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The advent of high-throughput RNA sequencing (RNA-seq) has led to the discovery of unprecedentedly immense tran-

scriptomes encoded by eukaryotic genomes. However, the transcriptome maps are still incomplete partly because they

were mostly reconstructed based on RNA-seq reads that lack their orientations (known as unstranded reads) and certain

boundary information. Methods to expand the usability of unstranded RNA-seq data by predetermining the orientation

of the reads and precisely determining the boundaries of assembled transcripts could significantly benefit the quality of the

resulting transcriptome maps. Here, we present a high-performing transcriptome assembly pipeline, called CAFE, that

significantly improves the original assemblies, respectively assembled with stranded and/or unstranded RNA-seq data,

by orienting unstranded reads using the maximum likelihood estimation and by integrating information about transcrip-

tion start sites and cleavage and polyadenylation sites. Applying large-scale transcriptomic data comprising 230 billion

RNA-seq reads from the ENCODE, Human BodyMap 2.0, The Cancer Genome Atlas, and GTEx projects, CAFE enabled

us to predict the directions of about 220 billion unstranded reads, which led to the construction of more accurate transcrip-

tome maps, comparable to the manually curated map, and a comprehensive lncRNA catalog that includes thousands

of novel lncRNAs. Our pipeline should not only help to build comprehensive, precise transcriptome maps from complex

genomes but also to expand the universe of noncoding genomes.

[Supplemental material is available for this article.]

Comprehensive transcriptome maps enhance understanding of
gene expression regulation in both coding and noncoding
genomic regions (Wang et al. 2009; Martin and Wang 2011).
Recently, large-scale high-throughput RNA sequencing (RNA-
seq) data from the ENCODE Project were used to characterize high-
ly complex, overlapping transcription units on both strands,
revealing that more than 60% of the human genome is reproduc-
ibly transcribed in at least two different cell types (Djebali et al.
2012; Harrow et al. 2012). Intriguingly, a significant portion of
these extensive transcription signals, mostly from intergenic re-
gions, turned out to be unannotated. To identify the unannotated
transcriptome, gene annotation projects, such as GENCODE
(Harrow et al. 2012), Human BodyMap 2.0 (Cabili et al. 2011),
and MiTranscriptome (Iyer et al. 2015), have massively recon-
structed whole transcriptomes by assembling large-scale RNA-seq
data and have characterized transcriptome-wide noncoding RNAs
(ncRNAs). The majority of RNAs in the noncoding transcriptome
were longncRNAs (lncRNAs), such as repeat-associated ncRNAs, en-
hancer-associated ncRNAs, long intervening ncRNAs (lincRNAs),
antisense ncRNAs, and so on, (Ulitsky et al. 2011; Derrien et al.
2012; Nam and Bartel 2012; Pauli et al. 2012; Hangauer et al.
2013; Luo et al. 2013; Brown et al. 2014; Iyer et al. 2015).

Unknown transcripts can be identified via assembly of RNA-
seq data by two approaches: the genome-guided approach (known
as reference-based assembly) (Yassour et al. 2009; Guttman et al.
2010; Trapnell et al. 2010; Boley et al. 2014; Mangul et al. 2014;
Maretty et al. 2014); and the de novo approach (Martin et al.

2010; Grabherr et al. 2011; Schulz et al. 2012; Safikhani et al.
2013; Xie et al. 2014; Chang et al. 2015; Tjaden 2015). Because
the de novo approach assembles RNA-seq readswithout a guide ge-
nome, it generally requires RNA-seq data with strand information
(called stranded RNA-seq data). However, for the reference-based
approach, the stranded RNA-seq data had been regarded as dis-
pensable because the sense-orientation of some reads spanning
exon junctions could be predicted based on the splicing signal.
For that reason, the ENCODE Project (The ENCODE Project
Consortium 2012), the modENCODE Project (Gerstein et al.
2010; The modENCODE Project Consortium et al. 2010), the
Human BodyMap 2.0 Project (Cabili et al. 2011), the Genotype-
Tissue Expression (GTEx) Project (http://www.gtexportal.org)
(The GTEx Consortium 2013), the Human Protein Atlas (Uhlen
et al. 2010, 2015), and The Cancer Genome Atlas (TCGA)
(Ciriello et al. 2013; Kandoth et al. 2013) Consortium produced
large-scale unstranded RNA-seq data that lack strand information;
genome-wide gene annotation projects have proceeded using
these data. For instance, the MiTranscriptome reused 6810 public-
ly available unstranded RNA-seq data from ENCODE, TCGA, and
other studies to reconstruct a comprehensive map of the noncod-
ing transcriptome (Iyer et al. 2015). Despite such applications,
transcriptome assembly using unstranded RNA-seq data often re-
sults in erroneous transcript models, including chimeras, particu-
larly when there are convergent, divergent, or antisense overlaps
between two genes (Garber et al. 2011; Martin and Wang 2011;
Nam and Bartel 2012). Stranded RNA-seq data can benefit refer-
ence-based assembly in those genomic regions (Martin and
Wang 2011). Nevertheless, the reuse of the large amount of

Corresponding author: jwnam@hanyang.ac.kr
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.214288.116.
Freely available online through the Genome Research Open Access option.

© 2017 You et al. This article, published inGenome Research, is available under
a Creative Commons License (Attribution-NonCommercial 4.0 International),
as described at http://creativecommons.org/licenses/by-nc/4.0/.

Method

1050 Genome Research 27:1050–1062 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/17; www.genome.org
www.genome.org

http://www.gtexportal.org
http://www.gtexportal.org
http://www.gtexportal.org
http://www.gtexportal.org
http://www.gtexportal.org
mailto:jwnam@hanyang.ac.kr
mailto:jwnam@hanyang.ac.kr
mailto:jwnam@hanyang.ac.kr
http://www.genome.org/cgi/doi/10.1101/gr.214288.116
http://www.genome.org/cgi/doi/10.1101/gr.214288.116
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


publicly available unstranded data with the stranded data could
not only enhance detection of new transcripts but also reduce
the generation of erroneous transcript models.

RNA-seq-based transcriptome assembly is also challenged by
the imprecise ends of assembled transcripts (Steijger et al. 2013).
Early methods roughly defined the transcription structures with
the support of histone modification signals, such as H3K4me3 for
active promoters and H3K36me3 for active gene bodies (Guttman
et al. 2010; Ulitsky et al. 2011). Later, specialized RNA sequencing
techniques, such as cap analysis gene expression by sequencing
(CAGE-seq) (Yamashita et al. 2011; Brown et al. 2014; Kawaji et al.
2014) and poly(A) position profiling followed by sequencing (3P-
seq) (Ulitsky et al. 2011; Nam and Bartel 2012), have been success-
fully applied to define the ends of transcripts at single-base resolu-
tion. Integrative analysis of the specialized RNA-seq data including
CAGE-seq and poly(A)-seq enabled the identification of more com-
plete gene structures (Boley et al. 2014), valuable information for
functional studies of the genes. However, despite the precise boun-
dary information, the data have been generated from a limited
number of cell types. Recently, a computational method, GETUTR,
that estimates 3′ UTR ends from general RNA-seq data, was intro-
duced (Kim et al. 2015), and it is now possible to predict the 3′ end
of transcripts more accurately in any cell type using RNA-seq data.

Results

Unstranded RNA-seq causes error-prone assembly

To investigate the inaccuracy of transcriptome assemblies recon-
structed from unstranded RNA-seq data (unstranded assemblies)
relative to that of assemblies from stranded RNA-seq data (stranded
assemblies), we reconstructed 45 stranded and 32 unstranded
assemblies from publicly available RNA-seq data from the
ENCODE Project using Cufflinks (Trapnell et al. 2010). The result-
ing assemblies were evaluated based on the protein-coding genes
of the GENCODE V19 annotations at the base level using
Cuffcompare (Trapnell et al. 2010). The evaluation was done by
counting false negative (FN), false positive (FP), and true positive
(TP) bases upon agreement between the reference and the result-
ing assembly at the base level (Supplemental Fig. S1A; see the sec-
tion “Evaluation of transcriptome assembly” in Supplemental
Methods for more details). The sensitivity (TP/[TP + FN]) of the re-
sulting assemblies appeared to be correlated with the size of
mapped reads up to about 100 million mapped reads, but con-
verged beyond that size (Fig. 1A), which suggests that many sam-
ples from the ENCODE Project still need more data to reach their
maximum sensitivity. On the other hand, the specificity (TP/[TP
+ FP]) of the unstranded assemblies was much less than that of
the stranded assemblies when the resulting assemblies were evalu-
ated with their directionality considered, regardless of the size of
themapped reads (Fig. 1B). This result indicates that stranded reads
provide more accurate information for transcriptome assembly.
Previous studies failed to recognize the low accuracy of unstranded
assemblies because they used a default option of Cuffcompare
that ignores the directionality of the resulting assemblies during
evaluation. In fact, the overall specificity, when the directionality
of the resulting assemblies is not considered, neither correlates
with the size of mapped reads nor differs between stranded and
unstranded assemblies (Supplemental Fig. S1B,C).

To examine the nature and cause of the errors in unstranded
assembly, we next sequenced both stranded and unstranded RNA-
seq libraries that were simultaneously prepared in mouse embry-

onic stem (mES) cells. We also obtained a pair of publicly available
stranded and unstranded RNA-seq data sets of human HeLa cells
from the NCBI Gene Expression Omnibus (GEO). These reads
were mapped to reference genomes (hg19 for human and mm9
for mouse) using TopHat (Supplemental Table S1; Trapnell et al.
2009), and unstranded reads (∼68 million mapped reads for mES
cells and ∼40millionmapped reads for HeLa cells) were assembled
using Cufflinks (Supplemental Table S1). In total, 51,045 and
48,509 transcript fragments (transfrags) whose full lengths were
not examined were assembled from HeLa and mES cells, respec-
tively (Supplemental Table S2). The resulting transfrags were divid-
ed into five groups based on their directions validated by stranded
RNA-seq signals: correct, incorrect (those with an RNA-seq signal
on the opposite strand), ambiguous (those with RNA-seq signals
on both strands), undetermined (thosewith no direction), and un-
supported (those with no stranded RNA-seq signals in either direc-
tion) (Fig. 1C). The criteria for the presence of antisense RNA-seq
signals were determined by systematic analyses (Supplemental
Fig. S2; see “Antisense RNA-seq signals” in Supplemental
Methods for more details). All transfrags in the correct group
(24.24% forHeLa cells and 29.76% formES cells) weremultiexonic
(Fig. 1D,E); this high accuracy was the result of exon-junction
reads that define the direction of the resulting intron with the
splice-signal ‘GU-AG’ at the ends of the intron (Fig. 1E). The re-
mainder were regarded as problematic transfrags (75.76% for
HeLa cells and 70.24% for mES cells). They displayed low accura-
cies and were placed in the incorrect (0.31% and 0.14%), ambigu-
ous (33.13% and 38.79%), undetermined (39.52% and 31.03%),
and unsupported (2.8% and 0.28%) groups (Fig. 1D,E). They ap-
peared to be severely defective in their structures and/or directions
(Supplemental Fig. S3), and the majority in the undetermined
group were single-exonic transfrags (Fig. 1E). However, except for
those in the unsupported group (Fig. 1C), the defective transfrags
(72.96% for HeLa cells and 69.96% for mES cells) could be correct-
ed using the guide of the matched, stranded RNA-seq data.

Probabilistic estimation of the directions of unstranded

RNA-seq reads

To facilitate stranded assemblieswith additional stranded reads,we
sought to predict the directions of unstranded RNA-seq reads using
k-orderMarkov chainmodels (kMC)whose transition probabilities
were estimatedwith thedirections of a current readx and its k-near-
est stranded reads, xk. In the prediction step, the direction of a read
with an unknown direction, y, was determined using maximum
likelihood estimation (MLE) (Fig. 2A). A readwith a predicteddirec-
tion (RPD)was treated as a stranded read andwas used in the down-
stream assembly. For unstranded paired-end reads, the direction of
a fragment was independently predicted. If the predicted direction
of a fragmentwasnot consistentwith that of another fragment, the
direction with a greater probability was chosen. Merely <1%
(0.28% for HeLa and 0.14% for mES) were paired-end reads with
discordantly predicted strands (Supplemental Fig. S4). Performing
systematic analyses while increasing k, we found the optimum to
be k = 3, a value at which the accuracy is maximized and the com-
putational cost isminimized (Supplemental Fig. S5A,B).Compared
to a simple majority voting method with k-nearest stranded reads,
kMC performed better as k increased (Supplemental Fig. S5C,D).
Thus, we predicted the directions of all unstranded RNA-seq data
using the Markov chain model with the optimum k-order and as-
sembled all stranded read-like RPDs. Compared to the original as-
sembly (unstranded assembly), those that were reassembled from
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RPDs (RPD assembly) were significantly improved by 9.3%–10.7%
in their specificity without compromising their sensitivity (Fig. 2B
for HeLa cells and Fig. 2C for mES cells). For instance, unstranded
reads from a genomic locus where LOC148413 and MRPL20 are
convergently transcribed were assembled into an erroneous
annotation, but their RPDs led to correction of the erroneous
gene structure (Fig. 2D). The prediction of strand information
also significantly improved the specificityof the annotations of an-
tisense-overlapped loci without compromising the sensitivity at
the base level (Supplemental Fig. S6A,B).

The use of stranded RNA-seq data leads not only to better
transcriptome assembly but also, in principle, to better gene ex-

pression quantification. To testwhether the expression quantifica-
tion benefits from the prediction of strand information, the gene
expression values were calculated with unstranded and corre-
sponding RPDs and then were compared to those calculated
with stranded reads (Fig. 2E,F; Supplemental Fig. S6C). Overall,
the unstranded reads overestimated the expression level of genes
in the loci with antisense-overlapping transcripts, but RPDs cor-
rected the overestimation, leading to better correlation with those
of stranded reads.

To test the general usage of the kMCmodel, we predicted the
directions of unstranded reads from HeLa cells using the kMC
model trained in mES cells, and vice versa. The species-

Figure 1. Error-prone unstranded transcriptome assembly. (A,B) Sensitivities (A) and specificities (B) of stranded (orange diamond) and unstranded (navy
diamond) assemblies constructed from ENCODE RNA-seq data are shown over the number of mapped reads. (C) Classification of transfrags assembled
from unstranded RNA-seq data. Graphs on the top are signals from stranded RNA-seq data (blue is the signal in the forward direction, and red is the signal
in the reverse direction). (D) Shown are the percentages of transfrags belonging to the five groups—correct (red), ambiguous (blue), undetermined (pur-
ple), incorrect (black), and unsupported (yellow)—in HeLa andmES cells. (E) The specificity (light blue) and sensitivity (red) of the five groups compared to
the reference protein-coding genes in HeLa (left, top) andmES cells (left, bottom). The number of multiexonic (dark gray) and single-exonic (gray) transfrags
are indicated in each group (right).
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mismatched models were comparable to the species-matched
models (Supplemental Fig. S7), suggesting that the kMC model
can be generalized to other cell types and species.

Refining boundaries and finding new exon junctions between

transfrags

Shallow sequencing depth and short read length often cause tran-
script fragmentation in transcriptome assembly, mainly due to

missing exon-junction reads and discontinuity of read overlaps.
To improve the integrity of the assembled transcriptome, the
missed exon junctions were examined by either experimental
(Clark et al. 2015) or computational approaches (Fig. 3A; see
Methods for more details; Shapiro and Senapathy 1987; Reese
et al. 1997; Pertea et al. 2001; Yeo and Burge 2004; Desmet et al.
2009). Of 51,270 potential exon junctions, 1506 (3%) were addi-
tionally supported by themethod in HeLa cells (Fig. 3B) and a sim-
ilar fraction of potential junctions were supported in mES cells

Figure 2. Prediction of read directions using MLE. (A) Overview of kMC training and MLE of read direction. (Left) S base reads randomly sampled from
stranded RNA-seq reads and their matched step-wise k-nearest reads (xk=1, xk = 2, xk=3,…) were used for training kMC. Blue arrows are reads in the forward
(+) direction, and red arrows are reads in the reverse (−) direction. (Right) Prediction of read direction using MLE. Step-wise k-nearest stranded reads (xk=1,
xk = 2, xk=3,…) from a query unstranded read (black arrow) were extracted and used to calculate two likelihoods at (+) and (−). A direction with the max-
imum likelihood is finally assigned to the query read. (B,C) Accuracies of transcriptomes assembled with RPDs (k = 3) and unstranded reads in HeLa (B) and
mES cells (C). (D) An example of resulting transfrags reassembled with RPDs. LOC148413 and MRPL20 are convergently overlapped at a locus where
unstranded RNA-seq signals (black) are not separated, but blue and red RPD signals are clearly separated in the forward and reverse directions, respectively.
(E,F). Comparisons of gene expression values (FPKM, log2) estimated by stranded (x-axis) and unstranded reads (y-axis, left) or RPDs (y-axis, right) in HeLa
(E) and mES cells (F). The correlation coefficients were calculated with Pearson’s correlation between the x- and y-axis values. The red dots indicate genes
with antisense-overlapped genes.
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(Supplemental Fig. S8A). Of the newly connected exon junctions,
91.0%–94.4% were present in GENCODE annotations (V19) and
the remainderwere novel (Fig. 3B; Supplemental Fig. S8A). The un-
connected potential exon junctions were examined further with
the program MaxEntScan (Yeo and Burge 2004) to determine
whether the most likely putative splicing signal, ‘GU-AG,’ existed
in the region between two neighboring transfrags (Fig. 3A). Using
that approach, 11,153 potential junctions for HeLa cells and 7634
for mES cells were newly connected (Fig. 3B; Supplemental Fig.

S8A); 84.7%–85.2% were present in GENCODE gene annotations
and the remainder were novel (Fig. 3B; Supplemental Fig. S8A).

RNA-seq-based transcriptome assembly often results in im-
precise transcript boundaries (Supplemental Fig. S9). To improve
transfrag boundary annotation, transcription start sites (TSSs), de-
termined from publicly available CAGE-seq (The FANTOM
Consortium and the RIKEN PMI andCLST [DGT] 2014), and cleav-
age and polyadenylation sites (CPSs), determined frompoly(A) po-
sition profiling by sequencing (3P-seq) (Nam et al. 2014), were

Figure 3. Updating exon junctions, TSSs, and CPSs in transfrag models. (A) Shown is a workflow for updating transfrag models, which comprises two
steps: (1) updating exon junctions, and (2) updating TSSs and CPSs. (B) The number of neighboring transfrag pairs supported by putative splicing signals
(red), by exon-junction reads (navy), and by neither (olive) in HeLa cells. The numbers in parentheses in the key indicate the number of pairs in each group.
Among exon junctions supported by either exon-junction reads or putative splicing signals, the fractions of known (cyan) and novel (gray) exon junctions in
GENCODE annotations are shown in the inset. (C) The fraction of transfrags updated with both TSS and CPS (blue), with only TSS (yellow), with only CPS
(magenta), andwith neither TSS or CPS (gray) in HeLa cells. (D) The number of TFBSs upstreamof the original 5′ end (blue) and of the 5′ end updatedwith a
TSS (pink) in HeLa cells. (E) The number of transfrags with a close poly(A) signal, AAUAAA, over the relative distances from the original 3′ end (blue) and the
3′ end updated with a CPS (pink) of transfrags in HeLa cells.
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incorporated into relevant transfrags. For TSSs and CPSs, respec-
tively, 93%–94% and 96%–98% of transfrags were either con-
firmed or revised (Fig. 3C; Supplemental Fig. S8B). Transfrags
updated for both TSSs and CPSs (91%–92%) were regarded as
full-length transcripts (Fig. 3C; Supplemental Fig. S8B). Updating
TSSs improved the definition of the upstream promoter regions
inwhich transcription factor binding sites (TFBSs) are significantly
enriched (Fig. 3D). Similarly, transfrags with CPSs displayed an en-
riched poly(A) signal, AAUAAA within 15–30 nt upstream of the
cleavage site, compared to those without CPS updates (Fig. 3E).

CAFE improves transcriptome annotations

We developed a pipeline, CAFE, which utilizes both stranded and
unstranded RNA-seq data to reconstruct full-length transcripts ef-
fectively (Supplemental Fig. S10). To evaluate the pipeline, we first
sought to reassemble only RPDs (named strand-specific support as-
sembly) fromHeLa andmES cells andmeasured the accuracy of in-
termediate assembly at each step by comparing our results to
GENCODE protein-coding genes in the base level (Fig. 4A). After
updating TSSs andCPSs, the evaluation proceededwith only trans-
frags with a major TSS and CPS, while the count of transfrags took
accountof all isoforms. In total, 143,129 transfrags from25,118 loci
were assembled fromHeLa cells; the quality of the resulting assem-
bly for protein-coding genes was improved by ∼14% for specificity
and ∼1.6% for sensitivity, compared to the original unstranded as-
sembly (Fig. 4A). Similarly, CAFE assembled 164,423 transfrags
from 24,605 loci in mES cells and improved the quality of pro-

tein-coding gene assembly by 18.4% for specificity and 1.3% for
sensitivity (Fig. 4A). Although the resulting transfrags that over-
lapped with GENCODE lncRNAs were relatively less accurate
than those of protein-coding genes, partly because of their low
and condition-specific expression patterns, CAFE also improved
the quality of such transfrags by 22.1% and 8.3% for specificity in
HeLa and mES cells, respectively, without compromising sensitiv-
ity. A major factor behind the increased specificity for both pro-
tein-coding and lncRNA genes was the prediction of read
direction and reassembly (Fig. 4A).

We next performed combined assembly (coassembly) of both
stranded reads and RPDs using CAFE. The resulting assemblies in-
cluded 166,227 transfrags from 25,591 loci in HeLa cells, of which
93.26% had their own TSSs and 94.62% had their own CPSs, and
244,085 transfrags from 26,332 loci in mES cells, of which 94.83%
had their own TSSs and 98.08% had their own CPSs (Fig. 4B;
Supplemental Fig. S11). Both the sensitivity and specificity of
the final resulting transcriptome that overlapped with the
GENCODE genes were greatly improved at the base level, com-
pared to both of the original assemblies, and were slightly im-
proved compared to the strand-specific support assembly (Fig. 4;
Supplemental Fig. S12).

Benchmarking other transcriptome assemblers

To checkwhether the improvement in transcriptome assembly de-
pends on a specific base assembler (originally, Cufflinks+CAFE),
other reference-based assemblers, Scripture (Guttman et al. 2010)

Figure 4. Step-wise evaluation of transcriptomes reassembled by CAFE. (A) Shown are the accuracies and sizes of strand-specific support transcriptomes
(RPD assembly) at each step of CAFE in HeLa (top) and mES cells (bottom). The sensitivity (red solid circle) and specificity (blue) of the assemblies are mea-
sured by comparing to GENCODE protein-coding genes (left panel) and lncRNAs (middle panel). The number of assembled transfrags and their loci are
indicated at each step (right panel). (B) Shown are the accuracies and sizes of combined transcriptome assemblies of both stranded reads and RPDs.
The low sensitivity of the stranded assembly from HeLa cells is presumably because the stranded reads are of the single-end type and are 36 or 72 nt
long. Otherwise, as in A.
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and StringTie (Pertea et al. 2015), were benchmarked using the
same data set (Scripture+CAFE and StringTie+CAFE). The resulting
assemblies were more accurate for both HeLa (8.6%∼9.9% greater
sensitivity and 11.4%∼12.9% greater specificity) (Fig. 5A) and
mES cells (3.2%∼4.9% greater sensitivity and 10.2%∼10.6% great-
er specificity) (Fig. 5B) than the original assemblies in the base lev-
el. Because the recently published reference-based assembly
pipeline GRITS utilizes only strand-specific paired-end reads, we
excluded it from the benchmarking. Additionally, two available
de novo assemblers, Trinity and Velvet (Zerbino and Birney
2008), were also benchmarked by predicting the strand informa-
tion of unstranded reads using CAFE, and the resulting de novo as-
semblies of RPDs and stranded reads were more accurate than the
original de novo assemblies (Fig. 5A,B). Taken together, CAFE was
able to improve initial assemblies robustly regardless of the base as-
sembler used.

The number of full-length transcripts is another important
aspect in the quality of transcriptome assembly. We thus com-
pared the number of full-length transcripts assembled by CAFE
to the number in the original and de novo assemblies. For these

comparisons, transcripts that simultaneously included a TSS in
the first exon and a CPS in the last exon were considered to be
full-length transcripts. Trinity+CAFE and Velvet+CAFE assembled
8.8%∼10.4% more full-length transcripts than in the original de
novo assemblies (Fig. 5C). Cufflinks+CAFE, StringTie+CAFE, and
Scripture+CAFE assembled 14.6%, 10.1%, and 13.9% more full-
length transcripts than in the original assembly, respectively
(Fig. 5C). Similarly, CAFE constructed more full-length transcripts
than in the original and de novo assemblies from mES cells (Fig.
5D). All source codes and a detailed manual for using CAFE can
be found in Supplemental Materials File 1 and on our website
(http://big.hanyang.ac.kr/CAFE).

High-confidence human transcriptome map

To construct a comprehensive human transcriptome map, large-
scale transcriptome data were collected from the ENCODE
Project, the Human BodyMap 2.0 Project, and NCBI GEO human
cell lines; these data included 65 unstranded and 104 stranded
RNA-seq data, TSS profiles across 17 human tissues, and CPS

Figure 5. Benchmarking other base assemblers. (A,B) The accuracies of combined transcriptome assemblies (solid circles) reconstructed by CAFE with
base assemblers and of the original transcriptome assemblies (open circles) reconstructed by respective base assemblers, such as Cufflinks (red), Scripture
(blue), StringTie (gray), Velvet (green), and Trinity (yellow), in HeLa (A) and mES cells (B). The accuracies of the original assemblies were calculated by av-
eraging the accuracies of stranded and unstranded assemblies reconstructed by each base assembler. Velvet and Trinity were used as de novo assemblers,
and Scripture, StringTie, and Cufflinks were used as reference-based assemblers. (C,D) The numbers of full-length genes (light blue) and transcripts (blue) in
the coassemblies were compared to those in the original assemblies fromHeLa (C ) andmES cells (D). For the original assemblies, the higher number of full-
length genes in the stranded and unstranded original assemblies was chosen.
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profiles from four human cell lines (Nam et al. 2014). We first pre-
dicted the directions of approximately six billion reads from 62
unstranded RNA-seq data sets using 60 cell-type–matched strand-
ed RNA-seq data sets from 35 different cell types (Fig. 6A;
Supplemental Table S3). The transcriptome assembly of the RPDs
was more accurate than the unstranded transcriptome assembly
at the base level (Fig. 6B), suggesting that the prediction of read di-
rections significantly reduced erroneous transfrag assemblies. The
coassembly of RPDs and stranded reads with TSS and CPS profiles
(Fig. 6A) reconstructed 338,359 transcripts from 46,634 loci, re-
ferred to here as BIGTranscriptome. To expand our transcriptome
map, we additionally predicted the strand information of >4800
individual unstranded RNA-seq data from 19 different tissues

and tumors from the GTEx (The GTEx Consortium 2013) and
TCGA Projects (Ciriello et al. 2013; Kandoth et al. 2013) and
reconstructed more accurate transcriptome maps using the
RPDs rather than using the unstranded reads at the base level
(Fig. 6C). The coassembly of RPDs and stranded reads with TSS
and CPS profiles using the same pipeline shown in Figure 6A
reconstructed tissue-specific transcriptome maps, referred to here
as BIGTranscriptome-TS (Supplemental Table S4). To examine
their quality, all annotations were compared to those of RefSeq,
GENCODE (manual), GENCODE (automatic), Pacific Biosciences
(PacBio) long read assembly, and MiTranscriptome in terms
of the number of full-length independent transcripts. Although
BIGTranscriptome reconstructed fewer transcripts than did

Figure 6. Comprehensive human transcriptome map. (A) A schematic flow for the reconstruction of the BIGTranscriptome map using large-scale RNA-
seq samples from human cell lines, ENCODE, and Human BodyMap 2.0 Projects. (B) Accuracies of unstranded (blue) and RPD assemblies (mint) from the
ENCODE and Human BodyMap 2.0 projects. (C) Sensitivities (red) and specificities (blue) of unstranded assemblies (solid line box) and RPD assemblies
(dotted line box) are shown in box plots. The unstranded RNA-seq data are from GTEx (14 tissues) and TCGA Project (five tumor types). The numbers
(n) indicate the sample numbers in each group. (CRBL) Brain cerebellum, (CTX) brain cortex, (FCTX) brain frontal cortex, (HPC) brain hippocampus,
(HTH) brain hypothalamus, (ESO) esophagus-mucosa, (PAN) pancreas, (PRO) prostate, (ESCA) esophageal carcinoma, (HNSC) head and neck squamous
cell carcinoma, (LIHC) liver hepatocellular carcinoma, (LUAD) lung adenocarcinoma, and (LUSC) lung squamous cell carcinoma. (D) Shown are the accu-
racies of BIGTranscriptome and MiTranscriptome at the base and intron levels based on four different sets of annotations (RefSeq, manual and automatic
GENCODE, PacBio, and EST), and a combined set of annotations. (SN) Sensitivity, (SP) specificity. (E,F) Maximum entropy scores of the putative splice
donor sites (E) and of putative splice acceptor sites (F). Blue lines are from BIGTranscriptome, green lines are from PacBio assembly, and orange lines
are from MiTranscriptome. (G) The fraction of TFBSs upstream of the 5′ end of BIGTranscriptome transcripts (blue) was compared to those of
MiTranscriptome (orange), GENCODE (automatic) (black), and PacBio assembly (green). (H) The fraction of the closest poly(A) signals, AAUAAA, in the
region just upstream of the 3′ end of BIGTranscriptome annotations (blue) compared to those of MiTranscriptome (orange), GENCODE (automatic)
(black), and PacBio assembly (green).
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MiTranscriptome (Supplemental Table S4), it contained more
(16,376, 35.11%) independent genes that had at least one tran-
script with boundaries defined by TSSs and CPSs than didMiTran-
scriptome (5741, 6.30%) and GENCODE (manual: 6522, 13.59%;
automatic: 1301, 7.34%) (Supplemental Table S5). Moreover, BIG-
Transcriptome included 6000 full-length independent single-ex-
onic transcripts with a direction (∼32.24% of single-exonic
transcripts), whereas other annotations included tens of thou-
sands of single-exonic transcripts, only 1.04%∼20.91% of which
were full-length independent single-exonic transcripts (Supple-
mental Table S6A). Thousands of those that remained appeared
to be partial fragments that were included in BIGTranscriptome
annotations (Supplemental Table S6B).

The accuracy of BIGTranscriptome annotations was also eval-
uated at the base level in terms of sensitivity and specificity based
on RefSeq, GENCODE (manual), GENCODE (automatic), or
PacBio (MCF7) annotations. BIGTranscriptome annotations were
found to be 14.7%∼36.7% more specific for the RefSeq and
GENCODE (manual) transcripts than were MiTranscriptome anno-
tations, without compromising sensitivity (Fig. 6D). We also
checked if the intron structures of BIGTranscriptome agreed with
those of the RefSeq, GENCODE, expression sequence tags (ESTs),
PacBio, and combined annotations (RefSeq +GENCODE+ EST +
PacBio) and compared the results to those of MiTranscriptome.
Overall, our BIGTranscriptome annotations were superior to
those of MiTranscriptome for both sensitivity (22.6% greater) and
specificity (40.5% greater) in the combined annotations (Fig. 6D),
indicating that BIGTranscriptome transcripts are less likely to
be fragmented. Eighty-seven percent of the 29,274 putative
BIGTranscriptome introns, not detected in the combined annota-
tions, included a canonical splicing signal, ‘GU’-‘AG’, two nucleo-
tides away from both ends; the remainder lacked the canonical
splice signal (Supplemental Table S7). Although the putative introns
of MiTranscriptome also included the canonical splice signals at
a similar level as BIGTranscriptome (Supplemental Table S7), the
putative splice sites of MiTranscriptome showed significantly lower
maximum entropy scores than those of BIGTranscriptome at
both splice donor and acceptor sites (Fig. 6E,F). We also evaluated
tissue-specific BIGTranscriptome-TS annotations at the base and in-
tron levels in terms of sensitivity and specificity based on RefSeq,
GENCODE, EST, or PacBio annotations and found similar levels of
accuracy in the transcriptome maps (Supplemental Fig. S13A).

To evaluate the accuracy of BIGTranscriptome transcript
boundaries, we counted TFBSs in the regions upstream of the
TSSs and canonical poly(A) signals in the regions around the
CPSs. A higher fraction of TFBSs within 500 nt upstream of a TSS
(Fig. 6G) and poly(A) signals within 15–30 nt upstream of a CPS
(Fig. 6H) were observed for BIGTranscriptome transcripts than
for MiTranscriptome and GENCODE (automatic), indicating that
BIGTranscriptome includes transcripts with more precise ends.
In addition, BIGTranscriptome agreed with PacBio and GENCODE
about the 5′ and 3′ end positions of assembled transcripts better
than did MiTranscriptome (Supplemental Fig. S13B–E). However,
because the CPS information was profiled from only four human
cell types, we additionally updated the cell-type–specific 3′ ends
of transcripts using GETUTR, which predicts the 3′ end of a tran-
script from RNA-seq data (Kim et al. 2015).

Based on BIGTranscriptome and BIGTranscriptome-TS
annotations, all ENCODE, Human BodyMap, TCGA, and GTEx
RPDs were used to quantify the gene expression values (read
counts) with featureCounts version 1.5.1 (Liao et al. 2014) (see
“Expression profiling using RPD BAM files” in Supplemental

Methods for more details). All BIGTranscriptome and
BIGTranscriptome-TS annotations, as well as the expression data,
can be downloaded from the NCBI GEO by following the pointers
summarized in Supplemental Table S9.

A confident catalog of human lncRNAs

With our BIGTranscriptomemap,wenext sought to identify novel
and known lncRNAs using the following lncRNA annotation pipe-
line, slightly modified from a previous method (Nam and Bartel
2012). Of 338,359 transcripts from 46,634 loci, 28,769 (8.5%)
were longer than 200 nt in length and did not overlap with
exons of known protein-coding genes or ncRNA genes, excepting
lncRNAs. These transcripts were separated into known and puta-
tive lncRNAs. Transcripts totaling 23,642 from 17,153 genomic
loci were previously annotated lncRNAs (Fig. 7A). Putative
lncRNAs were subsequently subjected to coding-potential classifi-
ers: (1) coding potential calculator (CPC) (Supplemental Fig. S14;
Kong et al. 2007); and (2) PhyloCSF (Lin et al. 2011) (see the
“Classification of lncRNAs” section in Supplemental Methods for
more details). Novel lncRNAs totaling 2222 (from 1725 loci)
(Supplemental Table S8) were identified as our human lncRNA
catalog (Fig. 7A). Although the novel lncRNAs predominantly con-
sisted of two exons, similar to known lncRNAs, their median
length (890 nt) was longer than that (722 nt) of known lncRNAs
(Supplemental Fig. S15), suggesting that our lncRNA catalog in-
cluded more intact gene models. Transcripts totaling 2905 (from
2735 loci) that do not meet the lncRNA criteria were classified
into pseudogenes (117 transcripts), paralogous transcripts
(1998), orthologous transcripts (251), and putative coding tran-
scripts (539) (see “Classification of unknown transcripts” in
Supplemental Methods for more details).

To evaluate our human lncRNA catalogs, genomic loci encod-
ing GENCODE lncRNAs were compared to those of our catalogs. A
majority (60.37% for GENCODE) were detected in our human
lncRNA catalogs (Fig. 7B). Of 8949 GENCODE lncRNAs that were
not in our catalogs, 7872 (87.96%) were transcripts that over-
lapped with annotated genes in RefSeq, GENCODE, Ensembl, or
MiTranscriptome (Fig. 7B). We determined that 5166 (65.63%)
of 7872 undetected GENCODE lncRNAs had been filtered out
because they overlapped with known genes, and the remainder,
2706, overlappedwith a falsely fused transcript of a protein-coding
gene and an lncRNA, mostly originating from MiTranscriptome
(Fig. 7B). For example,NEAT1, a well-studied lncRNA, is annotated
as a protein-coding gene in MiTranscriptome because it was fused
with FRMD8, an upstream protein-coding gene (Fig. 7F). Only
4.76% (1077/22,585) of GENCODE lncRNAs were truly missed
in our catalog. To verify this notion, the genomic loci encoding
lncRNAs annotated from HeLa (Fig. 7A) and mES cells (Supple-
mental Fig. S16) were respectively compared to those of GEN-
CODE lncRNAs expressed at greater than one fragment per
kilobase of exons per million mapped fragments (FPKM) in corre-
sponding cells. We found that our HeLa and mES lncRNA sets in-
cluded a majority of GENCODE lncRNAs (93.98% for HeLa
and 89.38% for mES cells) (Fig. 7C,D). All of the lncRNAs not in-
cluded in our sets were transcripts that overlapped with known
genes or that were misannotated in the public databases (Fig. 7C,
D). Similarly, the cell-type–specific lncRNA sets included more
transcripts (∼67% for HeLa and ∼76% for mES cells) with fully
or partially evident ends than did the non-cell-type–specific
lncRNA catalog (∼48%) (Supplemental Fig. S17). Nevertheless,
our lncRNA catalog (13.45%) included many more intact gene
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models with fully evident ends than those of GENCODE, LNCipe-
dia, and MiTranscriptome (6.61%, 6.71%, and 2.22%, respective-
ly) (Fig. 7E). For example, CROCCP2 is shown to exist in two
independent isoforms in GENCODE; however, it actually exists
in a single form, as shown in both BIGTranscriptome andMiTran-
scriptome (Fig. 7G).

We next sought to examine whether our BIGTranscriptome
annotations could benefit the expression profiling of genes
and their downstream analysis. T222734 was annotated as a
single form in MiTranscriptome, but this sequence turned out
to be an independent protein-coding gene, PRPF6, and an
lncRNA, LINC00176, evident with CAGE-seq and 3P-seq, in

Figure 7. BIGTranscriptome includes known and novel noncoding genes. (A) A schematic flow for annotating novel and known noncoding genes in
BIGTranscriptome. (B) The Venn diagrams display the fraction of BIGTranscriptome lncRNAs that are published GENCODE lncRNAs. The inset indicates
that GENCODE lncRNAs (8949) not detected in BIGTranscriptome were classified as overlapping with known genes (blue), overlapping with falsely fused
genes (green), or truly missed in our catalog (gray). (C,D) Transcriptomes of HeLa (C) and mES cells (D) were compared to GENCODE lncRNAs, expressed
over 1 FPKM in the matched cell types. The insets indicate that HeLa- and mES-expressed lncRNAs not detected in our lncRNA set were filtered by either
overlap with known genes (blue) or misannotation (green). (E) The fractions of the indicated lncRNA sets with both TSS and CPS, either site, or neither site
are shown in bar graphs. (F–H) Examples of misannotated gene models in public databases (MiTranscriptome and GENCODE). (F) The gene for a well-
studied lncRNA, NEAT1, has been combined with a protein-coding gene, FRMD8, leading to misannotation as a protein-coding gene. (G) CROCCP2 is an-
notated in GENCODE (automatic) as having two independent isoforms whereas it is annotated as a single transcript in BIGTranscriptome and
MiTranscriptome. (H) Gene models of BIGTranscriptome and MiTranscriptome, and CAGE-seq and 3P-seq data, at a locus. A fused single form,
T222734, was annotated in MiTranscriptome whereas two independent genes, PRPF6 and LINC00176, were annotated in BIGTranscriptome. (I–K)
Survival analyses for TCGA liver cancer samples based on the resulting gene models. One hundred sixty-four patient samples including termination events
were divided into two groups, the top 50% (red) and bottom 50% (blue), by the median FPKM values of T222834 (I), PRPF6 (J), and LINC00176 (K ).
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BIGTranscriptome (Fig. 7H). Using the single and the two indepen-
dent forms of the genes, we performed survival analyses for 164
liver cancer samples from TCGA (see the “Survival analysis”
section in Supplemental Methods for more details). We found
that the PRPF6 gene is a more significant marker (log rank test,
P = 0.0006) (Fig. 7J) for the prognosis of the liver cancer patients
than T222734 (log rank test, P = 0.003) (Fig. 7I), whereas
LINC00176 is expressed at a low level and is not a significantmark-
er (log rank test, P = 0.3) (Fig. 7K). Similarly, AC15645 (lncRNA)
andMLXIP (protein-coding gene)were annotated in BIGTranscrip-
tome, but they were annotated as a single form (T087998) in
MiTranscriptome (Supplemental Fig. S18A). TheMLXIP annotated
in our BIGTranscriptome appeared to be a more significant
prognosis marker (Supplemental Fig. S18E) than T087998
and T088004 annotated in MiTranscriptome (Supplemental Fig.
S18B,C), but the lncRNA, AC15645, turned out to be expressed
at a low level (Supplemental Fig. S18D).

Discussion

Our new transcriptome assembly pipeline, CAFE, enabled us to sig-
nificantly improve the quality of the resulting assemblies by resur-
recting large-scale unstranded RNA-seq data, which was formerly
used for less informative or less specific transcriptome assembly.
The reuse of the large-scale unstranded RNA-seq data could be
valuable in three ways. For example, other public transcriptome
databases, such as the TCGA Consortium (Ciriello et al. 2013;
Kandoth et al. 2013), the GTEx Project (The GTEx Consortium
2013), the Human Protein Atlas (Uhlen et al. 2010, 2015), and
NCBI GEO, include large-scale unstranded RNA-seq data. Hence,
determining the direction of unstranded sequence reads enables
the construction of highly accurate transcriptome maps, which
is necessary for highly qualitative downstream analyses. Although
determining the direction of unstranded reads requires stranded
data in the corresponding cell type or tissue, the use of pooled
stranded data can still be of benefit to the prediction of transcript
direction and the following assembly. In fact, the RPDs of
unstranded Human BodyMap 2.0, GTEx, and TCGA datawere pre-
dicted using pooled stranded RNA-seq data and showed better per-
formance for specificity (Fig. 6B,C). Secondly, in the case of genes
with low expression such as those encoding lncRNAs, additional
RPDs benefit transcriptome assembly by increasing the read-depth
of those genes. Although the targeted capture of low-abundance
transcripts like lncRNAs using antisense oligonucleotides enabled
an increase in the copynumber of the target transcripts (Clark et al.
2015), this approach is only applicable to known transcripts.
Thirdly, additional RPDs could increase the detection of missed
exon junctions, resulting in the connection of fragmented
transfrags.

In this study, we utilized CAGE-seq and 3P-seq data to profile
transcript TSSs and CPSs, which detect unambiguous ends at sin-
gle-base resolution as well as transcript alternative forms.
However, the assignment of multiple TSSs and CPSs raises a ques-
tion: Which pairs of ends, in all possible combinations, are rele-
vant? Moreover, if a gene has alternative splicing isoforms, the
number of possible isoforms is exponentially increased by multi-
ple TSSs and CPSs. CAFE now generates all possible but unique iso-
forms, some of whichwould not actually exist in cells. Therefore, a
precise way to determine a TSS-CPS pair simultaneously would
provide biologically relevant isoforms directly. One approach is
to integrate paired-end ditag (PET) data that contain both 5′ and
3′ end sequence tags of transcripts (Djebali et al. 2012), and an al-

ternative is to sequence full-length RNAs using third-generation
sequencing methods such as Iso-seq (Sharon et al. 2013).

Methods

mES cell culture

mES cells were cultured in regular media containing 15% FBS, 1%
penicillin-streptomycin, 1% glutamine, 1% NEAA, and leukemia
inhibitory factor (LIF). FormES cellmaintenance, disheswere coat-
ed with 0.2% gelatin, and irradiated CF1 mouse embryonic fibro-
blasts were plated as a confluent layer of feeder cells. mES cells
were seeded at a density of 50,000 cells/6-well plate and were split
every 2–3 days.

K-ordered Markov chain models for read direction

To predict the direction of unstranded reads mapped to the ge-
nome, kMCmodels were trained with the directions of the k-near-
est stranded reads relative to a target read and with the direction of
the target read. We built a training data set including S base reads
randomly selected from stranded reads mapped to genomes and
their matched k-nearest reads. To acquire the k-nearest reads, we
used a step-wise k-nearest method, in which the read xk=1 nearest
to a query read xk=0 was first selected, then the read xk=2 nearest to
the current read xk=1 was selected, then the read xk=3 nearest to the
current read xk=2 was selected, and so on. To train unbiased mod-
els, we used 10 million as S, a large enough sampling number
that is proportional to the k (also proportional to the number of
states and edges to train). Practically, 2 × K matrix M+ or M− for
each emission value (+ and −) were constructed from the training
data and each cell m+i,j or m−i,j in the matrix indicates the fraction
of + or− direction of the jth-nearest read xk=j when the emission
value (direction) of the previous state is i.

Maximum likelihood estimation of read direction

The direction of an unstranded read, r, was inferred from the
trained kMC models given step-wise k-nearest stranded reads of a
query unstranded read mapped to a genome locus using MLE as
in the following equation:

L∗
r = argmax

L[{+,−}

∏k
1

mi,j=k

( )
,

where i is the direction of the kth-nearest read, L is a set of possible
directions that are {+,−}, and L∗

r is the maximum likelihood direc-
tion of the unstranded read r. Using the MLE, all maximum likeli-
hood directions were predicted for all unstranded reads. If an
unstranded readwas paired-end, then its directionwas determined
differently, as follows. If a fragment of a paired-end read spanned
an exon junction, the direction of the readwas directly determined
by the splice signalwithoutMLE. If the directions of two fragments
of a paired-read were inconsistent, the direction with greater like-
lihood was chosen for the read.

Updating exon junctions

To update exon-junction signals missed in the original assembly,
all pairs of neighboring transfrags on the same strand within a dis-
tance ranging from 50 bp to the 99th percentile of the lengths of
all known introns (50–265,006 bp for human and 50–240,764
bp for mouse) were re-examined. The neighboring transfrags with-
in a distance of 50 bp were combined using a default Cufflinks pa-
rameter, ‘–overlap-radius = 50’. If more than two exon-junction
reads in at least two samples were detected, the neighbored
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transfrags were connected by the junction. Otherwise, the gaps be-
tween two neighboring transfrags were further scrutinized to
detect cis-splicing signals. The gaps including splice donor ‘GU’

and acceptor ‘AG’ signals, but not TSSs or CPSs, between two
neighboring transfrags were scanned by MaxEntScan (version
20040420), which calculates entropy scores for splice donor and
acceptor sites. If the maximum entropy scores of both the splice
donor and acceptor sites were above 0.217, a cutoff used in previ-
ous studies (Jian et al. 2014), then the interspace between the ‘GU’

and ‘AG’ was regarded as an intron and the two transfrags were
connected by the intron.

Updating TSSs and CPSs

The method for TSS identification from CAGE-seq tags was modi-
fied from themethod for CPS identification from 3P-seq tags (Nam
et al. 2014). Of the identified sites, those located in either the first
exon or in the 3-kb upstream regionof a gene,without overlapping
the upstream gene, were regarded as TSSs of the gene. Similarly, of
the CPSs identified from 3P-seqs, those assigned to either the 3′

UTRor the 5-kb downstream region of a gene, without overlapping
the downstream gene, were regarded as CPSs of the gene. After up-
dating TSSs and CPSs, we removed all redundant transcripts or in-
clusive transfrags.

Evaluation of transcriptome assembly

To evaluate the quality of transcriptome assembly, we compared
the resulting assembly with the reference gene annotations (pro-
tein-coding genes and lncRNAs, respectively) using Cuffcompare
(version 2.1.1). The sensitivity and specificity were estimated
at the base and intron levels of the assembled transfrags
(Supplemental Fig. S1; see the “Evaluation of transcriptome assem-
bly” section in Supplemental Methods for more details).

Evaluation of full-length genes and isoforms

To evaluate howmany full-length genes and isoforms were assem-
bled, we collected the transcripts that simultaneously included a
TSS in the first exon and a CPS in the last exon of the resulting
transfrags. In addition, the transcripts aligned to the reference
transcripts with at least a 95% match were regarded as full-length
transcripts. At the gene level, gene models that unified all isoform
exons were compared.

Data access

Raw RNA-seq data from mES cells from this study have been sub-
mitted to the NCBI Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/; GSE84946) under SuperSeries acces-
sion number GSE97212. All RPDs (ENCODE and Human
BodyMap), gene annotations, lncRNA catalogs, and expression ta-
bles from this study have been also submitted to the NCBI GEO
(GSE97211) under the same SuperSeries accession number
GSE97212. The TCGA and GTEx RPD BAM files cannot be redis-
tributed due to the Data User Certification Agreements. However,
the source code and a detailed manual for reproducing the RPD
BAM files are provided in Supplemental Materials File 1, and the
simplified RPD files including read ID, strand information, and
mapping position have been submitted to the NCBI GEO
(GSE97211). All data and files submitted to the NCBI GEO can
also be downloaded from our website (http://big.hanyang.ac.kr/
downloads/datasets/).
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