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Abstract

Infectious disease surveillance systems provide vital data for guiding disease prevention

and control policies, yet the formalization of methods to optimize surveillance networks has

largely been overlooked. Decisions surrounding surveillance design parameters—such as

the number and placement of surveillance sites, target populations, and case definitions—

are often determined by expert opinion or deference to operational considerations, without

formal analysis of the influence of design parameters on surveillance objectives. Here we

propose a simulation framework to guide evidence-based surveillance network design to

better achieve specific surveillance goals with limited resources. We define evidence-based

surveillance design as an optimization problem, acknowledging the many operational con-

straints under which surveillance systems operate, the many dimensions of surveillance

system design, the multiple and competing goals of surveillance, and the complex and

dynamic nature of disease systems. We describe an analytical framework—the Disease

Surveillance Informatics Optimization and Simulation (DIOS) framework—for the identifica-

tion of optimal surveillance designs through mathematical representations of disease and

surveillance processes, definition of objective functions, and numerical optimization. We

then apply the framework to the problem of selecting candidate sites to expand an existing

surveillance network under alternative objectives of: (1) improving spatial prediction of dis-

ease prevalence at unmonitored sites; or (2) estimating the observed effect of a risk factor
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on disease. Results of this demonstration illustrate how optimal designs are sensitive to

both surveillance goals and the underlying spatial pattern of the target disease. The findings

affirm the value of designing surveillance systems through quantitative and adaptive analy-

sis of network characteristics and performance. The framework can be applied to the design

of surveillance systems tailored to setting-specific disease transmission dynamics and sur-

veillance needs, and can yield improved understanding of tradeoffs between network

architectures.

Author summary

Disease surveillance systems are essential for understanding the epidemiology of infec-

tious diseases and improving population health. A well-designed surveillance system can

achieve a high level of fidelity in estimates of interest (e.g., disease trends, risk factors)

within its operational constraints. Currently, design parameters that define surveillance

systems (e.g., number and placement of the surveillance sites, target populations, case def-

initions) are selected largely by expert opinion and practical considerations. Such an

informal approach is less tenable when multiple aspects of surveillance design—or multi-

ple surveillance objectives—need to be considered simultaneously, and are subject to

resource or logistical constraints. Here we propose a framework to optimize surveillance

system design given a set of defined surveillance objectives and a dynamical model of the

disease system under study. The framework provides a platform for in silico surveillance

system design, and allows the formulation of surveillance guidelines based on quantitative

evidence, tailored to local realities and priorities. The framework is designed to facilitate

greater collaboration between health planners and computational and data scientists to

advance surveillance science and strengthen the architecture of surveillance networks.

This is a PLOS Computational Biology Methods paper.

Introduction

Infectious disease surveillance systems provide vital information on patterns of disease occur-

rence across space, time, and populations of interest, and ultimately provide the basis for evi-

dence-based disease control policy decisions [1]. Considerable progress has been made

supporting infectious disease control decision-making with computational approaches to eval-

uate the outcomes of alternative decisions [2]. Examples include optimizing when, where, and

among which populations to allocate public health resources [3,4], determining the optimal

balance between multiple intervention approaches (e.g., case detection, treatment, vaccination,

and sanitation improvement) [5–8], and optimizing the start time, duration, and dose of drug

treatment programs [9,10]. In contrast, little attention has been paid to the development of

tools for improving infectious disease surveillance system designs, and formalization of meth-

ods to optimize surveillance networks has largely been overlooked.

‘Design parameters’, which are high-level characteristics that define infectious disease sur-

veillance networks—such as locations of surveillance sites, sampling frequency for laboratory
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testing or community-based surveys, and diagnostic techniques—can greatly influence the

degree to which the resulting surveillance data serves public health objectives, including early

detection of outbreaks [11,12], improved understanding of disease emergence and spread (e.g.,

emergence of a novel coronavirus disease in 2020) [13,14], and accurate measurement of the

impact of interventions [15]. Thus, key design parameters can be modified in a manner

informed by optimization analysis such that the system better achieves specific surveillance

goals. Examples of surveillance design optimization include relocating and adding reporting

sites to predict the temporal trend of diseases more accurately [16,17]; changing diagnostic

approaches/case definitions to increase the chance of detecting cases [18]; and targeted sam-

pling of specific subpopulations to improve the timeliness of outbreak detection [19–21].

In practice, surveillance system design parameters are often set in an ad hoc fashion based

on operational considerations (e.g., budget, convenience, political agendas), rather than

through quantitative evaluation of how alternative designs might impact surveillance system

objectives. For instance, World Health Organization (WHO) recommends selection of influ-

enza surveillance sites based on the facilities’ willingness to participate, availability of necessary

laboratory and information infrastructure, ability to cover the surveillance cost, and represen-

tativeness of the general population. Notably absent from these criteria is the degree to which

the network’s performance on specific surveillance objectives will be enhanced [15]. The

absence of objective criteria and methods to evaluate and iteratively reconfigure surveillance

system design can lead to inefficient use of limited resources. For example, in China, current

requirements specify that 5–15 influenza-like illness (ILI) cases are required to be sampled per

week at each of the 556 influenza sentinel hospitals for laboratory confirmation [22]. If the

total sample size is fixed, it may be that reducing the number of sentinel sites (e.g., prioritizing

sites in populous regions and with high levels of population movement), while increasing the

number of samples collected at each site, could yield more timely detection of outbreaks with

the same level of resources. What is more, because disease surveillance systems generally

operate in pursuit of multiple objectives, optimal design can be highly counterintuitive.

Recent research has provided some initial examples of quantitative infectious disease sur-

veillance design optimization [23,24]. In one study, researchers estimated that an optimal relo-

cation of Iowa’s existing 22 ILINet sentinel sites could increase population coverage of the

network from 56% to 75% [25]. In another example, targeted surveillance of pregnant women

was estimated to increase the weekly probability of detecting Zika virus introduction from

11% to 40%, in comparison with surveillance of blood donors [18]. While these and other

studies serve as foundational examples, the methods utilized in these analyses are targeted

towards narrow, study-specific objectives and specific networks, and are challenging to gener-

alize to other—even closely related—surveillance design optimization problems. What is

more, prior studies have not attempted to articulate a general theory of surveillance design

optimization and decision-making.

Surveillance design as a multi-objective, multi-dimensional, constrained

and dynamic optimization problem

The search for optimal disease surveillance designs is a highly complex problem due to multi-

ple, often competing goals of surveillance data collection, idiosyncratic surveillance network

design, operational constraints that govern surveillance systems, and the complexity and

dynamic nature of diseases under surveillance. Simple optimization problems involving a sin-

gle objective and limited possible designs—such as the optimal placement of a new surveillance

site among 100 alternatives in order to maximize the proportion of influenza cases detected—

may be solved in relatively straightforward fashion by testing all possible designs and choosing
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the design that results in optimal performance (e.g., the new site location that results in the

highest proportion of cases detected overall). However, surveillance network optimization

quickly becomes non-trivial when the design space expands (e.g., selecting 10 sites out of 200

alternative sites), when multiple objectives (such as increasing case detection, improving spa-

tial and temporal trend estimation, and risk factor identification) are subject to simultaneous

analysis and optimization, or when optimization is subject to constraints regarding resource

limitations and operational plausibility. Uncertainty regarding the functioning of the epidemi-

ologic system and shifts in patterns of diseases further complicate matters. Hence, our optimi-

zation goals are multidimensional, dynamic, and stochastic. In this section, we describe the

relevance of surveillance objectives, network design parameters, operational constraints and

dynamic disease systems to the pursuit of surveillance optimization.

Multiple objectives. Disease surveillance systems are established and designed for diverse

purposes, including to collect data for understanding variations in disease frequency across

populations, space, and time, to monitor pathogen composition over time, to detect outbreaks

and forecast epidemics, to assess the impact of interventions, and to determine risk factors

associated with diseases. Most surveillance systems operate with multiple public health objec-

tives. Hence, surveillance system designs should generally be subject to multi-objective optimi-

zation, and tradeoffs between different objectives must be considered. For instance, if the goals

of a system are to both estimate prevalence and assess the impact of risk factors, the network

design should be subjected to optimization routines capable of capturing tradeoffs between

designs with respect to achieving these two objectives. Input from public health officials can

help identify surveillance needs and goals and verify the degree to which the formulated objec-

tive functions are able to express the performance of the surveillance system on these goals.

Moreover, the DIOS framework can be adapted for optimizing surveillance systems that target

multiple infections simultaneously, including diseases with shared etiologies such as those

monitored by the U.S. ILINet system (respiratory infections including influenza virus, respira-

tory syncytial virus, human coronavirus, adenovirus, etc.) [26,27]. To accomplish this, the

disease system and surveillance system models could include microbiologically nonspecific

outcomes (e.g., acute respiratory illness, acute gastroenteritis, etc.), as well as subroutines to

simulate each specific infection of interest. Objective functions could encompass goals defined

for the overall family of diseases (e.g., monitoring total respiratory disease), as well as for its

specific members (e.g., monitoring influenza). Importantly, for groups of diseases sharing sim-

ilar transmission characteristics, common risk factors and key interactions between pathogens

—such as clinical presentations, competition for host resources, induced changes in host

immunity, or competitive inhibition—can be exploited to yield more efficient use of multi-dis-

ease data and therefore more efficient surveillance designs. Taking the example of a DIOS

application to a cluster of seasonal respiratory diseases, the disease model might be structured

as a set of coupled spatio-temporal models capturing the dynamics of each specific respiratory

infection, as well as interaction between them using shared spatial and temporal random

effects (following prior work using a shared component approach [28–30]). Such coupled

models are able to borrow information across diseases, potentially requiring less sampling

effort to achieve the desired surveillance performance.

Multiple design parameters. Surveillance system structure and design can be decom-

posed into a multitude of characteristics, operational details, and features that influence the

performance of surveillance networks. These design parameters and their impacts on system

performance can then be represented and simulated within models. For example, to improve

estimation of disease incidence, either the accuracy of diagnostics at existing reporting facilities

or the number of facilities in the reporting network, or both, can be modified. Other design

parameters, such as when, where, and among which populations to implement targeted
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sampling efforts may also be entered into the analysis, greatly expanding the dimensionality of

the problem. Moreover, the set of design parameters to optimize depends on the surveillance

goals. For example, when the surveillance goal is accurate estimation of the temporal trend of a

disease, it may be that the placement of sites is less important than sampling frequency. Profes-

sional users within the public health community can provide guidance on which design

parameters are modifiable, and which may—upon modification—yield improved surveillance

performance on these predefined surveillance goals. Table 1 lists examples of design parame-

ters, their potential impacts on surveillance system performance, and their occurrence in real

world infectious diseases surveillance systems.

Operational constraints. Operational restrictions on surveillance system designs—due to

budgetary, logistical, political and cultural considerations—add critical constraints to the opti-

mization problem. Absent constraints, the optimal design may be self-evident, e.g., sampling

at maximal frequency and intensity. Yet when there is a fixed budget for samples, tradeoffs

arise between plausible designs and competing objectives. For example, the optimal balance

between design parameters—say, number of samples and sampling frequency—depends on

the relative value of precise cross-sectional estimates of disease prevalence versus characteriz-

ing disease incidence over time, which in turn depends on the specific objectives of surveil-

lance and the dynamics of the underlying disease system. Public health officials can help set

these operational constraints using information on available resources, logistics and political

considerations for the surveillance system of interest.

Dynamic and imperfectly understood disease systems. Surveillance systems must

respond to shifts in the epidemiology of target infections. As infections emerge, become

endemic, or approach elimination within populations or subpopulations, and as the state of

knowledge on the target disease systems evolves, the goals of surveillance, and the resulting

optimal designs, can (and must) evolve alongside them. The dynamic nature of optimal sur-

veillance design may be especially important in developing economies that are undergoing

epidemiologic transitions. For instance, as a region or nation approaches elimination of a par-

ticular infectious disease, surveillance goals generally shift from enumeration of endemic cases

occurring in the general population to detection of nexuses of sporadic transmission. This

may require new designs (e.g., shifting to more intensive surveillance within a limited area, or

increasing the coverage of subpopulations involved in ongoing transmission), and adjustment

of system objectives (e.g., maximize detection of the few remaining cases instead of optimizing

estimates of incidence in the general population). Conversely, as cases caused by novel pan-

demics (e.g., the 2020 coronavirus disease pandemic, or 2009 H1N1 pandemic) start to

increase exponentially, surveillance systems may need to switch from tracking individual cases

to population-based surveillance (e.g., performing laboratory testing among a proportion of

patients with a non-specific syndrome) in order to monitor the progression of the outbreak

and develop mitigation strategies without depleting public health resources.

When a disease system is poorly understood, as in the case of a novel emerging disease

(e.g., Coronavirus Disease 2019, COVID-19), optimal surveillance system designs are likely

to be subject to considerable epistemic uncertainty. This uncertainty can be represented

within the DIOS framework by using an ensemble of plausible disease system models to

simulate epidemiologic states during optimization, such models may be mechanistic or

phenomenological with different structures in nature depending on the state of knowledge

and operational questions to be addressed. The resulting variance in surveillance perfor-

mance (i.e., objective function values) across the design space may result in identification of

a large set of designs that are not significantly Pareto dominated on one or more objectives,

but it may still be possible to exclude large under-performing regions of design space. As

knowledge of the target disease evolves, the ensemble of disease system models can be
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Table 1. Example surveillance system design parameters and their potential impacts on surveillance performance.

Design

parameter

Definition Potential impacts on surveillance

performance

Example designs Example surveillance

system

Ref.

Target

population

Population to be monitored

for disease outcomes of

interest

Target populations representative of a

general population provide a means of

tracking overall disease incidence and trends

in the population as a whole. Target

populations informed by demographic

differences in disease risk, transmission

potential, or detection probability may

provide advantages for monitoring

outcomes in vulnerable populations,

anticipating outbreaks, or tracking rare

diseases

All persons >2 years of age residing in

homes

Republic of South

Africa HIV

prevalence survey

[31]

Pregnant women and infants US Zika Pregnancy

and Infant Registry

[32]

Site

enrollment

The inclusion of hospitals and

other facilities in passive

reporting networks, or

selection of locations for active

surveillance

Site selection influences factors such as

population coverage and representativeness,

diagnostic quality, the speed at which

spreading outbreaks may be detected, and

informational redundancy due to spatial

proximity or other sources of similarity

between locations

Hospitals in Maluku, North Sulawesi,

East Kalimantan, North Sumatra,

Yogyakarta and West Nusa Tenggara

Indonesia influenza

sentinel surveillance

system

[33]

Health centers in Dembi, Asendabo,

Tulubolo, Guangua, Bulbula, Dhera,

Welenchity, Metahara, Asebot, and

Kersa

Ethiopia malaria

sentinel surveillance

[34]

Sampling

strategy

Type of sampling used to

identify cases among the target

population

Sampling strategies influence the

representativeness of surveillance data, as

well as the ability of surveillance systems to

detect rare or underreported conditions.

Strategies that adequately characterize a

general population may be biased with

respect to critical subpopulations

Hospital-based convenience sampling

(e.g., every fourth patient meeting case

definition)

Bangladesh rotavirus

surveillance system

[35]

Respondent-driven sampling, which uses

existing samples in high-risk groups (e.g.,

intravenous drug user, men who have sex

with men) to recruit new samples, then

uses a model to correct for potential bias

in the nonprobability sampling

Central America

sexual behaviors and

HIV prevalence

survey

[36]

Sampling

intensity

Number of samples per

sampling interval

Under operational constraints, the choice

between sampling more frequently but with

low intensity or less frequently with higher

intensity represents a tradeoff between the

ability to resolve high frequency changes in

outcomes of interest, or timeliness of

detection, and reducing statistical

uncertainty

3 adults and 2 children per week Malaysia laboratory-

based influenza

surveillance system

[37]

5 mild cases serotyped per month per site China hand, foot,

and mouth disease

sentinel surveillance

system

[38]

Sampling

seasonality

Pre-determined changes in

sampling intensity over time

Year-round sampling increases the chances

of detecting unexpected changes in disease

incidence. However, if disease seasonality is

static and well-understood, resources may

be better used for intensive seasonal

sampling

Year-round New Zealand

virological

surveillance system

[39]

Transmission season (June-October) China dengue

virological

surveillance system

[40]

Laboratory

diagnostics

Methods used to determine

the presence of a pathogen

Diagnostic tests and other related factors

such as specimen types, the quality of the

specimen, and the time from onset to

specimen collection can influence the

sensitivity and specificity of the surveillance

system

Isolation of Bordetella pertussis from

clinical specimen and/or a four-fold or

greater increase in titer of antibody

against B. pertussis between acute and

convalescent sera

China pertussis

surveillance system

[41]

Isolation of B. pertussis from clinical

specimen and positive polymerase chain

reaction (PCR) for B. pertussis

US CDC pertussis

surveillance system

[42]

Case

definition

Diagnostic criteria to classify

outcomes of interest

Case definitions can influence factors such

as the severity and characteristics of cases

identified, and the sensitivity and specificity

of the system

Influenza-like illness, defined as an acute

respiratory infection with measured fever

of� 38˚C and cough with onset within

the last 10 days

WHO global

influenza surveillance

[43]

Severe acute respiratory infection,

defined as an acute respiratory infection

with history of fever or measured fever

of� 38˚C and cough with onset within

the last 10 days and requires

hospitalization

https://doi.org/10.1371/journal.pcbi.1008477.t001
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refined by updating weights for different model structures or adjusting parameter distribu-

tions, and optimal designs can be re-evaluated.

Here, we present for the first time a unified analytical framework for quantitative infectious

disease surveillance system optimization, accommodating multiple surveillance design param-

eters, objectives, operational constraints, and underlying disease processes. A common frame-

work and standard terminology can enable closer collaboration between and among

computational researchers, public health officials, clinical care providers and laboratories, and

other stakeholders regarding the design and implementation of infectious disease surveillance

systems. This in turn can accelerate the pace of methodological innovations and facilitate the

development of surveillance design theories that anticipate and respond to current and future

epidemiological challenges. Furthermore, a generalized framework can inspire the application

of quantitative surveillance optimization across broader settings, resulting in system designs

better aligned with local realities and public health priorities.

Design and implementation

The DIOS framework for surveillance simulation and optimization

The aforementioned challenges of surveillance optimization—multiple objectives, complexity

of relevant design parameters, operational constraints, and dynamic and uncertain epidemiol-

ogy of target diseases—suggest the need for a formalized framework for surveillance network

optimization. Advances in computation for simulation-based studies have benefitted many

related fields, including optimal disease control [44–47], yet applications of simulation optimi-

zation to the design of disease surveillance networks have scarcely been pursued. In the follow-

ing sections, we detail the Disease Surveillance Informatics Optimization and Simulation

(DIOS) framework, a simulation and optimization platform for designing infectious disease

surveillance networks, and we demonstrate its application in a site selection context. DIOS

facilitates a quantitative approach to designing surveillance systems tailored to local disease

transmission dynamics and surveillance needs, as well as a more general study of optimal net-

work design principles under varying objectives and epidemiological circumstances. Box 1

provides illustrative examples of potential DIOS applications.

Broadly, the DIOS framework (Fig 1) allows for evaluation of surveillance system perfor-

mance across a predefined design space under different epidemiologic scenarios (disease

system model) and surveillance network characteristics (surveillance model). Numerical opti-

mization algorithms (simulation optimization search) are applied to efficiently identify the

region(s) of design space that yield superior network performance based on one or more spe-

cific surveillance goals. The optimization procedure (Fig 1 and Box 2) yields a set of network

designs (i.e., optimal design parameter values) that maximize performance with respect to the

specified public health goal(s), according to the specified data and models.

Specify and parameterize disease system model

An accurate representation of epidemiologic characteristics of the target disease(s) is essential

for a successful optimization. This representation can be generated using observational data,

outputs of mechanistic transmission models, or other approaches, and represents the best esti-

mate of the disease’s epidemiology that is used to evaluate surveillance network performance

using objective functions (see Define objective function(s)). To contend with potential model-

misspecification and stochastic uncertainty, multiple realizations from an ensemble of disease

models (i.e., with varying epidemiologic parameter values or different model structures) can

be utilized in the framework. The structure of the disease system model output—such as spatial

and temporal resolution—should be tailored to the surveillance objectives and design
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parameters. For instance, if a surveillance objective is to better estimate the spatial distribution

of a disease, the target disease data must include geographical information about cases. If there

are multiple target diseases of interest, disease models can be structured so as to represent the

dynamics or distribution of the cluster of target diseases.

Specify and parameterize surveillance model

In order to identify optimal network designs, a model representing key aspects of the sampling

of and extraction of information from underlying disease processes by the surveillance system

is needed. The surveillance model represents the mechanisms through which variation in net-

work design parameters are expected to impact the epidemiologic information obtained and

thus directly influences optimization with respect to surveillance objectives. Surveillance mod-

els generally comprise a set of probability distributions relating target estimands to the under-

lying disease state of the system, conditional on network design and other relevant

considerations. For example, to optimize diagnostic protocol for minimal bias in reporting, a

surveillance model may be constructed for the distribution of reported cases conditioned on

diagnostic method, prevalence of the target disease relative to conditions with similar clinical

presentation, and the distribution across subpopulations of factors that impact diagnostic sen-

sitivity and specificity. When random errors contributed by surveillance processes are not

explicitly taken into account, as may be the case when seeking to maximize the size of the pop-

ulation covered by a surveillance network, the surveillance model becomes a set of conditional

Dirac delta distributions, and is deterministic. During the process of surveillance model speci-

fication, aspects of surveillance design that will be allowed to vary during optimization (i.e.,

the parameters to be optimized), and those that will be fixed (i.e., design aspects that are rele-

vant to performance, but which it is not feasible or desirable to change) must be decided upon.

Surveillance models may be as granular (e.g., modeling the full sequence of events necessary

for each individual case to be reported) or abstract (e.g., modeling the overall proportion of

cases detected in a population) as is deemed necessary for the optimization procedure,

Box 1. Example DIOS applications.

Text colors highlight the components of each optimization problem: design parameters

(green), surveillance objectives (orange), and operational constraints (blue).

• What is the distribution of sampling effort across age groups that minimizes the
time to detection of influenza outbreaks? (One design parameter and one objective)

• Howmany test kits should be allocated to each county in order to minimize the
number of cases and deaths caused by COVID-19, when only a fixed number
of test kits are available per day? (One design parameter and multiple objectives)

• What is the distribution of sampling effort across multiple time points that

minimizes absolute error in estimated seasonality of hand, foot, and mouth disease,

when the total sample size per year is fixed? (Multiple design parameters and one

objective)

• When an endemic disease is nearing elimination (e.g., malaria), when and where
should active sampling efforts be directed to minimize the time to effective isolation
and treatment of cases; as well as the probability of re‐establishment of infection
in previously cleared areas? (Multiple design parameters and multiple objectives)
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Fig 1. Schematic of the DIOS framework. The surveillance system optimization procedure uses data and knowledge about disease

transmission and case ascertainment to identify optimal surveillance designs with regard to predefined surveillance goals. First, a

disease system model D is defined, using observed epidemiologic data and/or theory, and taking into account relevant factors

influencing disease dynamics or distribution. Multiple realizations of disease data (d) may be generated to explore optimal designs

under uncertainty or variability of the underlying system (see Specify and parameterize disease system model). Furthermore, an

ensemble of disease models can be combined to reduce the chance of model misspecification. Next, a surveillance model is defined to
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recognizing, however, that computational complexity may limit the feasibility of certain

representations.

Define objective function(s)

Changes to design parameters can be analyzed in relation to their influence on network perfor-

mance in the context of specific surveillance system objectives. That is, performance is

represent how information on the state of the disease system is captured as a function of design parameters θ and any other relevant

variables (e.g., factors known to affect the sensitivity and specificity of a diagnostic test, or estimated underreporting rates for an area;

see Specify and parameterize surveillance model). To initiate the optimization process, an initial design parameter set, θ1, is drawn from

the design space subject to operational constraints g(θi)� 0, h(θi) = 0 and, along with underlying disease data d, input to the

surveillance model to generate a realization of surveillance information, I 1 ¼ Iðy1; dÞ. The objective function, f, is evaluated based on

the disease data d, and surveillance information I 1 (see Define objective function(s)). If a stopping criterion (e.g., reaching a large

number of iterations; de minimis improvement in objective function) is not met, a new design parameter set, θi, is proposed from the

design space using metaheuristic search algorithms (e.g., simulated annealing, genetic algorithm, particle swarm algorithm) when the

design space is large, or enumeration when the design space is small. This new design parameter set is then used to generate a new

realization of surveillance information and evaluation of the objective functions (see Simulation optimization search). After a stopping

criterion is met, design parameter sets with the best objective function values are output as optimal surveillance designs.

https://doi.org/10.1371/journal.pcbi.1008477.g001

Box 2. Surveillance system optimization procedure.

Input: Epidemiologic data and/or theory, surveillance performance data and/or theory,

and other auxiliary data (e.g., disease risk factors)

Output: the design parameter set with the highest/lowest (i.e., optimal) objective func-

tion value

Initialization:

Define a disease system model to represent the underlying dynamics of the target dis-

ease system in the spatial, temporal, and demographic context of interest

Generate disease distributions d as realization(s) of the system

Sample initial design parameter set, θ1, within the design space subject to constraints g
(θi)� 0, h(θi) = 0

Generate realization(s) of surveillance information,I 1, given d and θ1

Evaluate objective function(s) f given I 1 and d

while stop criterion is not met do

Propose a new design parameter set, θi, within the design space using metaheuristic

search algorithms or enumeration

Generate realization(s) of surveillance information, I i, given d and θi

Evaluate objective function(s), f, given I i and d

end while

return the best design parameter set, ŷ (i.e., with the optimal objective function value)
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evaluated with respect to achieving a specific goal or goals. This evaluation is formalized by

defining objective functions, which define the specific minimization or maximization problem

to be solved, based on the design parameters and surveillance goals of interest. Thus, network

performance is estimated through the iterative evaluation of objective functions, which are

minimized (or maximized) as the design parameter space is searched. Table 2 presents canoni-

cal objective functions available for use in surveillance network optimization. Our examples

do not explicitly include operational considerations within objective functions, but these can

easily be taken into account. For example, the objective function could be established so as to

yield the marginal information gain per added site or sample, or per dollar spent on surveil-

lance. For a multi-disease optimization problem, objective functions can be defined to repre-

sent measures of performance of the system across all monitored diseases, as well as measures

of performance for each disease individually. For example, the mean absolute errors in inci-

dence of all diseases monitored by the surveillance system or the impact of surveillance on a

common outcome (e.g., hospitalizations averted via case detection and isolation) could be

used as the objective for a single-objective optimization, while disease-specific mean absolute

errors could be added in a multi-objective optimization.

Simulation optimization search

The goal of the optimization process (while block in Box 2; the loop in Simulation optimiza-
tion search component of Fig 1) is to thoroughly explore the response surface of the objec-

tive function(s) over the design space so as to identify designs likely to yield optimal or

near-optimal surveillance performance. Candidate surveillance designs are drawn from the

design space, and the expectations of resulting objective function values across realizations

are evaluated by comparing information ascertained by the surveillance system to the true

underlying disease data; this process is repeated iteratively until a stopping criterion is

reached, e.g., convergence on an estimated optimum; exhaustive sampling of the design

space; or the exceedance of a computational budget. When the design parameter space is

small, exhaustive evaluation of objective function values across the entire design parameter

space may be feasible. Sufficient and efficient searching of large design parameter spaces, by

contrast, may require heuristic or metaheuristic optimization algorithms (e.g., simulated

annealing, genetic algorithms, particle swarm optimization, or Bayesian model-based

optimization).

Multiple surveillance objectives can be optimized simultaneously through multi-objective

optimization approaches, such as through weighted sums of objective functions or Pareto opti-

mization [48]. Generating weighted sums of objective function values allows for the specifica-

tion of relative importance of different objectives. If one objective is less important, it would be

assigned a smaller weight when compared with other objectives and contribute less strongly to

the identification of optimal designs. Pareto optimization outputs a set of optimal solutions

(Pareto optimal set) for which no other solutions can perform better under all objectives. That

is, improving the performance on one objective leads to worsening at least one of the other

objectives. Decision makers are then tasked with choosing the “best” design from the Pareto

optimal set by considering the relative importance of each objective, or other considerations

not explicitly accounted for during optimization. Multi-objective optimization in the presence

of a large design space can be handled by modified metaheuristic algorithms [49]. For example,

to accommodate multiple objectives, Pareto simulated annealing approaches seek to express

the acceptance probability of a new design as a function of its improvements in all objectives

when compared with the current best design [50].
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Table 2. Examples of objective functions for optimization analysis of surveillance networks.

Objective function

type

Description Example objective functions

Minimize mean error

magnitudes

On average, how different a quantity, QI, measured or

estimated from the ascertained data I(θ, d), is from the

same quantity, QD, estimated or measured from the

underlying disease data D. Includes mean squared error,

mean squared percentage error, root mean squared error,

standardized root mean squared error, mean absolute

error, mean absolute percentage error, or other

expressions.

To better characterize geographic, temporal, or demographic distribution of
disease, the objective function may be expressed as:

f ¼
Xn

i¼1

ðCI;i � CD;iÞ
2
=n

n—number of subpopulations

CI,i—number of ascertained cases in subpopulation i

CD,i—number of true cases from D in subpopulation i

To assess the impact of interventions more accurately, the objective function

may be expressed as:

f ¼ j
DI

FI
�

DD

FD
j

DI—number of cases detected by surveillance system in presence of intervention

FI—number of cases detected by surveillance system in absence of intervention

DD—true number of cases in presence of intervention

FD—true number of cases in absence of intervention

Minimize uncertainty

of surveillance

estimands

If bias in surveillance sampling and estimation is not a

concern (e.g. for asymptotically unbiased estimators), then

minimizing uncertainty may be the primary goal.

Uncertainty can be represented by standard error, standard

deviation, inter-quantile range, or other expressions.

To determine the effect of a risk factor on infection more precisely when

assuming a linear relationship between the risk factor and disease rate, the

objective function may be expressed as:

f ¼ varðb̂ IÞ

b̂ I—estimated regression coefficient of the effect of the risk factor on the disease

rate from the ascertained data

To forecast the peak case count more precisely, the objective function may be

expressed as:

f ¼ varðPIÞ

PI—forecasted peak case count based on ascertained data overall or for a specific

area

Maximize log-

likelihood

If a probability distribution QI ~ Q(θ, . . .) can be expressed

by the surveillance model, then maximizing the likelihood

of true data QD under the estimated distribution can be

used to simultaneously address bias and variance.

To better estimate the effect of a risk factor on infection rates when assuming a

linear relationship between the risk factor and disease rate, the objective

function may be expressed as:

f ¼ log
1

s
ffiffiffiffiffiffi
2p
p e�

1
2

b̂ I � bD
s

� �2
� �

;

if a normal distribution with a variance of σ2 is assumed for the true effect of a

risk factor βD
To improve estimation of outbreak probabilities, the objective function may be

expressed as:

f ¼
XT

t¼1
½Yt logðp̂tÞ þ ð1 � YtÞ logð1 � p̂tÞ�;

if outbreak probabilities in subsequent weeks are assumed to be conditionally

independent.

p̂t—estimated outbreak probability in time period t
Yt—indicator (0 or 1) for actual occurrence of an outbreak in time period t

(Continued)
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Results

Demonstration of the DIOS framework: Optimal selection of new

surveillance sites

Here, we demonstrate an application of the DIOS framework in the context of selecting candi-

date sites to add to an existing cross-sectional survey network. We note that is but one poten-

tial application of the framework, and that the full set of surveillance design problems to which

DIOS can be applied is vast, including establishing optimal temporal sampling regimes, tar-

geted surveillance of important subpopulations, determination of optimal diagnostic criteria,

and many others (Table 1). We consider two surveillance design objectives in this demonstra-

tion: (1) optimal prediction of the geographical distribution of the disease (hereafter referred

to as spatial prediction); and (2) optimal estimation of the effect of a risk factor (hereafter

referred to as effect estimation). We demonstrate how optimal designs can vary in relation

to epidemiological characteristics of the target disease; in this case, we consider the rate of

decrease in correlation of disease prevalence rates over distance, which determines whether

prevalence changes abruptly or smoothly over the spatial domain. The simplified formulation

of the site selection problem presented here is meant to be demonstrative of the general capa-

bilities of DIOS, rather than as a comprehensive treatment of site selection applications of the

framework. The code for the demonstration is available at https://github.com/

OPTI-SURVEIL/DIOS_demonstration/.

We first describe the demonstration setting, the data available for design optimization,

the specification and parameterization of the disease and surveillance system models, and the

resulting formalized objective functions for optimizing spatial predictions and effect estima-

tion. We demonstrate the use of an exhaustive search strategy to find the single most optimal

site to add to the existing network for both goals, as well as the Pareto-optimal set of single

sites to add when considering both objectives simultaneously. We simulate the addition of an

arbitrary number of sites, acknowledging that in real-world applications of DIOS, the number

of sites might be determined by budgetary constraints and/or the marginal informational

Table 2. (Continued)

Objective function

type

Description Example objective functions

Maximize

classification

performance

When QI and QD are categorical, the performance of the

surveillance system can be measured by classification

evaluation metrics, such as sensitivity, specificity, positive

predictive value, F1 scores, area under the receiver

operating characteristic curve, etc.

To improve our ability to discriminate outbreaks from false alarms, the

objective function may be expressed as the area under the ROC curve:

f ¼
Z 1

0

ptpðpfpÞdpfp

πtp—proportion of true outbreaks correctly identified

πfp—proportion of non-outbreak time periods falsely identified as outbreaks

To improve our ability to detect a rare disease, the objective function may be

expressed as the maximum of the average F1 score:

f ¼ 2

Z 1

0

ptpjpðtÞ � ptpðtÞ

ptpjpðtÞ þ ptpðtÞ
dt

πtp—proportion of true cases reported

πtp|p—proportion of reported cases that are true

τ—threshold condition for reporting a case, assumed in this example to

represent a probability

https://doi.org/10.1371/journal.pcbi.1008477.t002
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gains per added site. We conclude our demonstration by considering the best set of three sites

to add, which introduces substantial combinatorial complexity, motivating the use of a meta-

heuristic algorithm to efficiently search for optimal regions of design space.

Demonstration setting

We generated a set of 100 potential surveillance sites scattered uniformly at random across a

unit grid, and randomly selected 30 sites to represent a virtual existing surveillance network.

We seeded two point sources for a risk factor influencing expected disease prevalence rates

(Fig 2A), then simulated disease prevalence under two scenarios of spatial auto-correlation

by adjusting the scale parameter (ρ) of a log-Gaussian spatial process centered on a linear

function of the risk factor. We refer to these as spatially patchy (ρ = 0.1; Fig 2B) and spatially

smooth (ρ = 0.3; Fig 2C) disease scenarios. Additional details of data generation are provided

in S1 Text.

Data and knowledge inputs

Available epidemiologic data to characterize the relevant aspects of the disease system include

simulated prevalence rates observed at the 30 sites enrolled in the surveillance network. Data

characterizing the surveillance system and design space include the coordinates of the 30

enrolled and 70 candidate sites. Additional data to support optimization include levels of risk

factor X at each sampling location. Theoretical inputs include the assumption of a log-linear

relationship between X and disease prevalence, and that spatial disease prevalence residuals

follow a Gaussian process with exponential covariance function.

Set up and initialization

Disease system model specification and simulation. In this demonstration, relevant

aspects of the disease system include the correlation of disease outcomes over space, as well as

Fig 2. Simulated data used for surveillance system optimization. Spatial variation of (A) the risk factor X and (B) log prevalence when ρ = 0.1 and (C) ρ = 0.3.

Triangles represent the existing 30 surveyed sites; dots represent the 70 candidate sites; crosses represent two point sources of the risk factor of interest (e.g.

locations of mass gatherings); background color in Panel A and contour lines in panels B and C represent the levels of risk factor X. Three realizations of the log

prevalence surface when ρ = 0.1 or 0.3 are shown in S1 Fig.

https://doi.org/10.1371/journal.pcbi.1008477.g002
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the association of disease outcomes with risk factor X. Based on the observed disease preva-

lence at participating sites, we assume the log of the prevalence, Y, is generated from an under-

lying random spatial process with an independent and identically distributed (i.i.d) mean-zero

normally distributed noise ε with a variance of σd2, and can be modelled by:

Y ¼ expðb0 þ b1X þ Zþ εÞ;

where β0 represents log of the overall mean prevalence rate, β1 represents the effect of a unit

increase in risk factor X, and η represents a mean-zero Gaussian process accounting for spatial

correlation induced by additional dependence not captured by X. The spatially correlated

error term η follows a multivariate normal distribution with a variance-covariance matrix C,

in which each entry cij represents the covariance between the residuals at the ith and the jth
location when i 6¼ j, and the variance of the residuals at the ith location when i = j. Covariance

between sites i and j is specified as cij ¼ s2
s e
� dij=r, where dij is the distance between sites i and j,

and ρ is the scale parameter as before; and the variance at site i is σd2 + σs2. The correlation of

the residuals between two sites as a function of the distance between them is shown in S2 Fig.

Parameters β0, β1, σs, σd, and ρ were estimated based on the prevalence rates and risk factor

levels at the 30 in-network sites, after which 1000 realizations of log-prevalence rates at the 70

candidate sites were drawn according to the fitted parameters, observed prevalence at in-net-

work sites, risk factor levels at candidate sites, and distance matrix between in-network and

candidate sites.

Surveillance model specification. Relevant aspects of information captured by the sur-

veillance system in this demonstration pertain to the extrapolation of prevalence from enrolled

to unenrolled sites, as well as the variance of the estimated effect of risk factor X. Assuming

perfect enumeration of disease prevalence at each enrolled site, as well as known values of

the risk factor X for all sites, information drawn by each candidate design is represented by

improvements in estimates of β1 and predictions at 70-n out-of-network sites obtained by fit-

ting a universal kriging predictor to data from enrolled sites [51]. In this demonstration, we

specify the spatial covariance structure of the true disease process and assume it is known to

the surveillance system operator during optimization. However, we note that real world users

of DIOS would ideally obtain this information by validating the disease model against surveil-

lance data so as to select a well-supported model structure. If insufficient data are available to

indicate a valid structure, several alternative approaches could be considered. One could simu-

late a distribution of performance metrics for each design using an ensemble of plausible dis-

ease models, and return all designs achieving a target probability of being included in the

Pareto-optimal set. Another approach might be to define objective functions on the basis of

some proximal measure related to performance metrics of interest for which model uncer-

tainty is less of a concern, e.g., minimizing the average distance between the unmonitored and

monitored locations, which promotes uniform coverage of the study region. Another potential

remedy would be to undertake additional data collection using simple random sampling or

grid sampling before performing simulation-optimization using the DIOS framework.

Design space. In our hypothetical example, we have an existing network of 30 surveillance

sites {s1 . . . s30}, and 70 additional locations {s31 . . . s100} from which we may select n new sites

to be added to the network. Therefore, our design parameter sθ is the set of n sites to be added

to the network, and the discrete design space is all possible sets of n sites chosen from 70.

Optimization

Objective functions: Spatial interpolation. The first surveillance function we wish to

optimize is prediction of the geographical distribution of the disease. Therefore, we define the
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objective function as the mean squared error (MSE) of log predicted prevalence at the 70-n
out-of-network locations after adding sθ to the network:

f1ðsyÞ ¼
X1000

k¼1

X70� n

j¼1
ðYdk;j

� Ŷ dk;j
ðsyÞÞ

2
=ðð70 � nÞ � 1000Þ;

where Ydk;j
represents the log prevalence rate at the jth unenrolled site in the kth disease system

model realization, while Ŷ dk;j
ðsyÞ represents the predicted log prevalence rate at the jth site

after augmenting the existing network with sθ in the kth realization. We denote the objective

function value for this objective as OFV1. Other objective functions, such as the MSE of log

predicted prevalence rate at the existing 30 sites or across all 100 sites, can also be used. Exist-

ing literature on optimal spatial design provides more options for relevant objective functions

[52–54].

Objective functions: Effect estimation. Our second surveillance goal is precise estima-

tion of the effect of the risk factor X on the disease outcome, so the objective function is for-

malized as:

f2ðsyÞ ¼
X1000

k¼1
varðb̂1 dk

ðsyÞÞ=1000;

where b̂1 dk
ðsyÞ represents the estimate of β1 after augmenting the existing network with sθ in

the kth disease system model realization.

Search algorithms. When a single site is to be added to the network, the design space is

small enough to allow for evaluation of the objective function across all possible designs.

Therefore, the algorithm for proposing new designs simply steps sequentially through sites {s31

. . . s100}. However, when the optimization question is shifted to the best three sites to add, the

design space expands to 54,740 combinations, making sequential enumeration a prohibitively

expensive search strategy. Under these conditions, heuristic (greedy) or metaheuristic algo-

rithms play an important role in finding the optimal or near-optimal solution within a reason-

able amount of time [55]. Moreover, the evaluation of the objective function across

realizations can be parallelized to further reduce computational time.

We illustrate the use of a simulated annealing (SA) meta-heuristic algorithm popular in spa-

tial sampling network design [56,57] to more efficiently explore the design space when three

sites are to be added. In SA, a random initial design is proposed, after which, at each iteration,

a new design is sampled from the neighborhood of the current design and the objective func-

tion value (OFV) for the new design is evaluated. Here, the neighborhood of a set of n sites to

enroll is defined as designs sharing n-1 sites with the current design. If the new OFV is superior

to the current OFV, the new design is accepted with 100% probability; otherwise, it is accepted

with a probability of e� DOFVT , where ΔOFV is the change in the OFV and T is a tuning parameter

analogous to temperature [58]. T decreases at a rate α after each iteration, causing SA to accept

deterioration in the OFV more frequently at the beginning of the run and rarely towards the

end. Probabilistically accepting worse solutions early in the search enables the algorithm to

escape local optima. For our demonstration, we set the initial temperature T0 and cooling rate

α separately for each objective and epidemiologic scenario, following suggestions by Sait and

Youssef [58], and set the stopping criteria is to be T�10−6. We repeat the SA process 3 times to

examine the convergence of the result.

Optimal surveillance designs

Selecting one additional site to optimize spatial prediction. The mean squared error of

spatial predictions across unenrolled sites (OFV1) is minimized by enrolling sites that are in
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close proximity to multiple out-of-network sites—especially clusters of unmeasured sites at

long distances from existing network locations (Fig 3A and 3B). These optimal placements

address informational gaps by enrolling sites that increase the average covariance between

measured and unmeasured locations, and tend to fall in areas close to several unenrolled sites

but away from the initially enrolled locations. Furthermore, the amount of information that

can be inferred from the same set of neighboring sites increases with the scale parameter ρ.

Thus, in the spatially patchy disease scenario, where the scale of spatial autocorrelation is

small, optimal placement occurs in the center of a tight cluster of unenrolled sites (Fig 3A).

Under the spatially smooth scenario, the same cluster is correlated with initially enrolled sites,

and optimal site placement falls in the center of a loose cluster of unmeasured sites located

quite far from the initial network (Fig 3B). Under the parameter set used to generate demon-

stration data, there is no clear influence of risk factor level X on site selection to optimize spa-

tial prediction.

Selecting one additional site to optimize effect estimation. The variance of the esti-

mated effect of risk factor X on log disease prevalence (OFV2) is lower when values of X at

added sites lie towards an extreme of X’s observed range and when the site to be added is rela-

tively uncorrelated with (i.e., distant from) initially enrolled sites (Fig 3C and 3D). In the spa-

tially patchy disease scenario, where the scale of spatial autocorrelation is limited, optimal site

placement is dominated by the level of risk factor X, and the available site with highest X is

chosen (Fig 3C). In the spatially smooth scenario, which has an extended scale of spatial auto-

correlation, the correlation of outcomes between the site with the highest X and nearby initially

enrolled sites results in selection of an alternative location where X is lower, but prevalence is

expected to be more independent of previously observed outcomes (Fig 3D).

Single site selection based on multiple objectives. When simultaneously optimizing site

enrollment for spatial prediction and effect estimation, the output is a Pareto optimal set con-

taining designs that are considered equally optimal because no objective function value can be

improved without impairing the other objective function values. A set of six candidate sites

emerges for the spatially smooth disease scenario, including four alternative selections to the

optimal locations for each single objective (Fig 4). The Pareto optimal set for the spatially pat-

chy scenario includes only one non-dominated site in addition to the optimal locations for

either objective individually (S3 Fig). Since Pareto optimization does not return a single solu-

tion, some way of reconciling the objective criteria, such as a weighted sum or expression of

total cost may be required to choose the optimal design. Notably, we did not incorporate cost

associated with adding sites in our analysis, but this could be accomplished by including cost

or number of sites as an objective function to be minimized, and modifying the SA algorithm

to allow adding, dropping, or swapping sites when finding neighboring designs. In this case,

the spatial prediction OFV, effect estimation OFV, and the cost-effectiveness OFV would be

jointly optimized.

Selecting three additional sites to optimize spatial prediction. As a final example, we

demonstrate the use of metaheuristic algorithms to search larger design spaces, applying simu-

lated annealing to select three additional sites out of seventy candidate sites simultaneously.

Simulated annealing optimizations seeded with different initial designs converged to the same

best set of three additional sites to enroll for enhanced spatial prediction under the spatially

smooth disease scenario (Fig 5). All three SA runs (Fig 5A, colored lines) converged to the

same optimal design within 6,000 iterations. Given the parameters and the stopping criteria

we used, each run terminated after 8,630 iterations. Even with three runs, the total number of

objective function evaluations was 25,890, less than half of what would be required if using

enumeration. Fig 5B shows the location of the optimal three-site set. The results for spatial pre-

diction under the spatially patchy outcome scenario, as well as for effect estimation under both
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Fig 3. Optimal site placement to augment a surveillance network for spatial prediction or effect estimation under scenarios of spatially patchy or

smooth disease distributions. Black triangles represent initially enrolled sites, gray circles represent unselected candidate sites, and the cyan circle indicates

the optimal site to add to the network. White crosses represent point sources for risk factor X. Raster colors represent objective function values for

hypothetical sites added across a regular 41�41 grid in order to visualize the response surface in relation to initial network locations and the underlying risk

factor. Colors represent the mean squared error of spatial predictions at unmonitored sites in A and B, and the variance of effect estimation for risk factor X
in C and D.

https://doi.org/10.1371/journal.pcbi.1008477.g003
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the spatially patchy and smooth outcome scenario, are shown in S4–S6 Figs. Computational

run times for these scenarios are shown in S1 Table.

Conclusion

Surveillance system designs that provide reliable, timely estimates of the spatio-temporal dis-

tributions of endemic and epidemic diseases, are critical to the efficient allocation of resources

for public health responses. However, opportunities to apply numerical optimization to sur-

veillance system design have heretofore been overlooked in the literature. In this paper, we

presented and provided a basic demonstration of DIOS, a framework for surveillance optimi-

zation via simulation to enhance design decision making and facilitate research into optimal

design principles under uncertain or changing epidemiological conditions.

The scope of surveillance objectives, design parameters, and contexts extends far beyond

the demonstration provided in this paper, which applied the DIOS framework to a specific

spatial design optimization problem. DIOS is suitable for application to a wide range of sur-

veillance design problems (Table 1). In real-world applications, it may be prudent to accom-

modate structural uncertainties via an ensemble of plausible disease and/or surveillance

models in order to ensure that optimization output is not biased by unverifiable assumptions

regarding the unobservable ‘true’ state of the disease system. Furthermore, cost and efficiency

considerations, represented only abstractly as absolute limits on the number of new monitor-

ing locations in our demonstration, are likely to be of major concern in practical applications

of the DIOS framework. There are numerous ways in which such operational considerations

Fig 4. Results from Pareto optimization under the spatially smooth disease scenario (ρ = 0.3). (A) Mean squared error of log predicted disease prevalence

(OFV1) and variance of causal effect estimate (OFV2) of the Pareto set (colored dots) and all other candidate sites (hollow dots). (B) Locations of the Pareto set

(colored triangles) colored coded as in Panel A. Black triangles represent initially enrolled sites, and gray dots represent unchosen candidate sites. Background

color in Panel B represents log prevalence when ρ = 0.3 using the same color scheme as in Fig 2C, while contour lines represent levels of risk factor X.

https://doi.org/10.1371/journal.pcbi.1008477.g004
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can be incorporated into DIOS, encompassing hard constraints on design parameters, and,

potentially, conducting performance optimization at various discrete levels of constraint to

assess marginal benefits of additional investment. Penalty functions used to adjust separate

measures of performance (e.g., information gain per dollar spent) or incorporation of mea-

sures of cost or effort as separate objectives to be minimized are additional possibilities. Our

representation of design constraints was also simplified in that all candidate sites were consid-

ered equal with respect to surveillance quality and cost of enrollment. In reality, DIOS users

may wish to incorporate prior information on performance into the surveillance model (e.g.,

simulating low random error associated with data originating from specific sites that have

enhanced data collection or reporting infrastructure). Cost or effort associated with enrolling

each site can be incorporated into the optimization procedure as constraints on design param-

eters, penalties in objective functions, or separate objectives that represent site preference.

The DIOS framework facilitates improved surveillance system designs by providing a quan-

titative platform for incorporation of data and theory on epidemiologic and surveillance

processes in the context of specific surveillance objectives and resource and operational con-

straints. Our hope is that DIOS will stimulate collaboration between health planners, clinical

care providers and laboratories, researchers, and software developers to advance understand-

ing of surveillance design under uncertainty, and indeed, such collaborations will be crucial to

its utility for practical applications. Input from public health professionals is needed to specify

proper objective functions and relevant design parameters, select meaningful constraints on

design parameters, construct surveillance system models that accurately represent real-world

surveillance processes, provide information on operational or logistical design constraints and

Fig 5. Metaheuristic optimization with simulated annealing (spatial prediction, ρ = 0.3). (A) Mean squared error of predicted log prevalence (OFV1) across

iterations of three SA runs. (B) The locations of the optimal 3 sites. Black triangles represent existing sites, blue triangles represent the optimal additional sites, and

gray dots represent unchosen alternative sites. Background color in Panel B represents log prevalence when ρ = 0.3 using the same color scheme as in Fig 2C, while

contour lines represent levels of risk factor X.

https://doi.org/10.1371/journal.pcbi.1008477.g005
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minimal acceptable performance on various objectives, and to provide preference information

to guide selection of the “best” surveillance design either during or after optimization (e.g.,

human-in-the-loop methods [59] or selection from Pareto-optimal designs, respectively). The

rationality of the output optimal design will be highly dependent on the accuracy and rele-

vance of data or models used to represent disease and surveillance processes during optimiza-

tion, as well as the performance of the optimization search algorithm. There is much future

work to be done to develop and validate simulation models that can represent relevant epide-

miologic and measurement processes accurately; to analyze the sensitivity of optimal design to

the specification of disease system models and changes in disease epidemiology; and to adopt

optimization approaches from related fields—such as environmental monitoring network

design and signal processing [60–62]—to disease surveillance design applications. Lastly, while

our discussion and framing has focused on surveillance infrastructures and objectives related

to measuring the incidence of human disease, we note that DIOS can also be applied to the

optimization of surveillance information informed by other data streams, such as vector or

environmental surveillance. There are indeed many exciting and relevant questions surround-

ing optimal design and integration of these newer types of surveillance with human incidence

data which DIOS may help to address.
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