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Abstract: Critical illness and sepsis are characterized by drastic changes in the systemic innate
immune response, particularly involving monocytes. The exact monocyte activation profile during
sepsis, however, has remained obscure. Therefore, we prospectively analyzed the gene expression
profile of circulating CD14+ monocytes from healthy volunteers (n = 54) and intensive care unit
(ICU) patients (n = 76), of which n = 36 had sepsis. RNA sequencing of selected samples revealed
that monocytes from septic ICU patients display a peculiar activation pattern, which resembles
characteristic functional stages of monocyte-derived macrophages and is distinct from controls or
non-sepsis ICU patients. Focusing on 55 highly variable genes selected for further investigation,
arachidonate 5-lipoxygenase-activating protein (ALOX5AP) was highly upregulated in monocytes of
ICU patients and only normalized during 7 days in the ICU in non-sepsis patients. Strikingly, low
monocytic guanine nucleotide exchange factor 10-like protein (ARHGEF10L) mRNA expression was
associated with the disease severity and mortality of ICU patients. Collectively, our comprehensive
analysis of circulating monocytes in critically ill patients revealed a distinct activation pattern,
particularly in ICU patients with sepsis. The association with disease severity, the longitudinal
recovery or lack thereof during the ICU stay, and the association with prognosis indicate the clinical
relevance of monocytic gene expression profiles during sepsis.
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1. Introduction

Sepsis is a leading cause of death worldwide. It often manifests as a complex immune dysfunction
where a hyper-inflammatory reaction, the “cytokine storm”, simultaneously occurs alongside an
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insufficient (“hypo”) immune reaction [1,2]. Several studies have demonstrated that persistent
immunosuppression is associated with a poor patient outcome [3,4]. The anti-inflammatory response
may explain persistent and/or nosocomial infections, organ failure, and high mortality. It is estimated
that there are 31.5 million cases of sepsis and 19.4 million cases of severe sepsis worldwide every
year, potentially leading to 5.3 million deaths [5]. The early diagnosis of sepsis is critical in order
to initiate effective therapeutic strategies. Therefore, reliable biomarkers are necessary to guide
treatment decisions. Currently, microbiological cultures, serum C-reactive protein (CRP), procalcitonin
(PCT), presepsin, and interleukin-6 (IL-6) are widely used as such markers [6,7]. Additionally, low
serum 25-hydroxyvitamin D levels have been shown to impact the outcome of critically ill patients
with sepsis [8,9]. Reliable biomarkers provide at least two major advances in the difficult clinical
management of sepsis: early recognition and differential etiological diagnosis. In fact, circulating
microRNAs are very sensitive and early markers, so their use might have a relevant impact [10,11].
In particular, miR-15a and miR-16 are upregulated in the serum of neonatal sepsis patients [12] and,
furthermore, have been shown to be useful to distinguish patients with sepsis from those with systemic
inflammatory response syndrome (SIRS) [13]. Other microRNAs, such as miR-133a, might even have
predictive power in the setting of critical illness [14].

Patients with sepsis typically display multiple perturbations of the immune system, like abnormal
leukocyte numbers and functional alterations of inflammatory responses. Among these multiple
adaptations, the inflammatory status during sepsis has been closely linked to the functional status
(“polarization”) and cellular metabolism of myeloid cells, particularly monocytes and macrophages [15].
In a prospective study comprising more than 100 critically ill patients admitted to the ICU, we recently
demonstrated a significant increase in total leukocyte numbers in the peripheral blood of ICU patients
compared to healthy volunteers and patients with infections from a standard care unit. At the same
time, lymphocyte numbers were decreased, which was associated with increased mortality [16].

Concerning innate immunity, several reports demonstrate that the numbers of circulating
monocytes are increased in patients with diagnosed sepsis [17–19]. In humans, monocytes are
subdivided into at least three different populations according to their surface expression of the
LPS-co-receptor CD14 and the Fcγ receptor CD16. The major subpopulation is comprised of the
CD14+CD16− monocytes, or classical monocytes, and the minor population is comprised of the
CD14−CD16+ non-classical monocytes. An intermediate population is characterized by a high
expression of both CD14 and CD16 (CD14+CD16+ monocytes) [20]. A recent study employing
single cell RNA sequencing revealed the presence of another, probably intermediate, monocytic
subpopulation [21]. Some reports indicate a contribution of the different monocyte subpopulations to
the pathogenesis of sepsis. Work from Mukherjee and colleagues elucidated a decrease of classical
monocytes in septic patients compared to healthy controls, while the non-classical and intermediate
monocyte populations are increased [22]. The same study also suggested a more inflammatory
phenotype of the non-classical and intermediate monocytes with a high expression of CD80, CD86,
and human leukocyte antigen-DR isotype (HLA-DR) [22]. In terms of total circulating monocytes, the
surface expression of HLA-DR, an major histocompatibility complex (MHC) class II molecule, is reduced
in septic patients, and the reduced HLA-DR expression correlates with a poor outcome [19,23,24].
Another surface marker associated with the survival of septic patients is the fractalkine receptor
CX3CR1. The expression of CX3CR1 is downregulated on septic monocytes compared to healthy
controls, and non-survivors sustainably express even lower amounts of this receptor [25].

The aim of our study was to assess functional alterations in circulating monocytes in patients
with sepsis compared to non-septic patients and healthy individuals. In a first unbiased approach, we
therefore isolated CD14+ monocytes from ICU patients with and without sepsis, respectively, as well as
healthy donors, and comprehensively analyzed their transcriptome by RNA sequencing. In a validation
and prognostic approach, 55 highly regulated genes were chosen for an analysis of isolated circulating
monocytes of large patient cohorts, also comprising a diseased control population of standard care
patients with confirmed infections. Compared to whole blood transcriptional profiling [26], our
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approach of the pre-selection of CD14+ monocytes allows the comprehensive analysis of inflammatory
reactions of monocytes as key players of the innate immune system. This study will help to understand
the nature and contribution of circulating monocytes in critically ill patients.

2. Experimental Section

2.1. Patients and Controls

This study was approved by the local ethics committee (EK 150/06) of the University Hospital
Aachen, RWTH Aachen University, and written informed consent was obtained from every participant
or authorized relatives in the case of unconsciousness. Critically ill patients were prospectively included
upon admission to the medical intensive care unit (ICU) and standard care (SC) wards of the Department
of Medicine III of the University Hospital Aachen, following an established protocol [16,27,28] and
using an enrollment process, as previously described [29,30]. Patients treated at the ICU because of
sepsis had a clinically suspected or verified infection diagnosed by the intensive care physicians and
were treated with antibiotics. Sepsis diagnosis was established following a diagnosed infection and an
increase in the Sepsis-related Organ Failure Assessment (SOFA) score greater than or equal to two
points [31]. Non-critically ill patients, admitted due to infectious diseases to the standard care ward,
served as a diseased control population. Those patients were admitted to the hospital following a
diagnosis of infection by the treating physician (based on clinical judgment, laboratory results, and/or
microbial cultures) and received antibiotic therapy [16,30]. Samples from healthy volunteers were
acquired from the local blood transfusion institute and served as a healthy control population. Blood
samples of the recruited patients were obtained by peripheral venipuncture or from inlying central
venous or arterial catheters at day 1 (admission), day 3, and day 7 of the ICU stay. To prevent the
coagulation of blood samples, 250 units of heparin (Rotexmedica, Frittach, Germany) per milliliter
blood were added to the samples [16,30]. Samples were processed directly after collection.

2.2. Isolation of Peripheral Blood Mononuclear Cells and Polymorphonuclear Cells

Blood and cells were kept at 4 ◦C during all procedures to care for minimal cell activation. Peripheral
blood mononuclear cells (PBMC) were isolated using a Ficoll-based density gradient. Therefore, whole
blood was mixed with an equal amount of phosphate-buffered saline (PBS, PAN Biotech, Aidenbach,
Germany), and was subsequently carefully manually layered over 1077 Lymphocyte Separation
Medium (PAA, Pasching, Austria), followed by centrifugation at 1600 rpm for 40 min without the
use of a brake at room temperature. The intermediate layer containing the PBMC was then carefully
harvested, washed with PBS, and centrifuged at 1300 rpm for 10 min three times. In the last step,
the cells were resuspended in PBS and counted using a Neubauer chamber as a preparation step for
antibody staining and Magnetic-activated cell sorting (MACS) [16,30]. Polymorphonuclear cells were
isolated as described before [30] using 5% dextran in PBS at 37 ◦C for 45 min (500,000 dextran, Merck
KGaA, Darmstadt, Germany). The upper phase containing leukocytes was transferred into a new tube,
and osmotic lysis of red blood cells was done by incubation for 20 s in distilled water and recovery
using 10× PBS.

2.3. Flow Cytometry

Two million cells were resuspended in PBS and blocking buffer (2% bovine serum albumin, 2%
rabbit serum, 2% human serum, 2% mouse serum, and 2% rat serum) to reduce unspecific binding
and stained with fluorescence-conjugated antibodies against CD14, CD56, CD45, CX3CR1, HLA-DR
(eBioscience; San Diego, CA, USA), and CD16 (BD, Heidelberg, Germany). Cells were then subjected to
flow-cytometric analysis using a FACS Canto-II (BD, Heidelberg, Germany) and analyzed using FlowJo
software (TreeStar Inc., Ashland, TN, USA). After the exclusion of doublets, monocytes were identified
by the exclusion of CD56-positive cells and CD14 positivity, as well as their characteristic distribution
in forward and sideward scatter, to ensure a clean population of monocytes. Subpopulations were
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defined by their respective expression of CD14 and CD16. Absolute cell numbers were calculated
based on automated differential white blood cell counts.

2.4. Isolation of CD14+ Monocytes

At least 107 cells were resuspended in MACS buffer (PBS, 2 mM EDTA, 0.5% BSA), incubated
with CD14-Microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany), and CD14+ cells were isolated
according to standard protocols provided by the manufacturer. After isolation, CD14+ cells were
directly stored in PeqGOLD Trifast (Peqlab, Erlangen, Germany) at −80 ◦C until further analysis.

2.5. Library Preparation

For RNA sequencing, five samples were randomly chosen from healthy donors, ICU patients
with sepsis, and ICU patients without sepsis, respectively. RNA was isolated from cells stored in
PeqGOLD according to standard protocols provided by the manufacturer. Total RNA was converted
into libraries of double-stranded cDNA molecules as a template for high throughput sequencing
following the manufacturer’s recommendations, using the Illumina TruSeq RNA Sample Preparation
Kit v2. mRNA was purified from 100 ng of total RNA using poly-T oligo-attached magnetic beads.
Fragmentation was carried out using divalent cations under an elevated temperature in Illumina
proprietary fragmentation buffer. First-strand cDNA was synthesized using random oligonucleotides
and SuperScript II. Second-strand cDNA synthesis was subsequently performed using DNA Polymerase
I and RNase H. Remaining overhangs were converted into blunt ends via exonuclease/polymerase
activities and enzymes were removed. After the adenylation of 3′ ends of DNA fragments, Illumina
PE adapter oligonucleotides were ligated to prepare for hybridization. DNA fragments with ligated
adapter molecules were selectively enriched using Illumina PCR primer PE1.0 and PE2.0 in a 15 cycle
PCR reaction. Size-selection and purification of cDNA fragments with preferentially 75 bp in length
were performed using SPRIBeads (Beckman-Coulter, Brea, CA, USA). The size-distribution of cDNA
libraries was measured using the Agilent high-sensitivity DNA assay on a Bioanalyzer 2100 system
(Agilent, Santa Clara, CA, USA). cDNA libraries were quantified using KAPA Library Quantification
Kits (Kapa Biosystems, Wilmington, MA, USA). After cluster generation on a cBot, a 75 bp single-end
run was performed on a HiSeq1500.

2.6. Standard Bioinformatic Analysis

The total number of reads ranged between 4,000,000 and 26,000,000. After base calling and
de-multiplexing using CASAVA version 1.8, the 75 bp paired-end reads were aligned to the murine
reference genome hg19 from UCSC by TopHat2 version v2.0.11 using the default parameters. This
annotation included 19.225 unique transcript entries with genomic coordinates. After mapping the
reads to the genome, we imported the data into Partek Genomics Suite V6.6 (PGS) to calculate the
number of reads mapped to each transcript against the RefSeq hg19 annotation download on May
2015. These raw read counts were used as the input to DESeq2 for the calculation of normalized signals
for each transcript using the default parameters. After DESeq2 normalization, the normalized read
counts were imported back into PGS and floored by setting all read counts to at least a read count of 1
after the batch-correction. Subsequent to flooring, all transcripts having a maximum overall group
mean lower than 10 were removed. After dismissing the low expressed transcripts, the data comprised
10.209 transcripts. RNA-seq data can be accessed under GSE139913.

To visualize the structure within the data, we performed Principle Component Analysis (PCA) on
all genes with default settings in PGS. Additionally, co-regulation analysis (CRA) based on Pearson’s
correlation coefficients for the samples using BioLayout Express3D [32] was performed to describe
the structure within the data set. For enrichment maps, differentially expressed genes were selected
by an ANOVA p-value threshold of ≥0.05 and a fold change of at least 2 or −2, respectively. Selected
differentially expressed genes were subjected to GOEA (gene ontology (GO) biological process) by
using the Cytoscape [33] plug-in BinGO [34]. For network visualization, the Cytoscape plugin
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Enrichment Map [35] was used. For enrichment map visualization, the following criteria were chosen:
p-value ≥ 0.05, False Discovery Rate (FDR) Q-value cutoff ≥ 0.2, and similarity cutoff with Jaccard
coefficient ≥ 0.5. Principal Component Analysis (PCA) revealed two outliers (one sepsis and one
non-sepsis ICU patient). During construction of the correlation network using the defined correlation
cut-off criteria, those two samples were not connected to their respective group. Therefore, they were
excluded for further analysis, following previously established algorithms.

2.7. Preparation of RNA and NanoString Analysis

RNA for NanoString analysis was isolated from cells stored in PeqGOLD according to standard
protocols provided by the manufacturer, with 40 µg Glycogen (ThermoScientific, Dreieich, Germany)
being added to improve RNA precipitation. A total of 100 ng RNA was used for analysis with the
predefined panel on a nCounter System (NanoString, Seattle, WA, USA). Five mRNAs with the lowest
variation among the three groups from RNA sequencing data were selected as housekeeping genes.

The normalization and generation of transcript counts was conducted by employing NanoString
nSolver 3.0 (NanoString, Seattle, WA, USA) and the R package DESeq2 [36] using the geometric mean
values of the five housekeeping mRNAs. For principal component analysis, the respective function
from DESeq2 was used. Heatmaps were generated using the R package gplots with the heatmap.2
function and the hierarchical clustering method “complete”.

2.8. Statistical Analysis

Data were analyzed using SPSS (version 25, SPSS Inc., Chicago, IL, USA) and GraphPad Prism
5 (GraphPad Software Inc., La Jolla, CA, USA). As a normal distribution of samples could not be
assumed, the Kruskal–Wallis test followed by post hoc testing by Dunn’s multiple comparison test
was used for more than two groups, the two-tailed Mann–Whitney U test was used for two groups
of unpaired samples, and the two-tailed Wilcoxon signed rank test was used for paired samples.
A significance level of α = 0.05 was used in all corresponding calculations. The Youden index was
calculated to identify the optimal cut-off values for parameters to discriminate prognosis [29]. Receiver
operating characteristic (ROC) curve analysis and the derived area under the curve (AUC) statistics
were generated by plotting sensitivity against 1-specificity [37]. Correlations between variables were
assessed with Spearman rank correlation tests. Associations with survival were assessed by Cox
regression, and patient survival was depicted by Kaplan–Meier curves.

3. Results

3.1. Alterations in the Composition of Circulating Monocyte Populations and Their Surface Marker Expression
in Critically Ill Patients

Several studies reported increased numbers of circulating monocytes in patients with diagnosed
sepsis [17,18], including alterations of the monocyte subset distribution [22]. We herein investigated
the abundance and phenotype of different monocyte subpopulations in a prospective patient study,
including 54 healthy controls (HC), 42 standard care patients (SC) with confirmed infection, and 76
critically ill patients upon admission to the intensive care unit (ICU) (Table 1).
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Table 1. Characteristics of the different study cohorts comprising healthy volunteers (HC); standard
care patients with bacterial infections (SC); and intensive care unit patients (ICU), with or without sepsis.

Parameter HC SC ICU ICU: No Sepsis ICU: Sepsis

Number, n 54 42 76 40 36
Male/female, n 30/24 31/11 45/31 24/16 21/15

Age (years) 48.5 (24–77) 65.5 (21–88) 68 (18–97) 60.5 (23–92) 71 (18–97)
Days in hospital - 6.5 (3–25) 14 (1– 97) 13 (2–89) 20 (1–97)

Days on ICU - - 4 (1–79) 4 (1–37) 4 (1–79)
Death on ICU, n (%) - - 21 (27.6%) 5 (12.5%) 16 (44.4%)

Death in hospital, n (%) - 2 (4.8%) 28 (36.8%) 10 (25%) 18 (50%)
APACHE II score - - 22.5 (2–45) 20 (2–43) 25.5 (9–45)

Leukocytes (per nL) 5.8 (3.8–10.0) 9.4 (2.1–23.0) 13.5 (0.5–42.9) 10.7 (2.7–31.4) 15.5 (0.5–42.9)
Monocytes (per nL) 0.50 (0.25–0.95) 0.71 (0.06–1.86) 0.62 (0–3.45) 0.66 (0.01–3.45) 0.52 (0–2.16)

IFN-γ, (pg/mL) 4.21 (0–500) 8.07 (0–372) 10.6 (0–527) 9.23 (0–101) 20.5 (0–527)
IL-6 (pg/mL) 0.36 (0.2–200) 9.25 (0.32–526) 137 (2.4–500,000) 56.5 (8.88–1490) 204 (2.4–500,000)
IL-8 (pg/mL) 4.53 (1.71–33.8) 7.47 (1.86–81.7) 23.3 (0–1000) 14.8 (0–282) 29.3 (3.18–1000)

TNF-α (pg/mL) 0.57 (0–63.3) 0.63 (0–87.2) 1.51 (0–126) 1.42 (0–61.9) 1.56 (0–126)
Cholesterol (mg/dL) - - 123 (41–374) 123 (41–374) 128 (60–223)
Triglyceride (mg/dL) - - 139 (40–434) 148 (40–434) 128 (63–302)

Site of infection, n (%)
Pulmonary - 14 (33.3%) 17 (22.4%) - 17 (47.2%)

Urinary - 17 (40.5%) 5 (6.6%) - 5 (13.9%)
Abdominal - 6 (14.3%) 12 (15.8%) - 12 (33.3%)

Bloodstream - 2 (4.8%) 1 (1.3%) - 1 (2.8%)
Other - 3 (7.1%) 1 (1.3%) - 1 (2.8%)

Culture positive, n (%) - 11 (26.2%) 21 (27.6%) - 21 (58.3%)
Gram neg., n - 3 7 - 7
Gram pos., n - 7 10 - 10

Gram pos. and neg., n - 0 3 - 3
Fungal, n - 1 1 - 1

The median and range are given, unless indicated otherwise.

Peripheral blood leukocytes were analyzed by flow cytometry. As recently demonstrated by our
group [16], the total number of circulating leukocytes was significantly increased in patients from the
ICU and standard care compared to healthy controls (Figure 1A). The total number of monocytes was
increased in patients from the ICU in comparison to healthy controls (Figure 1B, left panel). Peripheral
monocytes were discriminated into four subpopulations based on their CD14 and CD16 surface
expression (Figure 1B, right panel). Both relative and absolute numbers of CD14+CD16− classical
monocytes were not significantly altered between the patient cohorts (Figure 1C and Supplementary
Materials Figure S1A). CD14−CD16+ non-classical monocytes were significantly decreased, while
both intermediate monocyte subpopulations were significantly increased, when comparing HC and
ICU groups (Figure 1C and Supplementary Materials Figure S1A). A reduced surface expression of
HLA-DR is characteristic for monocytes in septic patients [23,24]. In our study, HLA-DR expression was
indeed significantly decreased on each of the four monocyte subsets when comparing the ICU patients
with the SC or healthy group, respectively (Figure 1D and Supplementary Materials Figure S1B).
Expression of the fractalkine receptor (CX3CR1) on monocyte subtypes was also decreased (Figure 1E
and Supplementary Materials Figure S1C), as has been described for monocytes in sepsis [25].
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Figure 1. Monocyte subsets in healthy volunteers, standard care patients with infection, and intensive 
care patients. (A) Absolute numbers of circulating leukocytes (left panel) and a representative scatter 
plot of isolated leukocytes from whole blood (right panel). (B) Absolute numbers of circulating 
monocytes from the different patient cohorts (left panel), and a representative gating strategy for 
monocyte subpopulations (right panel, after the Ficoll density gradient). (C) Percentages of the four 
different monocyte subpopulations. (D,E) Percentages of human leukocyte antigen-DR isotype (HLA-
DR+) cells (D) and fractalkine receptor (CX3CR1+) cells (E) of the four monocyte subpopulations. 
Statistics: * indicates p < 0.05, ** p < 0.01, and *** p < 0.001. For a comparison of more than two groups, 
the Kruskal–Wallis test was performed, followed by post hoc testing by Dunn’s multiple comparison 
test. Sample sizes: healthy controls (HC) n ≥ 52, standard care (SC) n = 42, and intensive care unit 
(ICU) n ≥ 74. 

Figure 1. Monocyte subsets in healthy volunteers, standard care patients with infection, and intensive
care patients. (A) Absolute numbers of circulating leukocytes (left panel) and a representative scatter
plot of isolated leukocytes from whole blood (right panel). (B) Absolute numbers of circulating
monocytes from the different patient cohorts (left panel), and a representative gating strategy for
monocyte subpopulations (right panel, after the Ficoll density gradient). (C) Percentages of the
four different monocyte subpopulations. (D,E) Percentages of human leukocyte antigen-DR isotype
(HLA-DR+) cells (D) and fractalkine receptor (CX3CR1+) cells (E) of the four monocyte subpopulations.
Statistics: * indicates p < 0.05, ** p < 0.01, and *** p < 0.001. For a comparison of more than two groups,
the Kruskal–Wallis test was performed, followed by post hoc testing by Dunn’s multiple comparison
test. Sample sizes: healthy controls (HC) n ≥ 52, standard care (SC) n = 42, and intensive care unit
(ICU) n ≥ 74.
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Among septic ICU patients, n = 8 (22.2% of 36) received statin therapy before the development of
sepsis. There was no difference (p = 0.709) in survival rates among septic patients receiving (survival
of 5 patients, 62.5%) or not receiving (survival of 15 patients, 53.6%) statin therapy.

Contrary to other reports [17,18], the total numbers of circulating monocytes remain unchanged in
our study between septic (n = 36) and non-septic (n = 40) ICU patients (Figure 2A, right panel). However,
we could observe alterations in the composition of monocyte populations dependent on the presence
of sepsis. Classical monocytes were significantly reduced in septic patients, whereas the other three
populations tended to be increased in patients diagnosed with sepsis (Figure 2B and Supplementary
Materials Figure S2A). These results are in line with a recently published study investigating smaller
patient cohorts (n = 9 and n = 11) [22]. The expression of HLA-DR in monocytes from septic patients
was reduced, confirming previous findings (Figure 2C and Supplementary Materials Figure S2B) [23,24].
We could also observe a slightly decreased expression of CX3CR1 on monocytes from patients with
sepsis (Figure 2D and Supplementary Materials Figure S2C).
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Figure 2. Monocyte subsets in ICU patients with and without sepsis. (A) Absolute numbers of
circulating leukocytes and monocytes from the different patient cohorts. (B) Percentages of the four
different monocyte subpopulations. (C,D) Percentages of HLA-DR+ cells (C) and CX3CR1+ cells (D) of
the four monocyte subpopulations. Statistics: * indicates p < 0.05 and *** p < 0.001. For a comparison of
two groups, the Mann–Whitney U test was used. Sample sizes: no sepsis n ≥ 38 and sepsis n = 36.
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3.2. Gene Expression in CD14+ Monocytes from Critically Ill Patients

To gain insight into the phenotypic differences of monocytes, we isolated CD14+ monocytes
and analyzed their gene expression in an unbiased comprehensive approach by RNA sequencing.
Samples from ICU patients with sepsis were compared with those from ICU patients without sepsis
and age-matched healthy controls. Figure 3A depicts the strategy of bioinformatics analyses and
Figure 3B shows the number of differentially expressed genes between the three patient cohorts.
Principal component analysis revealed the close clustering of healthy control samples. Samples from
ICU patients clustered together as well, irrespective of the sepsis (Figure 3C). The clustering of samples
in a co-regulation network revealed two major clusters of patient groups (Figure 3D).
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Figure 3. Data structure of monocyte RNA sequencing data. (A) Schematic approach of RNA sequencing
data analysis and candidate mRNA selection for NanoString analysis. (B) Schematic representation
of the number of differentially expressed genes between the three cohorts. (C) Principal component
analysis (PCA) of the transcriptome data, depicting the group relationships of healthy controls, no
sepsis, and sepsis. The proportion of component variance is indicated as a percentage. (D) Visualization
of the sample to sample correlation of healthy control, no sepsis, and sepsis individuals.
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3.3. Enrichment of Activation Modules from Human Macrophages in Circulating Monocytes of ICU Patients

In order to relate the monocyte transcriptomic data from our cohorts to known human immune cell
activation programs, we used the human macrophage activation signatures that had been generated
from human in vitro-differentiated monocyte-derived macrophages activated by an array of defined
stimuli, as previously described in [38]. Signatures from untreated baseline in vitro-differentiated
macrophages, as well as 28 activation conditions, were linked to the data from the three patient
groups using CIBERSORT (Figure 4A). In monocytes from healthy controls, characteristic genes
from unstimulated baseline macrophages were the most prominently enriched signature. ICU
patients without sepsis showed a monocyte transcriptome enriched in the baseline signature, as
seen in healthy controls. Within the stimulation-specific signatures, the monocytes of ICU patients
displayed a slight shift towards pro-inflammatory signatures (ultrapure lipopolysaccharide (upLPS),
Pam3CysSerLys4/prostaglandin E2 (P3C + PGE2), TNF-α + P3C, and TNF-α/P3C/PGE2 (TPP)), while
also showing slight enrichment of the glucocorticoid (GC) signature. Septic patients, however, displayed
striking differences compared to non-septic patients and healthy controls. Most prominently, the
baseline-related signature was less dominant and pro-inflammatory response signatures were enhanced.
Enrichment shifted from an upLPS-associated stimulation profile to P3C + PGE2, IFN-γ, and TNF-α/P3C
signatures. In order to better apprehend the differences between sepsis and non-sepsis patients, we
performed Gene Set Enrichment Analysis (GSEA) (Figure 4B). In sepsis, a single module associated
with TNF-α/P3C/PGE2 (TPP) was significantly enriched. In non-septic patients, a module associated
with IFN-γ/TNF-α stimulation was enriched, suggesting a more classical activation (previously called
M1) of these monocytes.

To functionally analyze the differences between non-sepsis and sepsis patients, we employed gene
ontology (GO) pathway analysis of the differentially expressed genes (Figure 4C). Most significantly
enriched GO pathways in septic patients were related to the defense response to the bacterium,
reflecting the established infection in these patients. Furthermore, we observed an accumulation of
pathways associated with metabolism, cell differentiation, and proliferation, as well as the immune
response in patients with sepsis (Figure 4C). In patients without sepsis, fewer genes were regulated,
and as a consequence, fewer pathways were enriched.
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Figure 4. Enrichment of activation modules from monocyte-derived in vitro-differentiated human
macrophages [38]. (A) Relative fractions of human monocyte-derived macrophage activation signatures
from 28 activation conditions enriched in the three patient cohorts are visualized as a stacked bar
plot. As a human macrophage activation signature matrix, 184 transcriptomes representing 29
conditions from the human macrophage activation resource data were used for CIBERSORT (IC,
immune complexes; PA, palmitic acid; OA, oleic acid; LA, lauric acid; LiA, linoleic acid; SA, stearic acid;
sLPS, standard lipopolysaccharide; HDL, high density lipoprotein). (B) Volcano plots of normalized
enrichment scores (NES) and enrichment p-values comparing sepsis and non-sepsis based on Gene Set
Enrichment Analysis (GSEA) using weighted gene co-expression network analysis (WGCNA) modules.
(C) Enrichment Map Network visualization of differentially expressed genes from septic patients vs.
patients without sepsis.
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3.4. Targeted Gene Expression Analysis in Monocytes from Total Patient Cohorts

From the RNA sequencing analysis, 55 highly variable genes (previously described to delineate
activation profiles of monocytes [38]) were selected for an investigation of the complete patient cohorts
(see Figure 3A). In brief, a custom-designed panel was generated that allowed a quantitative gene
expression analysis of isolated circulating CD14+ blood monocytes in a mini-array by using the
NanoString technology [39]. In total, isolated circulating monocytes from n = 76 ICU patients (n = 36
with sepsis, n = 40 without sepsis), n = 42 standard care patients, and n = 54 healthy controls were
analyzed regarding their gene expression profile. Principal component analysis (PCA) revealed dense
clustering of the healthy control samples (Figure 5A). Samples from SC (with infections) and from ICU
sepsis patients were more dispersed, with septic patients displaying the most variance. Visualizing
the expression of mRNAs in a clustered heatmap supported the very homogeneous population of
healthy individuals compared to the heterogenic SC and ICU cohorts (Figure 5B). MRNAs in the
largest cluster (cluster I) showed a very high expression in septic patients compared to the other three
cohorts. This cluster contains mRNAs encoding for cytokine and chemokine receptors (ACKR3/CXCR7,
IL1R2, and IL18R1), and metalloproteinases (MMP8, MMP9, and ADAMTS2), but also proteins with
anti-microbial activity (ADM, LTF, LCN2, MPO, and DEFA1). Most of the mRNAs in cluster II encode
for inflammatory chemokines or cytokines (e.g., CXCL2, IL-1β, and TNF). The expression of these
mRNAs among the different patients and the healthy volunteers was very heterogeneous and not
exclusive to one cohort. Proteins encoded by cluster III mRNAs are involved in adhesion (CD38,
FCGR3B, and SLAMF7) and the classical complement system (C1QB and C1QC). Like in cluster I,
mRNAs in cluster III displayed a high expression among septic patients with respect to the other three
cohorts. Cluster IV contains mRNAs with a moderate expression in healthy volunteers, but reduced
expression among the patient cohort, with septic patients showing the least expression. Proteins
encoded by mRNAs from this cluster are very diverse in their functions. Longitudinal analysis showed
a decline in the expression of most of the mRNAs analyzed (Supplementary Materials Figure S3).
mRNAs from clusters I and IV showed the highest expression upon ICU admission and declined on day
3 and day 7 during the ICU stay. These clusters contain mRNAs encoding for anti-microbial effectors,
metalloproteinases, chemokines, and cytokines, as well as their receptors. On the other hand, mRNAs
in cluster III showed an increase in expression until day 7. This cluster is largely identical to cluster IV
from Figure 5B, containing mRNAs with different functions. For septic patients, no substantial changes
in mRNA expression patterns could be identified (Supplementary Materials Figure S3).
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Figure 5. NanoString analysis of mRNA expression in peripheral CD14+ monocytes in healthy
volunteers, standard care patients with infection, and intensive care patients with and without sepsis.
(A) Principal component analysis (PCA) after variance stabilizing transformation of the count data.
(B) Clustered heatmap of the standardized mRNA expression of genes measured by NanoString
analysis. Sample clustering was separately performed for each patient cohort. Sample sizes: healthy
controls (HC) n = 54, standard care (SC) n = 42, intensive care unit (ICU) n = 76, no sepsis n = 40, and
sepsis n = 36.

Out of the 55 selected mRNAs from the NanoString analysis, 30 mRNAs showed significant
differences in their expression between ICU patients with sepsis and ICU patients without sepsis
(for example, see Figure 6A,C, right panels). From the 30 mRNAs, nine showed significant changes
when comparing day 1 and day 7 of the ICU stay (for example, see Figure 6B,D, left panels). Only
two mRNAs showed significant differences when comparing their expressions on day 7 of the ICU
stay from ICU patients with and without sepsis (Figure 6B,D, right panels). After correcting for
multiple comparisons by Bonferroni correction using an adjusted significance level of α = 0.05
divided by 55, ARHGEF10L remained significant, while ALOX5AP did not. In detail, the mRNA
encoding arachidonate 5-lipoxygenase-activating protein (ALOX5AP, FLAP) was highly upregulated
in monocytes from ICU patients compared to healthy controls and in septic patients compared to
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non-septic patients (Figure 6A). Moreover, longitudinal analyses on days 1, 3, and 7 of the ICU
stay revealed a normalization of ALOX5AP mRNA expression from non-septic patients towards the
expression level of healthy individuals, whereas the mRNA levels from patients with sepsis remained
elevated (Figure 6B). ALOX5AP is important for leukotriene synthesis and is considered a marker
for GC/TGF-β-activated macrophages [40]. In contrast, the mRNA encoding for the Rho guanine
nucleotide exchange factor (GEF) 10-like protein (ARHGEF10L) decreased in ICU patients compared
with healthy controls and was even less abundant in patients with sepsis compared to non-septic
patients (Figure 6C). After seven days of ICU stay, the mRNA expression from non-septic patients rose
again towards conditions in healthy controls, but mRNA levels from septic patients remained low
(Figure 6D). ARHGEF10L, also known as GrinchGEF, is a Rho-specific guanine nucleotide exchange
factor [41]. It has to be kept in mind that only patients that did not die within the first days (‘worst
prognosis’) and were not transferred from the ICU to the SC ward (‘best prognosis’) provided samples
for a longitudinal assessment of monocyte activation patterns. However, patients with full longitudinal
sampling did not differ from patients without follow-up measurements regarding disease severity (i.e.,
APACHE II score) or outcome (i.e., ICU or in-hospital mortality) (Supplementary Materials Table S1).
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(A) Expression of arachidonate 5-lipoxygenase-activating protein (ALOX5AP) mRNA in CD14+

monocytes from healthy volunteers, standard care patients with infection, and intensive care patients
(left panel) or ICU patients with and without sepsis (right panel). (B) Longitudinal assessment of
ALOX5AP mRNA expression in CD14+ monocytes from patients on day 1, 3, and 7 of the ICU stay.
(C) Expression of monocytic guanine nucleotide exchange factor 10-like protein (ARHGEF10L) mRNA
in CD14+ monocytes from healthy volunteers, standard care patients with infection, and intensive
care patients (left panel) or ICU patients with and without sepsis (right panel). (D) Longitudinal
assessment of ARHGEF10L mRNA expression in CD14+ monocytes from patients on day 1, 3, and
7 of the ICU stay. Statistics: * indicates p < 0.05, ** p < 0.01, and *** p < 0.001. For a comparison
of two groups, the Mann–Whitney U test was used; for a comparison of more than two groups, the
Kruskal–Wallis test was performed, followed by post hoc testing by Dunn’s multiple comparison test;
and for longitudinal analysis (Figure 6B,D, right panels), two way ANOVA was performed, followed by
a Bonferroni post-test. Sample sizes: healthy controls (HC) n = 54, standard care (SC) n = 42, intensive
care unit (ICU) n = 76, no sepsis n = 40, and sepsis n = 36; no sepsis: d1 = 14, d3 = 10, and d7 = 6; sepsis:
d1 = 16, d3 = 13, and d7 = 6.

3.5. Monocytic ALOX5AP and ARHGEF10L Expression as Markers of Prognosis for ICU Patients

To further validate the clinical relevance of the two mRNAs for ICU patient prognosis, we analyzed
their respective expression by comparing patients surviving the ICU stay with patients that died
at the ICU. For ALOX5AP, no significant differences were observed, but there was a trend towards
increased mRNA expression in patients who died during the ICU stay (Figure 7A, left panel). This
was corroborated by receiver operating characteristic (ROC) curve analysis for ALOX5AP mRNA
expression, which did not reveal a high prognostic value (Figure 7B, left panel). On the other hand,
the expression of ARHGEF10L mRNA was significantly decreased among patients who died in the
ICU, and the ROC curve analysis revealed a good performance as a discriminative prognostic marker
(Figure 7A,B, right panels). Furthermore, we found a clear correlation between the APACHE II score
for ICU patients and ALOX5AP mRNA expression (r = 0.4253, p = 0.0032; Figure 7C), supporting
its association with disease severity. ARHGEF10L mRNA expression, on the other hand, tended
to decrease with higher APACHE II scores (r = -0.2819, p = 0.0577; Figure 7C). We calculated Cox
regressions with respect to survival for both mRNAs (omnibus test of model coefficients, ALOX5AP
p = 0.004 and ARHGEF10L p = 0.007 for variables in the equation). Using the Youden index, we
calculated optimal cutoff values for both mRNAs. Using Kaplan–Meier curve analysis, the chances for
the survival of ICU patients was displayed. For ALOXAP5, no improved outcome was detected, as
survival curves were almost identical. However, patients with ARHGEF10L expression equal to or
above the cutoff showed an almost doubled chance of survival compared to patients with expression
below the threshold (Figure 7D).
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Figure 7. Correlation of mRNA expression with survival and prognosis for intensive care patients.
(A) Expression of ALOX5AP and ARHGEF10L mRNA in CD14+ monocytes from intensive care patients
surviving and not surviving their ICU stay. (B) Receiver operating characteristic (ROC) curve analysis.
(C) Correlation analysis of APACHE II score with mRNA expression of ALOX5AP in monocytes from
ICU patients (left panel, three values out of range are included in the analysis, but not displayed in
the graph) and ARHGEF10L (right panel). (D) Kaplan–Meier survival curves for ICU patients. Left:
ALOX5AP expression <3681.75 counts (grey line) or ≥3681.75 counts (black line), Log rank 0.238,
p = 0.625; Right: ARHGEF10L expression < 413,265 counts (grey line), black ≥ 413,265 counts (black
line), Log rank 6.978, p = 0.008. Statistics: ** indicates p < 0.01. For a comparison of two groups, the
Mann–Whitney U test was used. Sample sizes: survivor ICU n = 55 and death ICU n = 21.

4. Discussion

In this study, we comprehensively analyzed the mRNA expression profiles in CD14+ monocytes
from critically ill patients and evaluated the usability of regulated monocytic mRNAs as prognostic
markers, particularly in sepsis. In addition, multicolor flow cytometry revealed alterations in the
composition of circulating monocyte subsets and their downregulation of HLA-DR and CX3CR1 surface
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expression in sepsis. Comparing mRNA expression by full RNA sequencing in CD14+ monocytes from
septic and non-septic patients showed differences in the immune response, metabolism, and processes
associated with the cell cycle. An in-depth analysis of the patient cohorts revealed that in sepsis, the
mRNA encoding ALOX5AP is upregulated and persists over a period of at least seven days of the ICU
stay. ARHGEF10L mRNA displays an opposing expression pattern with prolonged downregulation
in septic patients. Furthermore, ARHGEF10L mRNA expression negatively correlates with disease
severity and patient survival.

Circulating monocytes are key players of the innate immune system and are involved in an acute
response to, e.g., bacterial infections. In most cases, three different subpopulations of blood monocytes
are distinguished: CD14+CD16− classical monocytes, CD14−CD16+ non-classical monocytes, and an
CD14+CD16+ intermediate subtype [22]. The non-classical and intermediate monocytes display more
pro-inflammatory properties, while the classical monocytes are more immature and phagocytic [22].
However, intermediate monocytes are reported to be a more heterogeneous population containing cells
with cytotoxic features [21]. In our study, we discriminated between these three extensively described
subpopulations, but also included another “intermediate” population (CD14lowCD16−, as displayed in
Figure 1B).

A decrease in the abundance of classical monocytes for septic patients has been reported, alongside
an increase in the proportions of intermediate and non-classical monocytes [22]. Similar results
were obtained from a study analyzing low-grade inflammation after the induction of experimental
endotoxemia in humans [42]. The results from our study are in line with prior observations;
however, changes were rather moderate when comparing no sepsis and sepsis (see Figure 2B).
A possible explanation for this could be the different gating strategy employed by Mukherjee and
colleagues, including pre-selection on HLA-DR+ cells [22]. In fact, we observed a tendency towards a
decreased surface expression of HLA-DR and CX3CR1 in our four subpopulations, reflecting previous
findings [19,23–25]. Consistently, reduced HLA-DR expression on circulating monocytes was also
observed by others, who could additionally demonstrate that the persistent suppression of HLA-DR
expression predicts the outcome of patients [3,4].

We sought to analyze the whole transcriptome of the major monocyte subpopulation and therefore
isolated CD14+ monocytes (corresponding to the classical and intermediate subpopulations) from the
whole blood of randomly selected patients with sepsis, without sepsis, and healthy individuals. RNA
sequencing revealed a clear separation of samples from healthy individuals and samples from ICU
patients (see Figure 3B). A recent study nicely demonstrated widespread changes in the methylome of
circulating monocytes from septic patients with the acquisition of a tolerized phenotype and organ
dysfunction [43].

We compared data from our isolated monocytes to distinct activation programs of stimulated
human monocyte-derived in vitro-differentiated macrophages, as comprehensively presented in [38].
The enrichment of transcriptional activation signatures differed between monocytes from healthy
controls and ICU patients with or without sepsis (Figure 4A). Interestingly, activation signatures
from monocytes of ICU patients showed enrichment in the GC-related module, which could reflect
their reaction towards increased endogenous cortisol as part of the stress response. Sepsis patients
showed an overall increased enrichment in pro-inflammatory signatures compared to non-septic
healthy controls. Increased enrichment was observed in activation profiles related to stimulation with
combinations of P3C/PGE2/TNF-α. Notably, TPP (TNF/P3C/PGE2) signaling has been linked to chronic
inflammation [38].

A more in-depth analysis of significantly differentially expressed genes comparing non-sepsis
with septic patients revealed an enrichment of pathways associated with metabolism and glucose
homeostasis, the immune response, and the negative regulation of proliferation and differentiation (see
Figure 4C). During sepsis, monocytes undergo a phenotypical transition from the hyperinflammatory
to the immunotolerant state, which is accompanied by shifts in cellular metabolism and cytokine
production [15]. Blocking of the cell cycle in CD14+ monocytes is in line with the reduction of
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classical monocytes in sepsis observed by FACS analysis (see Figure 2B). For neutropenia during
sepsis, the reduction of neutrophils could be attributed to apoptosis, as well as a sustained blockade of
hematopoietic stem cell (HSC) differentiation [44].

Similar to the PCA derived from the RNA sequencing data (as shown in Figure 3B), PCA from
NanoString data showed a homogeneous cohort of healthy individuals, while ICU patients were more
scattered (with sepsis patients being the most widespread); the SC patients displayed in-between
characteristics (see Figure 5A). The clustering of genes in a heatmap showed distinct groups of genes
with similar expression patterns in the cohorts. Proteins encoded by mRNAs in cluster I—with
the highest expression in septic patients—function in inflammatory processes, like anti-microbial
responses and the recognition of chemokines and cytokines. However, some mRNAs also point to
an anti-inflammatory polarization of monocytes: metalloproteinases, as well as MRC1, the mannose
receptor. In addition, TNFAIP6 mRNA has been demonstrated to function in macrophage transition
from a pro- to anti-inflammatory phenotype [45], possibly linking the dichotomous pattern observed
in cluster I. Similarly, cluster III mRNAs contribute to defense responses (complement and adhesion),
and the chemokine receptor CCR2 is typically expressed on inflammatory monocytes. Regarding
the longitudinal analysis of non-septic patients, most mRNAs related to inflammatory processes
were downregulated from admission to day 7 of their ICU stay. This may reflect a recovery of
patients without diagnosed sepsis. For septic patients, mRNA expression was heterogeneous, but
generally higher than in patients without sepsis (Supplementary Materials Figure S3). Therefore, those
monocytes do not significantly change their phenotype over the time period observed, which is also
evident from the analysis of single mRNAs (Figure 6B,D). This phenomenon may be attributed to the
generally more overstrained immune system and the inability to fully regenerate. Patients with sepsis
demonstrated very consistent and persistent changes (at least within the observed period), as also
described in [3,4], but this may be confounded by a greater severity of illness that may also affect the
immune cell phenotype.

In order to screen the selected 55 candidates for potential prognostic markers, we identified two
mRNAs with interesting expression patterns. First, the mRNA encoding for ALOX5AP seems to more
present in critically ill patients. Furthermore, even after seven days in the ICU, patients with sepsis
failed to restore ALOX5AP mRNA expression to baseline conditions, unlike patients with excluded
sepsis (Figure 6A,B). Leukotrienes are potent inflammatory mediators involved in the inflammatory
response in, e.g., asthma and sepsis. The synthesis of leukotrienes from arachidonic acid is initiated by
5-lipoxygenase (5-LO), together with ALOX5AP. Despite lacking enzymatic activity, ALOX5AP is able
to bind to arachidonic acid, thereby transferring it to 5-LO [46]. In monocytes, inflammatory stimuli
like LPS or TNF-α induce ALOX5AP expression [47,48]. This implies that leukotrienes are associated
with the severity of disease, which was further corroborated by the findings that ICU survivors express
less ALOX5AP mRNA (Figure 7). The second identified mRNA, encoding ARHGEF10L, was found
to be downregulated in sepsis and expression remained low during the ICU stay of septic patients
(Figure 6C,D). Furthermore, patients not surviving ICU expressed significantly lower amounts of that
mRNA and the ROC analysis revealed a moderate diagnostic ability (AUC = 0.73) of that marker
(Figure 7B). Importantly, the chance of survival was improved when patients expressed higher amounts
of monocytic ARHGEF10L mRNA. Besides a described role in hepatocellular tumorigenesis [49],
not much is known about the function of ARHGEF10L. It has been demonstrated that ARHGEF10L
specifically interacts with RhoA, RhoB, and RhoC, but not with other members of the Rho family of
small GTPases [41]. The stimulation of RhoA leads to a reorganization of the actin cytoskeleton of the
cell, and may be implicated in cell division.

5. Conclusions

Our comprehensive analysis of circulating monocytes in critically ill patients revealed a distinct
activation pattern, particularly in ICU patients with sepsis, which resembles characteristic functional
stages of monocyte-derived macrophages. The association with disease severity, the longitudinal
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recovery or lack thereof during the ICU stay, and the association with prognosis indicate the clinical
relevance of the monocytic gene expression profile during sepsis. In particular, the persistently reduced
monocytic mRNA expression of ARHGEF10L was linked to reduced survival. Its value as a prognostic
marker or therapeutic target should be addressed in further studies.
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Figure S1: Monocyte subsets in healthy volunteers, standard care patients with infection, and intensive care
patients; Figure S2: Monocyte subsets in ICU patients with and without sepsis; Figure S3: NanoString analysis of
mRNA expression in peripheral CD14+ monocytes in intensive care patients with and without sepsis on day1,
day 3, and day 7 of the ICU stay; Table S1: Characteristics of intensive care unit patients (ICU) with or without
follow-up measurements.
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