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Abstract

Human footprints provide some of the most publically emotive and tangible evidence of our ancestors. To the scientific
community they provide evidence of stature, presence, behaviour and in the case of early hominins potential evidence with
respect to the evolution of gait. While rare in the geological record the number of footprint sites has increased in recent
years along with the analytical tools available for their study. Many of these sites are at risk from rapid erosion, including the
Ileret footprints in northern Kenya which are second only in age to those at Laetoli (Tanzania). Unlithified, soft-sediment
footprint sites such these pose a significant geoconservation challenge. In the first part of this paper conservation and
preservation options are explored leading to the conclusion that to ‘record and digitally rescue’ provides the only viable
approach. Key to such strategies is the increasing availability of three-dimensional data capture either via optical laser
scanning and/or digital photogrammetry. Within the discipline there is a developing schism between those that favour one
approach over the other and a requirement from geoconservationists and the scientific community for some form of
objective appraisal of these alternatives is necessary. Consequently in the second part of this paper we evaluate these
alternative approaches and the role they can play in a ‘record and digitally rescue’ conservation strategy. Using modern
footprint data, digital models created via optical laser scanning are compared to those generated by state-of-the-art
photogrammetry. Both methods give comparable although subtly different results. This data is evaluated alongside a
review of field deployment issues to provide guidance to the community with respect to the factors which need to be
considered in digital conservation of human/hominin footprints.
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Introduction

Within the geological record fossilised human footprints have

been found preserved in a range of depositional environments

providing information about both the presence and palaeoenvir-

onment of our ancestors, and in a few cases that pre-date

anatomically modern Homo sapiens informing us about the

evolution of human gait (e.g., [1–2]). The number of footprints

sites now documented in the literature has grown dramatically

over the last forty years, especially those sites of Holocene or Late

Pleistocene age [3,4]. While some of these footprints are preserved

in partially lithified volcanic ash such as those found at Laetoli in

northern Tanzania (3.66 M years) [5] or those from Jeju Island in

Korea (15 K years) [6], most are preserved in unlithified, fine-

grained silt and fine sand such as those at Ileret in northern Kenya

(1.5 M years) [7]. In some notable cases of Holocene age, prints

are exposed by coastal erosion and then destroyed (e.g., [8–10]).

The conservation of these soft-sediment footprint sites, especially

for sites of palaeoanthropological significance like that at Ileret is

challenging and a subject which has received little attention to date

with the exception of the debate surrounding the conservation of

the Laetoli prints [11–15].

In parallel with this progressive increase in the number of

known human footprint sites has been the increasing availability of

field strategies with which to capture and record fossil prints in

three dimensions (e.g., [15–20]) and crucially to analyses this data

objectively (e.g., [2,7,21]). In part this has been driven by the

increased use of digital data in the study of dinosaur footprints

(e.g., [16–21]). Traditional solutions of manual photogrammetry

deployed at Laetoli [22], have been replaced by the increasing use

of digital photogrammetry [20,23,3]. A range of optical laser

scanning methods have also been deployed at footprint sites from

long range Light Detection and Ranging (LiDAR) imaging [17], to

close quarter and high resolution scanning [7]. The increased

availability of methods with which to capture the three-dimen-

sional surface of a print and to subsequently output it via three-

dimensional printing or rapid proto-typing technology [24]

provides a viable conservation and preservation strategy with
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which to preserve fragile and eroding footprint sites, but equally

poses challenges with respect to the most appropriate digitising

technique to adopt [25]. In this context the aim of this paper is

two-fold: (1) to explore the geoconservation of soft-sediment

human/hominin footprint sites; and (2) in light of this explore the

role that digital conservation and specifically evaluate two

alternative approaches – photogrammetry and optical laser

scanning - with which to do so.

Part One: Geoconservation of Human Footprint
Sites

Spectrum of Sites
While all historical/archaeological/fossil human footprints are

of note and attract scientific and public interest, some are clearly of

more significance in a palaeoanthrpological context than others.

Human footprint sites are preserved in a range of different

depositional environments which now outcrop, and are exposed,

in a variety of geomorphological settings [3] and as such are

exposed to different levels of preservation risk. For example, the

mid-Holocene footprints of the Sefton Coast in northern England

[8], originally formed in coastal dune slacks during a period of

lower sea level, are now exposed by storm events which draw-

down protective beaches to expose the underlying ichnologically-

rich silt beds. Sections of this imprinted surface are exposed for

relatively short intervals before being lost to coastal erosion. In

Namibia, footprints (Fig. 1) [26] are exposed on terrace surfaces

formed of fluvial over-bank flood deposits which were desiccated,

imprinted and subsequently buried by mobile sand dunes and are

exposed periodically as dunes migrate over the surface. These

prints are quickly eroded and deflated when the salt hardened silt

is disturbed either naturally or increasingly by tourists and by

recreational vehicles exploring the dune fields. Sites like these are

of local archaeological significance and their true scientific value is

perhaps more limited, although one should not underestimate

their importance to local populations and heritage tourism.

There are sites of greater scientific value in terms of their ability

to aid in the understanding of human evolution, which are also

arguably aided by the continued operation of natural geomor-

phological process. For example, at Nahoon in South Africa a trail

of human prints is preserved in aeolinites dated to 12464 k BP

and are potentially amongst the oldest examples of Homo sapiens

prints in Africa, although the more equivocal Langebaan prints

provide a close rival for this title [27], as do the recently discovered

prints close to Lake Natron in Tanzania [28]. The Nahoon prints

were first observed in 1964 within an overhang which then

collapsed with two prints rescued and transported to the local East

London Museum [27]. The original site, on the sea cliffs at

Nahoon, is maintained as tourist attraction and excavation

reserve, and is marked by a footprint shaped visitors centre. One

could argue that continued coastal erosion and cliff collapse has

the potential to reveal new prints in time, despite the risk that some

may be lost during that process. The conservation strategies

relevant to each of these sites is potentially different but in all cases

allowing natural process to continue – dune migration and coastal

erosion – is positive since in both cases new prints are exposed for

study.

This type of approach sits in contrast with that adopted at

Laetoli in northern Tanzania which is probably the most valuable

currently known palaeoanthropological footprint site, in the world.

The prints were first excavated in 1978–79 and are preserved in

volcanic ash, lithified to varying amounts via a secondary deposit

of calcite, and were carefully documented at the time using the

latest technology, including hardcopy vertical photogrammetry,

and carefully casting with a variety of media [29,30]. These casts

and moulds have been used widely to supply teaching models

around the world and used extensively in research (e.g., [2,31]).

Figure 1. Examples of soft-sediment footprint sites. A. Footprint
site south of Walvis Bay, Namibia. Migration of active dunes across silt
surfaces reveals a range of Holocene footprints. B. FwJj14E footprint
site close to the village of Ileret in northern Kenya. The prints occur at
multiple levels within the eroding silt bluff. Note the rock armour
introduced below the lower surface to combat seasonal storm run-off
and erosion. C. GaJi10 footprint site south of Koobi Fora in northern
Kenya. The site is located adjacent to the bed of a seasonally active river
and as shown the footprint rich beds dip into the slope away from the
thalweg of the channel.
doi:10.1371/journal.pone.0060755.g001
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The site was originally re-buried with backfill which was

unfortunately rich in acacia seed, the growth of which provided

a clear threat to the conservation of the site leading to its re-

excavation in the 1990s [12–15]. Demas and Agnew [12]

documented the decision making process which led to the re-

burial of the site in a controlled manner involving the use of a

range of geo-membranes acting as barrier layers to prevent a

recurrence of the root problem. The solution while effective [13]

remains an area of continual tension both for the scientific

community who are denied access and because of the inability

both locally and nationally to derive tourist and cultural value

from the site. It is worth nothing that an exhibition at Olduvai

Museum including replicas of some of the original casts provides

compensation in part for the local community and international

tourists. A range of alternative plans have been mooted in recent

years including the complete excavation and removal to some

form of either local or national museum [15]. The strategy here is

clear, to preserve at all costs a finite resource, something which is

aided by the fact that although fragile, the substrate is partially

lithified.

In effect there is a spectrum of sites from those of relatively low

scientific value, often with high print numbers, which are located

in sites that are threatened continually by natural processes but are

in turn dependent to some degree on natural process for exposure

(e.g., Sefton Coast or Namibia), via those at Nahoon or

Langabaan which are of greater scientific significance and are

more limited in extent, to those at the other extreme such as

Laetoli which are of considerable scientific importance, limited in

number, but are preserved in a comparatively firm substrate and

are consequently threatened less by natural processes. The Ileret

footprints in northern Kenya [7] sit uncomfortably within this

spectrum, being arguably of considerable scientific importance,

modest in number but preserved in what is highly erodible,

unlithified sediment and consequently form an interesting case

study.

Ileret Footprints: a Case Study
The prints located close to the Kenyan village of Ileret (Site:

FwJj14E) [7] have been dated to 1.5 million years old and are

(Fig. 1) therefore the second oldest footprint site in the world. The

site is preserved in unlithified, fine-grained silt and sand deposited

in low energy fan deltas at the margins of playa lakes on the floor

of the Turkana rift valley [32]. The Ileret site itself consists of an

eroding bluff 5 m high exposing horizontally bedded, early

Pleistocene layers which are inter-bedded with three volcanic tuffs

used for dating purposes. Footprints occur on several bedding

planes and the site is actively eroding via gullies and slope wash,

during periodic storm run-off events (Fig. 1). Bennett et al. [7] also

reported on the re-excavation of a slightly younger footprint site

(Site: GaJi10) 45 km to the south close to Koobi Fora, consisting of

a short hominin trail, first reported by Behrensmeyer and Laporte

in 1981 [33]. In contrast to Ileret the fine sand and silt beds are

inclined, due to normal faulting and associated block rotation, at

approximately 32u to the northwest. The footprint site is located at

valley floor level on the northern flank of a dry river valley (Fig. 1).

Excavation of the footprint surface into the valley side is limited by

the increased over-burden and the excavated site is at risk from

flooding and erosion during storm events. The original site

excavated by Behrensmeyer and Laporte [33] was re-buried with

backfill material and in places a layer of canvas or plastic to act as

a marker horizon. In terms of conservation this has proved

adequate, because on re-excavation almost 30 years later the site

was largely preserved undamaged apart from the loss of one of the

hominin footprints due to erosion along the axis of the valley floor.

The re-excavated prints proved to be far superior in quality to the

fibreglass cast of the site held at the National Museums of Kenya

and dating from the original excavation [7].

The key conservation threats at both of these two Kenyan

footprint sites can be summarised as: (1) sediment weathering and

gravity driven slope failure; (2) lateral fluvial erosion and/or rain

induced gullying during wet seasons; (3) bio-erosion due to roots,

animal burrows and the passage of grazing livestock; (4) unlawful

excavation; (5) inappropriate exploitation by indigenous popula-

tions, for example removing valuable assets such as plastic sheeting

or accidental, curiosity driven damage; (6) damage during

repeated re-excavation during successive field seasons; and (7)

break-up of the sediment surfaces due to changes in sediment

moisture content (causing swelling or desiccation), thermal

expansion/contraction and vertical unloading all of which can

be caused by changes to overburden volume, surface run-off and

hydrology geology during excavation of benches and introduction

of plastic sheeting and other impermeable membranes by

excavators. Of these the most important are probably changes to

the sediment moisture content and natural erosional process in

semi-arid environments.

Demas and Agnew [14] provided a framework in which to

consider the conservation management strategy at Laetoli, namely

a review of values, benefits and stakeholders. They also argued

that the key to success is joint rather than consensual decision-

making on the basis that no one solution will necessarily please all

parties. Using this framework it is possible to suggest that the key

issues at Ileret and Koobi Fora are:

N Values. Demas and Agnew [14] see this as the value of the

site’s research contribution both at the time of discovery,

currently and its future potential. There is also the symbolic

and spiritual value of sites like this; as stated by Demas and

Agnew ([14], p.67) ‘footprints offer a unifying and potent

symbol of our species and our beginnings’. The Kenyan sites

represent the second oldest footprint localities in the World.

Though Laetoli is older, the Kenyan sites appear to represent

the feet of Homo egaster/erectus [7] and therefore are on the other

side of the Australopithecus to Homo divide - one of the most

important stages in human evolution, representing the

transition to more open habitats, endurance walking and

running and consequently potentially greater migration [34].

The assumption has been made to date that the prints

discovered at both sites in Kenya are likely to be derived from

the same species of track maker, but the fact that at least three

hominin species were roaming the landscape at this time [34]

all of which might have left a footprint record, raises a

tantalising possibility.

N Benefits. The benefits to the scientific community and the

quest to understand human origins and evolution are

considerable and taken as read here. The potential benefits

to the local community are provided by the revenue

introduced to the local economy by foreign excavators and

potentially via heritage tourism, although the remote nature of

the sites, and the lack of indigenous wildlife which has been

hunted to near extinction, may be a serious limitation to this

and the tribal/political instability of the region close to the

Ethiopian and Somalian borders makes it an unlikely tourist

destination at the present.

N Stakeholders. The stakeholders are multiple but include the

original excavators, the current excavators and permit holders,

the scientific community at large, the National Museums of

Kenya responsible for issuing the excavation/collection

permits, the local community and tribal elders, as well as the
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regional and national community. As the site lies just to the

north of the Sibiloi National Park all of these stakeholders have

a potential voice in the outcome; it is not something that

should or can therefore be determined simply by the original

excavators and current permit holders, although one could

argue they have a responsibility to take the lead.

To date the conservation options for the Kenyan sites have yet

to be explored in full although they have been scoped tentatively

[35]. We recognise three basic options: (1) on-site conservation; (2)

off-site conservation; and (3) do nothing. Options for on-site

preservation include a range of possibilities from exposed display

to some form of shelter. Unprotected exposure is not an option

since the surface would be uncovered and quickly erode under

seasonal rain, a process enhanced by seasonal desiccation cracking

and individual grain spalling. Surface hardening with resin might

prevent this but it is hard to envisage stabilisation of the whole

surface without causing changes to the moisture content and

dynamics of underlying or adjacent beds leading to structural

failure of the hardened slab. Construction of a shelter to protect

the footprint surface from the elements, such as that adopted at the

Acahualinca footprint site in Nicaragua [36] along with control of

surface run-off may provide an option. Agnew [37] provides a

useful review of the factors to be considered when opting for some

form of shelter at archaeological sites and suggests that solutions

require high capital investment, on-going maintenance and a

commitment from the local community and the availability of

tourists both scientific and general. Whether the site is of sufficient

scientific ‘value’ to merit this investment and whether investment

can be found are pertinent questions. Engagement from local

stakeholders would be vital and with the absence of passing tourists

the site is unlikely to provide sufficient economic return for the

local community in order to get them to invest time and energy in

site stewardship, although clearly this could be explored.

Covered display would provide protection from rainfall and

slope run-off during storm events, but would require maintenance

since it would naturally channel water which increases the risk.

The source of the capital investment and continued maintenance

is also an issue. The lack of passing tourists also precludes the

likelihood of significant tourist revenue for the local community. In

the case of GaJi10 one needs to control storm flow from the

adjacent river bed since any excavation void would be lower than

the adjacent river floor. The challenges of designing a structure

and drainage control for both GaJi10 and FwJj14 are consider-

able, although not insurmountable given financial investment and

on-going maintenance. The value of doing so is however

questionable given the lack of tourist facilities despite the field

stations of the Turkana Basin Institute and National Museum of

Kenya at Koobi Fora. The final on-site option is buried display in

which the site is buried for the long-term using the lessons gained

from Laetoli [15] coupled with either an on-site display or local

museum. It is worth pointing out that burial has worked well at

GaJi10, but is unlikely to be so successful at FwJj14E since the

prints are part of a naturally eroding bluff.

Off-site options involve the removal of individual blocks or

sections of a surface to either a local or regional/national museum

for display. Both the South African footprint sites of Langebaan

and Nahoon have been removed as blocks and are now stored in

museums [27], for example although their removal has been

facilitated by the material being heavily lithified. One of the

footprints from Cuatro Ciénegas is stored in the Museum of the

Desert at Saltio, but its provenance with the actual footprint site

which has only recently been re-discovered is unclear and

demonstrates some of the risk of breaking the link between a

museum specimen and the original site [38], and the importance

of thorough documentation when excavating. Given that the

surface is unlithified and friable the ability to remove large blocks

and transport them from the remote site is questionable given the

transport infrastructure available. Footprints also represent addi-

tional challenges to curation compared with body fossils in that

track sites tend to require large areas for display and/or storage.

Excavation and collection of individual prints from a larger site is

undesirable for the reasons noted above, but collecting and

curating an entire or even partial track surface is often beyond the

means of most museums.

The final option is to do-nothing but put in place an on-going

monitoring and recording programme consistent with, for

example, approaches within rescue archaeology [39]. The

argument here is that while each footprint is highly valuable the

very act of slope erosion will reveal more of the imprinted surfaces

and that their continual erosion is a positive action provided that

the data is captured as it is exposed but before it is eroded. One of

the limitations to current excavation is the amount of overburden.

The depositional environment is extensive and the concentration

of hominins in water-rich areas is likely to be such that the

probability of more prints being found laterally or at adjacent sites

is high. This appears to be the case at Ileret since subsequent

excavations to those completed in 2009 has revealed additional

prints. Such a strategy acknowledges the futility of trying to

preserve soft-sediment sites such as this and changes the emphasis

from one of preservation of the physical prints to the more abstract

conservation of scientific data and its public dissemination. The

key is how the data is recorded and then shared throughout the

scientific community for use by all, and how this resource is used to

drive in country tourism activity.

Rescue Archaeology and Hominin Footprint Sites
One could argue that all the above footprint sites discussed so

far fall along a continuum with site preservation at one end of the

spectrum and ‘record and digital rescue’ at the other (Fig. 2). This

is irrespective of their ‘value’ defined either by the current

scientific community or by the public at large. Within this there

are a range of variables which need to be considered from

logistical access, heritage tourism potential, print density and

potential for more prints, through to the geological factors which

control the risk of substrate erosion.

There is a parallel here with approaches to geoconservation

developed in the UK during the late 1980s [40]. As part of a

systematic review of geological Sites of Special Scientific Interest in

the UK a strategy for their subsequent management was

developed [41] which was based on their classification into one

of two types:

1. Exposure sites, such a coastal cliffs, river cliffs or quarry

exposures where the management aim was to maintain the

exposure which was assumed to be essentially limitless. For

example, where there was an extensive outcrop of a particular

fossil-rich horizon the aim was to maintain access to that

outcrop via fresh or maintained exposures. In these cases

maintaining active erosion of coastal or fluvial cliffs, faces

within worked quarry, or in the case of soft-sediment sites

preserving ‘green-field’ areas where scientific excavation, if not

public viewing, could occur in the future was the driving aim of

conservation management; a clear strategy to maintain access

and in some cases even celebrating erosion and quarrying!

2. Integrity sites, where the aim was to preserve a resource of

more limited extent or number. For example a defined area of

mine tailings where exotic minerals could be found recovered
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or a lagerstätten of limited extent where the aim is to protect

every last piece of a very small resource.

This framework provides an interesting perspective on the Ileret

case study and similar sites since one might at first principal

assume that they are integrity sites since there are few footprints

and every one must therefore be preserved. However, at sites like

this where there are extensive areas with the potential to contain

prints, in this case extensive areas of a fine-grained fan delta and

evidence of human congregation, then one could argue that there

is a high probability that prints are more ubiquitous than

previously thought, but at this point are just undiscovered. This

is confirmed by the fact that extensive exposures of animal prints

have been found laterally to GaJi10 and further hominin prints

lateral to FwJj14E. The limitation to study is actually that they are

buried deeply by overburden, making continued erosion a positive

factor since it will reveal new prints for study. This is similar to the

UK coastal footprint sites in the Severn Estuary [42] or on the

Sefton Coast [9] where continual coastal erosion exposes new

prints for study which cannot be preserved only recorded and

rescued. The key difference here is that unlike a typical UK coastal

fossil site the value to the palaeo-anthropological community of a

site such as Ileret is much greater as is the symbolic and cultural

value to both indigenous and foreign populations. In both cases we

would argue that it is the quality of the record and digital rescue

approach used that is key and how this is subsequently made

publically available to all stakeholders not just the small group of

scientist that hold the current excavation permit.

Record and digitally rescue is therefore about developing a

conservation strategy that is able to create a virtual representation

of the site, along with the sedimentary and palaeoenvironmental

information it contains that will provide a timeless resources for

future scientific study that is accessible to all and crucially a

platform for public engagement both at and beyond the site. It is

also about timely and continual intervention to make sure data is

not lost and involving the local community in that process is

potentially one approach. A more radical strategy of this sort is

made possible by the increasing availability and accuracy of

methods of capturing three-dimensional data thereby increasing

the accuracy and sophistication of record and rescue in the context

of human footprints. In this context it is essential that the scientific

community has a clear understanding of the different approaches

and there relative merits.

Part Two: Digital Data

If, as argued above, ‘rescue and digitally record’ is the only

viable option for many human footprint sites such as that at Ileret,

then the importance of digital capture as part of the recording

programme is critical. The technology exists to compile accurate

and reliable three-dimensional data allowing both quantitative

analyses in the present and future as well as reproductions to be

created for display and public engagement. The challenge that

exists at the moment is to optimise data collection and for

practitioners to understand the relative merits of both photogram-

metry [20] and optical laser scanning (e.g., [7]).

The construction of digital elevation models using photogram-

metric methods is well established and manual photogrammetry

using vertical stereo-pairs taken with a custom built tripod was

used at Laetoli [29] and during the original Koobi Fora excavation

(GaJi10), although in the latter case only used to derive stereo-

pairs for visualisation [33]. Breithaupt et al. [16] document a

Figure 2. Matrix of variables relevant to the conservation of hominin/human footprint sites with particular emphasis on soft-
sediment sites. The horizontal continuum at the top is between strategies based on ‘record and rescue’ versus those based on site preservation
either via burial such as Laetoli or via some form of conserved display as is the case at Acahualinca in Nicaragua.
doi:10.1371/journal.pone.0060755.g002
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range of different approaches to collecting photogrammetrical

data for dinosaur tracksites in Wyoming, a theme that has been

developed by others with some limited method comparison being

undertaken (e.g., [25]). The advent of digital photography and the

increasing availability of soft-copy photogrammetrical software

options has increased the flexibility, accuracy and precision of

digital elevation models which require multiple oblique images of a

subject enhancing the ease of deployment [20]. In parallel the

development of a range of survey tools based around Light

Detection and Range (LiDAR) has provided an alternative

approach [17]. The systems range from long-distance scanning

devices which collect point cloud data from closely spaced

intervals, to close quarter scanners which collect data over a

continuous stripe. While long-range LiDAR has been used now to

good effect at a number of dinosaur trackway sites (e.g., [16–18])

its application to human footprints sites has been more limited,

possibly due to the relatively low point density spacing for most of

these long-range systems and because the sties tend to smaller with

fewer tracks. Bennett et al. [7] used close-quarter optical laser

scanning at the disputed Valesequllio footprint site in Mexico,

developing the necessary equipment to allow field deployment [24]

and the same data was used to demonstrate that these marks were

in fact not human footprints at all [43]. A revised version of this

approach was used at both the Ileret and Koobi Fora footprint

sites [7]. Laboratory based scans of casts of the Laetoli footprints

have been used widely in a number of analyses [1,2,31]. While a

number of studies have explored both approaches of recording

prints and integrated both types of data sources critical compar-

ison remains elusive [25] and those faced with a rescue and record

situation have little guidance. This is not just a question of the

accuracy and precision of the models produced, but also the wider

context associated with the field deployment of both techniques.

In practice the accuracy and precision of both methods is

dependent in part on ambient environmental conditions at the

time of capture and the equipment and software used and as such

there are a plethora of variables which constantly change as

technology improves. Issues of deployment however remain

irrespective of equipment and software. Our aim here is to

provide guidance to those adopting a rescue and record approach

by first using a simple experimental set-up to examine the potential

data quality issues and secondly to place this in the context of our

experience in deploying both methods in the field.

Methods

Two simple experimental sets-ups were used in this analysis, one

lab-based and one field-based. The lab-based experiment involved

the application of both photogrammetry and optical laser scanning

to a series of concrete and plaster footprints. A series of four trays

were filled with various mixes of sand, cement and plaster to

replicate a range of substrate conditions and the same adult male

foot imprinted on all four trays and allowed to set. A ruler was

fixed to each print along with four wooden 1 cm cubes. Working

on the laboratory floor in natural day light each print was scanned

once using a tripod mounted optical laser scanner (Vi900 Konica-

Minolta) and photographed using a high quality (Nikon D200,

10 mp) camera from multiple elevations and angles creating a

minimum of twenty oblique photographs per print. In the field a

trail of human footprints was created at low tide, on sandy beach

at New Brighton on Merseyside (Lat. 53u 26.30 N, Long. 3u 2.60

W). This trail of fifteen footprints was made under normal walking,

in a straight line, by a male subject of medium build (height:

176 cm; weight: 69 Kg). Ten contiguous prints were selected from

the middle part of the trail and each print was bracketed by four

wooden cubes; one either side of a print’s heel and one either side

of the toes. The wooden cubes used where 1 cm in size, painted

fluorescent-orange, and attached to 6 inch nails with epoxy resin.

Each cube was inserted flush with the beach using the nail to

prevent movement. The dimensions between each cube were

noted using a metal tape. Each print was scanned using an optical

laser scanner (Vi900 Konica-Minolta), mounted on a carbon fibre

rig and shielded from sunlight. In all scans at least three of the four

cubes were included in the visible frame. Once completed each

print was then photographed between 20 and 40 times using a

Canon Powershot G11 (10 mp) from a range of different angles

and elevations to provide material with which to generate

photogrammetrical elevation models.

In all cases the optical laser scans were captured in Konica-

Minolta Polygon Editing Tool and either output as a cdm file for

subsequently manipulation within Rapidform 2006 or output as

XYZ point clouds in asc format. No holes were filled or

singularities deleted and files were presented as captured by the

scanner. Photogrammetrical models were produced using the

freely available open source software bundler [44–45] and PMVS/

CMVS [46–47] as in the workflow described and demonstrated by

Falkingham [48]. Photogrammetrical models were also produced

for the concrete prints using alternative commercial proprietary

software (Agrisoft PhotoScan), to illustrate the range of results

obtained from the same photographs. The point cloud data was

imported in to Foot Processor, a piece of bespoke freeware that

allows rapid visual editing of XYZ data files in order to: (1) rectify

prints to the orthogonal plane; (2) rotate prints into a consistent

longitudinal orientation; (3) mirror left into right prints to allow

comparison of all prints within a trail; (4) crop extraneous material

from the margins of a print; and (5) contour plot, place landmarks

and measure inter-landmark distances.

Results

Experiments
We recognise two broad stakeholder groups, the scientific

community and the general public inclusive of the landowners and

local population. The former group need accurate digital data

with which to drive intra- and inter-site comparisons and

quantitative analysis, while the latter need three-dimensional data

with which to accurately re-produce the prints, either physically or

digitally for public engagement purposes. Both are ultimately

interested in the accuracy and precision of the digital elevation

models.

At the simplest level of analysis, scientists need to be able to

place landmarks and record inter-landmark distance to gather

basic geometric data such as print length or width. Photogram-

metric models must be scaled either during construction or

subsequently in a three-dimensional editing tool such a Meshlab.

There are various ways this can be achieved such as including a

three-dimensional element of known dimension, or visually from a

scale bar included within an orthorectified image draped over a

point cloud or polygonal surface. The accuracy of any linear

measurements derived subsequently from the elevation model is

therefore dependent on the precision with which this scaling is

undertaken. In contrast this is not an issue with most optical laser

scanners which locate points in real coordinate space and provided

that they are calibrated regularly operate typically in fractions of a

millimetre. To illustrate the issue the photogrammetrical models of

the concrete prints were scaled in Meshlab independently of the

scans and simple linear length dimensions, heel to first toe and heel

to second toe, were recorded to one decimal place in Rapidform

2006 for both the scan and photo-model, as well as on actual
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concrete prints using vernier callipers. The photo-models under-

estimated the distances significantly in all four cases as illustrated

in Figure 3A emphasizing the potential inaccuracy introduced due

to scaling errors. One of the principal problems with including

geometrical objects within scans to assist with scaling, for example

the wooden cubes used here, is that sharp edges are not necessarily

well produced in the photo-models since most of the algorithms

used are fine tuned to smooth surfaces since these are most

appropriate to the majority of print surface. Scaling by photo-

images depends on accurate visualisation of the scale bars. This

calibration needs to be done for each model and the potential for

inter-model variation is present.

For analytical methods based on ‘whole foot’ statistical

techniques that compare depth pixels such as pedobarographic

Statistical Parametric Mapping (pSPM) [2,49] this is less of an

issue since individual prints are co-registered against one another

pixel by pixel and provided they approximate in size initially, the

least squares matching algorithms used ensure effective relative

scaling of the prints.

To overcome the issue of scaling in this analysis, all subsequent

comparisons were conducted on photo-models scaled to the scans

and co-registered in Rapidform 2006 first using an initial

registration process involving the selection of six or more points

on the footprint surface and then using a standard whole surface

matching algorithm. Figure 4 shows the maximum shell deviations

in the combined model for each of the eight beach footprints;

warm colours indicate areas of maximum deviation or model

thickness, cool colours indicate minimum areas. Figure 5A shows

three prints in which the thickness has been expressed as either a

positive or negative vector with the scan surface always being

below the photo-model. The maximum deviation over the whole

surface can be expressed as a histogram indicating the range of

deviation values present (Fig. 3B). Over the vast majority of the

surfaces there is little or no deviation, the visible speckling reflects

the fact that the photo-models resolve some areas individual sand-

grains whereas the scan tends to produce a more uniform surface.

Maximum deviation occurs in areas of maximum elevation

change, with the scans tending to produce features with crisper

edges to features (Fig. 4). In the majority of cases these differences

are less than 0.5 mm. For example Print #2 73.2% of the

deviation is in the range of 60.17 mm and only 2.5% greater of

the variation is greater than 1 mm.

To examine this further both co-registered surfaces were

exported independently as separate asc files and loaded into Foot

Processor where 1 mm contour maps where produced from the

point cloud data (Fig. 6). Both sets of contour maps are broadly

similar, with slight variation to the line smoothness caused by

textual variation in the different models and subtle changes to

contour extent most notable in Print #8. Edges are more

pronounced and sharper on the scans compared to the photo-

model consistent the previous observations. Despite these differ-

ences broad topographic form and therefore anatomical footprint

typology, are similar irrespective of the method used. Landmarks

placed on each of these contour maps gives a similar distribution of

outputs (Fig. 7).

The recent application of pedobargraphic Statistical Parametric

Mapping (pSPM) to footprint studies [2,49] allows one to calculate

a mean footprint from a trackway. Two means were calculated for

the same trail using photo-models and scans for each (Fig. 5B).

The means shows subtle difference in print typology but using

Figure 3. Comparison of photogrammetry and optical laser scanning methods. A. Box plot of length dimensions taken from one of the
concrete prints, showing the underestimate of length provided by the photo-model. B. Shell to shell deviations between co-registered scans for
specific prints. The frequency distribution shows the range of deviations both positive and negative. The broader the area of distribution the more
divergent the scan shell and the photo-model shell are. Co-registration and shell deviations were undertaken and calculated within Rapidform 2006.
doi:10.1371/journal.pone.0060755.g003
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pair-wise t-tests these differences are not statistically significant

unless the probability image has a threshold value of T,0.1

applied demonstrating clearly that subtle difference in the derived

means do exist but are not statistically significant at normal levels.

In conclusion, the two methods do represent very slightly different

versions of ‘reality’ however these differences are extremely subtle

and are not statistically significant except at the finest of

thresholds.

Figure 4. For the eight beach prints the two models/shells for the scanner and one for the photo-model were co-registered in
Rapidform 2006 and the maximum model thickness or deviation was calculated and attached as vertex colour map to the
combined model. Warm colours indicate maximum thickness or deviation.
doi:10.1371/journal.pone.0060755.g004

Figure 5. Results showing statistical comparison of photogrammetry and optical laser scanning methods applied to beach prints.
A. Vectored deviation maps for selected prints. Blue colours indicate situations where the scanned images underlie the photo-model and the red
colours where the photo-model is slightly elevated. The speckled red reflects the fact that the photo-model resolves individual sand-grains whereas
the scan does not. B. Mean images for all eight prints one for the scanned images and one for the photo-model showing the subtle differences in
print typology that result from the different data capture techniques. Note the colour map is revised here, warm colour indicate areas of maximum
depth. C. The left hand images is the Statistical Parametric Map (SPM) of t-values produced by a pixel-wise comparison of the two means – photo-
model versus scan; warm colours show maximum positive deviation, cool colours negative deviation. The right hand images shows the results when
a threshold of T,0.1 is applied with probability values. Given the very low threshold value applied here it is safe to say that there is little statistical
difference between the two means. What differences are visible at this low threshold value occur around the longitudinal medial arch and in a
proximal position to the toe pads.
doi:10.1371/journal.pone.0060755.g005
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These results do not, however, necessarily hold across all

scenarios. Accurate digital photogrammetry is dependent on three

key factors: (1) pixel variance caused by textural patterns of the

surface; (2) the quality and number of photographs and the range

of angles from which they are taken to maximise the potential for

triangulation on an identified pixel; and (3) the algorithms used.

One of the cast prints was made of plaster and as a consequence

has little surface contrast compared to those made out of concrete

or taken on the beach. The lack of textural variation impacted the

photo-model quality and is illustrated by the large variance

recorded (Fig. 3B). Digital photogrammetry is also very dependent

on the software used, which is advancing rapidly [48], and the

results obtained as illustrated in Figure 3B by using different

software options is considerable and needs careful consideration.

Equally scanning is not without faults. One of the criticisms

levelled in the past at scanning is that it is dependent in field

settings and in particular keeping the scanner stable in windy

conditions especially when using scanner models that take multiple

or slow passes across the surface. The associated variance cause by

this can be examined by comparing multiple shots of the same

surface taken over a ten minute interval in windy conditions,

which suggests at least for the make and model of scanner used

here (Vi900 Konica-Minolta) this is of negligible importance

(Fig. 3B).

On the basis of this simple analysis one can suggest that in broad

terms there is little to choose between the different methodological

approaches and that both give a similar rendition of print typology

and that both are subject to field limitations. Issues of scaling need

to be addressed carefully when adopting a photogrammetric

approach, however, although this is a post-processing issue. These

statements however only hold for the equipment, software and

surfaces examined here and need to be carefully evaluated by each

practitioner on deployment since the number of possible

permutations and variables are considerable. It is difficult in

practice to say which of these techniques produces a closer

representation of ‘reality’ when the differences are in many cases

sub-millimetre in scale. Both methods yield accurate data for

scientific analysis and both can be used to print three-dimensional

models for public visualisation. In the analysis performed here it

would appear that the scans are slightly more accurate than the

photo-models but in practice this is heavily influenced by logistical

issues associated with field deployment.

Field Deployment
The above analysis provides a context but one of the key

determinants of the technique deployed in the field will be the

relative logistics involved in using the different approaches. The

authors have captured human and animal footprints in a range of

different environments [2,7,9] including museums, coastal mud

and peat flats in the UK, wooded flanks of Italian volcanoes,

Namibian sand dunes, margins of playa lakes in Kenya, and semi-

Figure 6. Contour maps for the eight beach prints generated from either the scan or photo-model. Contour interval is 1 mm. Note that
the left prints have been inverted to be consistent with the right ones a necessary step in the application of pSPM to the two print populations.
doi:10.1371/journal.pone.0060755.g006
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arid deserts in Kenya and Central America initially using optical

laser scanning and more recently photogrammetry. Based on this

extensive field experience we have reviewed the logistical issues

that impact on the deployment of either photogrammetry or

optical laser scanning (Table 1).

Photogrammetry offers advantages in the field of being easily

deployed with relatively little investment in equipment or complex

field logistics. A standard digital camera is all that is required and

multiple shots around an image or the use of fixed point

photographs from a pre-set tripod rig. Problems may be

encountered with deeply impressed prints especially around edge

effects as identified in the previous section. Uniform substrate

textures, especially under intense sunlight, may limit the accuracy

and reliability of some photo-models. Damage to the site may

occur due to tripod/frame legs or by standing/crouching on

delicate surface in order to take multiple oblique shots. The

technique is limited with respect to prints adjacent to excavation

walls. While field deployment is relatively fast, cheap and

consequently easy one should not neglect the fact that post-

processing of high-quality models can be computationally inten-

sive. The principal risk is that the digital elevation models are post-

processed and therefore faults are usually determined once a field

scientist has left the field. While in many situations one can return

to the field this is not always possible if the subject has been lost to

erosion or is located in an inaccessible location. Accuracy and

reliability may vary between models, since they are determined not

by the reliability and consistency of the equipment but the

individual combination of photographs used. For precision work

therefore every model should be calibrated and checked for

accuracy and there may be problems associated with progressive

inaccuracy where multiple models are tessellated since they are not

necessarily of equal quality in terms of, for example, point cloud

density.

In contrast optical laser scanners involve high capital invest-

ment, and are more complex to deploy in the field due to power

requirements. Most scanners that are designed for engineering or

medical purposes have to be protected/mounted within custom-

built rigs to allow field deployment, and these may also pose a risk

to fragile surfaces. Once deployed a scanner can however give fast,

accurate and reliable results across a range of surface textures and

right to the edge of an excavation. Data quality and accuracy can

be checked in the field and scans re-shot if necessary, minimising

risks. Risk of equipment failure is higher given that scanners are

relatively delicate scientific equipment. The senior author

remembers keenly shorting a scanner in northern Kenya

transported at great cost on day one of a field expedition when

it was attached to a poorly functioning generator which produced

a power spike which exploded the scanner and set the attached

laptop alight!

What is clear from Table 1 is that there is not a perfect solution,

and field practitioners need to be aware of the rival merits of both

optical laser scanning and photogrammetry. Where the highest

standards of accuracy and reliability are required either because of

a remote location or because the prints will only be exposed in an

optimal state once, for example on first excavation, then we would

advocate the use of optical laser scanning supplemented by

photogrammetry. Where prints are less fragile, more accessible

and a greater degree of intra-site variability is acceptable then

photogrammetry provides a rapid and flexible solution, particu-

larly ideal for initial recognisance type work. Given that

photogrammetry can be accomplished from collections of photo-

graphs from multiple cameras, it is worth noting that even when

employing optical laser scanners, photogrammetric models may

still be produced from field crew’s photographs to compliment

planned data collection.

Discussion and Conclusion

In the first part of this paper we challenged the conventional

view that human trackways should be conserved through some

form of direct artefact-based preservation strategy especially when

of high scientific value. Instead we argued that an approach based

on the concept of record and rescue was perhaps more appropriate

especially for sites preserved in soft-sediment and therefore easily

eroded. In the second part of the paper we explored the tools

currently available to capture three-dimensional surfaces –

footprints – focusing particularly on evaluating the rival merits

of optical laser scanning and digital photogrammetry. The analysis

presented here shows that both methods are comparable in broad

terms with each having different logistical advantages or disad-

vantages in the context of field deployment as one might expect. In

terms of accuracy and precision of subsequent morphometric

measurements scanning is probably on balance more accurate; the

Figure 7. Illustration of a landmark analysis conducted from
the scanned and photo-models. Note the almost identical overlap
between the 95% probability ellipses.
doi:10.1371/journal.pone.0060755.g007
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Table 1. A summary of the relative merits in terms of field deployment of optical laser scanning versus photogrammetry.

Photogrammetry Optical Laser Scanning

Costs

Hardware Low field costs since a basic digital camera and
memory cards are all that is required. Modest lab
costs associated with provision of suitable CPU,
dependent on the speed of processing required
and software to be run; reducing all the time as
standard computational power increases.

High depending on the make and model of the scanner used. Low lab
costs since no special computational power is required unless a large
number of scanned images are being tessellated.

Software Zero to modest depending on the software
used to generate photogrammetric models.
Three-dimensional image software required for
post processing and visualisation both
commercial and freeware options available.

Variable, most expensive scanners come with basic three-dimensional
image software required for post processing and basic visualisation less
expensive scanners often don’t.

Deployment

Transport
logistics

Easy - photo-scale and camera. In some cases
use of tripod mounted arms or A-frames may
increase the equipment volume.

Depending on scanner model and the support mechanism – tripod or
frame - can be quite bulky. Provision of power supply via a converter
and a generator, car battery or lithium ion battery.

Electrical
Requirements

Minimal, power is required for camera batteries
and photo storage devices such as a laptop or PDA.

Most scanners either require a generator, car battery or lithium ion
battery with or without a power inverter, either to power the scanner
directly, or to recharge a built in battery. Power is also required for PDA
or laptop used to run the scanner.

Data capture
time

Approximately 5 minutes per print to take
between 20 and 30 photographs per print;
quicker times possible when using fixed point
frames/tripod requiring a more limited number
of images. It is possible to have multiple prints
or areas being captured simultaneously with
multiple photographers. Photographs can also
be collected from Unmanned Aerial Vehicles
(UAV) especially where large areas are involved,
although this may increase the associated
costs and logistics.

Depends on the scanner model and resolution required but usually less
than 1 minute per scan. Limited to the number of scanners available to
one field project.

Post-processing
time

Depends on the software being used and
the number of images but post-processing time
to generate the model can be up to 12 hours,
typically 30 to 45 minutes for a high resolution
model.

Depends on the tasks being performed and the degree of data
cleansing and optimisation required but can be anything from a few
minutes to 30 minutes maximum. Aligning multiple scans, especially
from long range scanners with high data throughput can take
considerable time (up to 24 hours).

Reconnaissance
operation and/or
training?

Images can be captured by any operator with
a digital camera and basic knowledge of
photographs required.

Requires access to equipment and basic training.

Memory
Requirements

Can be managed by multiple data cards,
field based download to laptop or PDA, or
field based upload via internet connection.
Data volumes are high depending on the
individual pictures resolution; for example,
one gigabyte for a trail of 10 prints.

Depends on the make and model of scanner, some scanners can record
directly to a data card, most required laptop operation. Typical file sizes
are between 1 and 5 megabytes per print, though high resolution scans
of large areas (e.g. whole or partial track sites) can be many Gb in size.

Risks to site Damage can be high from feet of photographer
taking multiple images from different angles;
damage from the feet of tripods or other fixed
arm camera mounts. These can be overcome
through the use of UAV’s although their use
increases costs and logistics

Damage from tripods or scanner frames can be high.

Accuracy of Outcome

Prohibitive
environmental
conditions

Sunlight & intense shadow can be problematic
and shading may be required for the whole
area of the print depending on the colour of
the substrate and angle of the sun. Wind-blown
dust and rain may hinder operation. Wet rock/sediment
surfaces or those with residual water content can limit
the accuracy of some models especially where it is
variable across a surface.

Most high resolution optical scanners require sunlight shading and
protection from wind-blown dust and rain. Scanners can fail to operate
in very high ambient temperatures due to sensitive components. Air
moisture can also cause interference and laser detection issues.

Accuracy
and
completeness

Dependent on the quality and number of images
obtained and the software used to produce the
model. Undercut areas can cause problems as can
deep prints causing shade problems at the bottom of
the print. For accurate measurements images have to
be carefully scaled.

Dependent upon the make and model of the scanner. Difficult to
capture undercut or overhanging areas with a vertically mounted
scanner; multiple shots may be required and there still may be
problems with very deep prints. Scans are scaled accurately as they are
captured, provided the scanner is regularly calibrated.

Preserving the Impossible

PLOS ONE | www.plosone.org 12 April 2013 | Volume 8 | Issue 4 | e60755



scans don’t need to be scaled, have a high and consistent density of

points per unit area depending on the make and model of scanner.

They give reliable, consistent and repeatable results. In contrast

photo-models have to be scaled each time giving a potential

variance in terms of both precision and accuracy between

individual models and don’t always provide a perfect representa-

tion of the surface for example models often lessen sharper edges.

There is also an element of risk with photo-models with occasional

failure despite consistent methodologies between prints and

therefore there is a clear risk in field deployment in remote areas.

This can be partly overcome by making low resolution models in

the field and adding additional photographs as required covering

holes or gaps in the model created. In contrast to scanning,

deployment is fast easy and requires little logistical support. Table 1

provides a decision framework in which practitioners can evaluate

the options available to them. In broad terms photo-models

provide the ideal scenario for rapid field reconnaissance and in

particular in situations where prints are found as by-products of

other investigations. They also are well adapted to community

based field monitoring and recording which could form an

essential part of record and rescue type situations when prints may

emerge when ‘no scientist’ is watching. It is possible to see both

approaches in a complementary rather than competing fashion;

one better suited to large scale excavations with large logistical

resource where maximum accuracy is required – such as at Ileret –

whereas photogrammetry may be more suited to small scale

opportunistic ventures and chance encounters. No doubt this

balance will change over time as technology changes and with the

increased sophistication of freeware which is driving the develop-

ment of photogrammetry one suspects that the balance will shift

progressively in its favour over the next few years.

A conservation strategy based on the premise that the actual

artefact can be lost, provided that the data is captured digitally in

three-dimensions irrespective of a sites’ antiquity or palaeoan-

thropological significance carries with it a number of implications

which are worth further exploration. There are two clear elements

to a successful strategy of this sort:

1. Site Monitoring. Regular monitoring of a site, especially

around predictable/seasonal geomorphological episodes such

as seasonal storms when erosion and/or fresh exposure is to be

anticipated is vital if a rescue and record strategy is to function

well. Sites in densely populated and developed countries this is

feasible via either amateurs or site custodians/owners and

amateur photogrammetry may have an important role to play

in such programmes. For example, on the Sefton Coast the site

custodians (National Trust) and the volunteers and amateur

enthusiasts which help provide its work force are easily

mobilised to provide a monitoring network with access to

skilled excavators at a range of local University and Museums

should something of particular note emerge. Equally in an area

such the Namib Sand Sea geotourism has a role in monitoring

sites and bring new discoveries to the attention of the scientific

community. In less densely populated countries or where sites

are remote and especially in less well developed regions the

provision of such regular monitoring becomes much more

difficult and challenging. Here monitoring strategies are more

likely to be dependent regular visits by teams of excavators

interested in a range of targets not just hominin footprints as a

result awareness of the potential for human footprints and their

recognition in for example vertical section as well as on a

surface becomes critical as does the training of such excavators

to deal with chance footprint finds. The increased awareness of

routine digital photogrammetry within the tool kit of both

prospectors and excavators is a key issue here.

2. Site Documentation and Dissemination. For such a strategy to

work new footprint exposures need to be accurately document

and as argued here this should involve the accurate and precise

recording of footprints using appropriate technology to create a

realistic three-dimensional representation. This should of

course combine with a programme of wider site description

and documentation which should potentially involve the

archiving of key samples against future scientific requirements

or the creation of specific and/or protected via deep burial of

an excavation reserve against future advance in technology for

sediment description and analysis. The open dissemination of

such information to the widest possible set of stakeholders –

both scientists, not just those that found the prints, but to all, as

well as to the general public and to local stakeholders who have

a vested interest in the site – is essential and becomes a critical

Table 1. Cont.

Photogrammetry Optical Laser Scanning

Intra- and
inter-site
variability

The accuracy of a photo-model is specific to
one object and the images taken, there is
therefore a strong risk of undetected intra- and
inter-site variability in accuracy and reliability
of the models. The accuracy of every single
model needs to be checked via a reference
object in every model.

Provided a scanner is well-maintained and regularly calibrated by the
manufacturer its accuracy should be consistent in intra-site setting and
inter-site settings subject to a caveat around changing environmental
conditions. The accuracy of scanned images needs only to be checked
once at a site, or following best practice daily at most.

Edge
effects

Taking images close to an excavation wall
can be problematic since a full 360u array
of images may not be possible.

Depends on tripod or frame configuration, but potentially not a
problem especially if oblique scans are also used.

Risks of
failure

Data quality - moderate to high, associated with
failure to capture sufficient images of good quality
and coverage especially when post-processing is
being done on return from the field. Equipment - low
since cameras are ubiquitous on field expeditions so
multiple options are often available when one camera
fails assuming flexible camera mounts and tripod
connections. Post-processing – moderate to high,
failure of the software to produce adequate models.

Data quality - low in terms of failure to capture data since the quality of
a model can be instantly verified and checked in the field and scans re-
shot if needed. Equipment - moderate to high since scanners are
relatively delicate scientific equipment and field failure is usually
terminal since few projects have access to multiple scanners. This is low
for scanners designed for field use. Post-processing – low focused
simply on data quality and enhancement.

doi:10.1371/journal.pone.0060755.t001
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priority. This is an exercise in both scientific and public

engagement coupled with the long-term archiving of data in

agreed formats which are able to stand time and the pace of

technological innovation and change.

It is this last point which is particularly relevant given the

current debate around Open Access Data [50] which is the point

that we would like to emphasize. The community needs to agree

file formats that are timeless, agree standard archiving protocols

and openly share data as part of conservation strategies. As a

community this is the challenge that we need to accept and face;

how do we share openly, quickly and for all parties – scientific and

none - data on human trace fossils irrespective of who excavated or

found the prints?
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