vs(r,x) still preserves
the form of Vs(r,x)¼Vsr(r)þVsx(x) (Equations 19,20), which is the necessary
condition for the SUSY transformation of 2D potentials. Therefore, serial SUSY
transformations can be applied to 2D arbitrary potentials of the form
Vo(r,x)¼Vor(r)þVox(x), and the level of SUSY transformations can be controlled
independently for each axis, allowing highly anisotropic potential profiles. In
addition, by assigning nonzero b, the allowed potential of Vo(x,y) can be extended
to non-separated forms30,31.

The eigenstate annihilation in 2D SUSY transformations. In stark contrast
to the ground-state annihilation in 1D SUSY transformations, the annihilation
by 2D SUSY transformations is not restricted to the ground state. For simplicity,
consider the case of ax ¼ 2=k2

0 and ay¼ 0 for r¼ x and x¼ y without any loss of
generality. The Hamiltonian, which can be SUSY transformed, is then expressed as
Ho ¼ � 1=k2

0

	 

� r2 þVox xð ÞþVoy yð Þ for the eigenvalue equation Hoc¼ gc. For

the x axis SUSY transformation, the following equation should be satisfied to
annihilate the SUSY-transformed eigenstate because Mc¼O:

� 2
k2

0
� 1

jo
� djo xð Þ

dx
� @

@x

� �
c x; yð Þ ¼ O: ð22Þ

Note that equation (22) is satisfied when c(x,y)¼j0(x) �f(y), allowing the
separation of variables in the 2D eigenvalue equation Hoc¼ gc as

� 1
k2

0
� 1
jo
� d

2jo xð Þ
dx2

þVox xð Þ
� �

þ � 1
k2

0
� 1
f
� d

2f yð Þ
dy2

þVoy yð Þ
� �

¼ g: ð23Þ

It is noted that the first brace has the fixed constant of gox, the ground-state
eigenvalue of the 1D Schrodinger-like equation with the potential Vox(x).
Meanwhile, because the second brace can be any eigenvalues of the solution f(y) in
the 1D Schrodinger-like equation with the potential Voy(y), it is clear that the
annihilation by 2D SUSY transformation occurs not only in the ground state but
also in all of the excited states sharing j0(x). The detailed illustration of this result
is shown in Supplementary Note 3 and Supplementary Fig. 9.
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