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Abstract

X-linked Dystonia-Parkinsonism (XDP) is a neurodegenerative disease linked to an inser-

tion of a SINE-VNTR-Alu (SVA)-type retrotransposon within an intron of TAF1. This SVA

insertion induces aberrant TAF1 splicing and partial intron retention, thereby decreasing

levels of the full-length transcript. Here we sought to determine if these altered transcrip-

tional dynamics caused by the SVA are also accompanied by local changes in histone acet-

ylation, given that these modifications influence gene expression. Because TAF1 protein

may itself exhibit histone acetyltransferase activity, we also examined whether decreased

TAF1 expression in XDP cell lines and post-mortem brain affects global levels of acetylated

histone H3 (AcH3). The results demonstrate that total AcH3 are not altered in XDP post-

mortem prefrontal cortex or cell lines. We also did not detect local differences in AcH3 asso-

ciated with TAF1 exons or intronic sites flanking the SVA insertion. There was, however, a

decrease in AcH3 association with the exon immediately proximal to the intronic SVA, and

this decrease was normalized by CRISPR/Cas-excision of the SVA. Collectively, these data

suggest that the SVA insertion alters histone status in this region, which may contribute to

the dysregulation of TAF1 expression.

Introduction

X-Linked Dystonia-Parkinsonism (XDP) is a progressive neurodegenerative movement disor-

der endemic to the island of Panay in the Philippines [1–3] that is characterized by the loss of

medium spiny neurons in the striatum [2, 4]. Previous studies mapped the genetic XDP causal

locus to TAF1 [5, 6] which encodes TATA Binding Protein (TBP)-Associated Factor-1
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(TAF1), the largest component of the multi-subunit TFIID complex involved in RNA poly-

merase II-mediated transcription [7–10]. In these analyses, all XDP individuals appeared to

share a common haplotype consisting of seven sequence variants clustered in and around

TAF1, specifically a 48-base pair (48-bp) deletion, five disease-specific single nucleotide

changes (designated in the literature as DSC-1, -2, -3, -10, and -12), and an intronic SINE-VN-

TR-Alu (SVA)-type retrotransposon insertion [5, 6]. Recent studies have since expanded the

shared haplotype to encompass thirteen XDP-specific variants, including the original known

markers, that fall within a genomic segment exclusive to TAF1 [11]. Of these disease-related

variants, only the SVA has thus far been linked directly to clinical disease manifestation. Its 5’

end contains a repeated hexamer, (CCCTCT)n, the length of which is polymorphic among

XDP patients and is inversely correlated with age at disease onset [12, 13]. Nevertheless, the

possibility that any of the other variants within the haplotype may also contribute to pathogen-

esis is not excluded.

Alterations in TAF1 transcription have been described in XDP fibroblasts, induced pluripo-

tent stem cells (iPSCs) and their neural derivatives, post-mortem brain tissue, and blood [6,

11, 14–16] with some evidence that lower TAF1 levels may be inversely correlated to the length

of the hexameric repeat within the SVA [13]. Furthermore, our group recently described addi-

tional transcriptional abnormalities in XDP neural stem cells occurring around the large TAF1
intron in which the SVA is inserted, specifically: (1) multiple aberrant splicing events terminat-

ing within TAF1 intron 32 immediately proximal to the SVA insertion, the most abundant of

which was annotated as transcript TAF1-32i, (2) increased partial intron retention (IR) incor-

porating a proximal segment of intron 32 sequence within mature TAF1 mRNA, and (3)

decreased exon usage immediately 3’ to intron 32 [11]. Importantly, the excision of the SVA

by CRISPR/Cas9-mediated genome editing rescued all of these defects and normalized expres-

sion of the full-length TAF1 transcript [11]. Other studies have also reported that SVA excision

in XDP-derived iPSCs increases TAF1 expression [16]. Together, these findings strongly sug-

gest that the decreased TAF1 expression consistently detected in XDP patients may be caused

by aberrant transcriptional dynamics within intron 32 and flanking exons as a result of the

SVA insertion. However, the precise mechanisms involved are yet to be elucidated.

Aberrant splicing and intron retention can interfere with the local chromatin landscape

[17], thus suggesting that alteration in TAF1 transcription may be due to epigenetic modifica-

tions. Similarly, retrotransposons, including long interspersed nuclear elements (LINEs) and

Alu elements, are associated with epigenetic modifications, such as increases in DNA methyla-

tion and alterations in histone acetylation and methylation [18–24]. In general, SVAs are

repressed by DNA methylation of their cytosine and guanine rich sites [25], as well as by

repressive histone marks such as methylation [26–28]. Furthermore, several lines of evidence

suggest that while silencing SVA insertions may decrease gene expression, the loss of epige-

netic repression at these sites leads to retrotransposon expression [19], and SVAs may indi-

rectly regulate permissive histone marks such as acetylation by promoting silencing [29].

Additionally, TAF1 protein activity has been linked to histone acetylation, specifically, the C-

terminus domain contains a double bromodomain which is able to recognize acetylated his-

tones [30]. Moreover, it was suggested that TAF1 possesses histone acetyltransferase (HAT)

activity and thereby could regulate histone acetylation and gene expression [30–35]. Histone

acetylation, finely regulated by HAT and histone deacetylases (HDAC) activity [36–38], con-

sists of the addition of acetyl groups on histone tails decreasing the positive charge leading to

decondensed chromatin and increased transcription [39–44]. Given that retrotransposons can

regulate gene expression [45–52] and are in turn regulated by epigenetic modifications [18–

23], it is therefore possible that alterations in permissive epigenetic marks such as histone acet-

ylation may regulate TAF1 expression in XDP.
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Here, we assessed alterations in histone H3 acetylation in human post-mortem prefrontal

cortex (PFC), a region characterized by relatively healthy neurons that are part of the striatal-

cortical circuit, and fibroblasts derived from XDP patients and unaffected family members.

Furthermore, we assessed acetylated histone association with sites within the TAF1 gene in

both XDP-derived fibroblasts and neuronal stem cells (NSCs). Lastly, we determined whether

removing the SVA could reverse alterations in histone acetylation at specific TAF1 gene loci in

NSCs derived from XDP and controls.

Methods

All methods were carried out in accordance with the guidelines and regulations of Massachu-

setts General Hospital and approved by the Massachusetts General Hospital licensing

committees.

Human tissue samples

All procedures related to the collection, processing, and the use of XDP patient post-mortem

brain samples were approved by Institutional Review Boards (IRB) at Makati Medical Center

(Makati City, Philippines; protocol MMCIRB 2017–134) and Massachusetts General Hospital

(MGH; Boston, USA; protocol 2016p-000427). XDP patients were informed about the option

of post-mortem brain donation by their movement disorder neurologist or by their genetic

counselor, clinical care, and seminars offered by the Sunshine Care Foundation (Roxas City,

Capiz Philippines). Individuals interested in participating in brain donations were afforded

with additional information. Informed consent for post-mortem brain donation was acquired

from all participants. Final consent was obtained from next of kin after family members or

health care providers contacted the brain bank at the time of death. Brain bank staff immedi-

ately traveled to the local funeral home to perform an autopsy limited to brain. Brains were

placed in an ice water bath and transported to the brain bank facilities for processing following

removal. For each brain, one hemisphere was cut into 16 standard coronal sections and frozen

between Teflon coated cold metal plates on dry ice and the opposite hemisphere was fixed in

formalin. Here, fresh frozen PFC was dissected from the coronal sections of 11 XDP patient

brains. Control tissue from 3 PFC was provided by the Massachusetts Alzheimer’s Disease

Research Center (ADRC) with approval from the Massachusetts General Hospital IRB

(1999p009556). Clinical information on the tissues used in this study are reported in Table 1.

Human fibroblast cultures

Human fibroblasts were provided by the MGH Collaborative Center for X-linked Dystonia

Parkinsonism. The clinical characteristics of donor subjects, confirmation of XDP genotype,

and derivation of fibroblasts were previously described [11, 15, 53]. In total we assessed histone

AcH3 levels in fibroblasts derived from 6 XDP patients and 10 unaffected family members as

well as histone AcH3 association across TAF1 in fibroblasts derived from 7 XDP patients and

14 unaffected family members. All fibroblasts were cultured in Dulbecco’s Modified Eagle’s

Table 1. Human post-mortem prefrontal cortex from XDP and control subjects.

Number of subjects Sex Age of onset Age of death Repeat size PMI

Control 3 M N/A 60–92 N/A 14–23

XDP 11 M 33–58 41–67 34–54 16–36

https://doi.org/10.1371/journal.pone.0243655.t001
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Medium (DMEM) supplemented with 20% fetal bovine serum (FBS) and 1X Penicillin/Strep-

tomycin/L-glutamine and grown in an incubator at 37˚C, 5% CO2.

Neuronal stem cells (NSCs) cultures

NSCs were provided by the MGH Collaborative Center for X-linked Dystonia Parkinsonism.

Induced pluripotent stem cells reprogramming, neuronal differentiation and CRISPR/Cas9

nuclease-mediated genome editing were previously described [11]. We used 4 control, XDP,

and ΔSVA lines for the outlined experiments.

Histone extractions

Histone extracts were obtained from XDP and control post-mortem PFC as well as XDP-

and control-derived fibroblasts as previously reported [54, 55]. Briefly, tissues and cells were

homogenized in 5% Triton buffer on ice and centrifuged at 500 g for 8 min at 4˚C to extract

nuclei. Then, nuclei were washed twice in 5% Triton buffer and histones were extracted in 0.2

M HCl by vigorous shaking at 4˚C for 3 h. After centrifugation, the supernatants containing

histones were collected and neutralized with 1 M NaOH. Protein concentrations were deter-

mined by Bradford assay.

Western blots

Western blots from histone extracts were performed using previously described protocols

[55]. 10 μg of proteins was resuspended in sample buffer, boiled at 95˚C for 5 min, and frac-

tionated on a 10–20% tricine gel for 90 min at 150 V. Next, proteins were transferred to a

PVDF membrane in an iBlot Dry Blotting System (Invitrogen, Thermo Fisher, MA), and the

membrane was blocked with 5% milk in tris-buffered saline with Tween 20 (TBST) before

immunodetection with the following primary antibodies: acetyl-histone H3 (H3K9K14ac2;

AcH3) (1:500; Millipore, MA; #06–599), and histone H3 (1:500; Millipore, MA; #06–755) over-

night at 4˚C. Primary antibody incubation was followed by 4 washes (10 min, RT) in TBST

before incubation with the secondary antibody for 1h (HRP-conjugated goat anti-rabbit IgG

Jackson ImmunoResearch Laboratories, West Grove, PA; #111-035-144). After 4 washes in

TBST (10 min, RT) proteins were visualized using the ECL detection system (Thermo Fisher

Scientific, MA). Integrated density values (IDV) were measured for each protein band by

using an AlphaImager (Protein Simple, CA) gel analyzer and normalized to histone H3.

Chromatin immunoprecipitation (ChIP)

ChIP for AcH3 was performed as previously described [54, 56]. Briefly, proteins were cross-

linked to DNA using formaldehyde for 1 h at 37˚C and washed three times in a PBS solution

containing protease inhibitors at 4˚C. Cell pellets were resuspended in 100 μl of 1% SDS lysis

buffer supplemented with 10 mM EDTA, 50 mM Tris-HCl (pH 8.1) and protease inhibitors.

Next, DNA was sheared to 200–1000 bp using a probe sonicator (Dismembrenator Model 500,

Fisher Scientific. PA). Prior to ChIP, a sample of each homogenate representing 1% of the total

volume was removed and set aside as input. Samples were diluted with ChIP dilution buffer

(0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl, pH 8.1, 167 mM NaCl)

and then incubated in 25 μl of Dynabeads Protein A (Invitrogen, CA) at 4˚C overnight with

5 μg of AcH3 (#06–599, Millipore, MA). Dynabeads containing immunoprecipitated samples

were separated from supernatant using magnetic columns and washed with 500 μl of the fol-

lowing: a low salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1,

150 mM NaCl), a high salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-
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HCl, pH 8.1, 500 mM NaCl), a LiCl buffer (0.25 M LiCl, 1% NP-40, 1% deoxycholate, 1 mM

EDTA, 10 mM Tris-HCl, pH 8.1), and a TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0).

Cross links were reversed using 2 μl of Proteinase K (New England Biolabs, MA) at 65˚C for 2

h. Samples were purified using the UltraClean PCR Cleanup Kit (Mo Bio Labs, CA) based on

manufacturer’s protocols. Immunoprecipitated (IP) and input samples were compared to an

IgG control as well as a no-antibody mock condition and were only considered to have suffi-

cient DNA for analysis if amount was> 1.5 times mock.

Quantitative real-time PCR

Genomic DNA pulled down by ChIP as well as in the input samples was analyzed using SYBR

Green (Qiagen, Valencia, CA) on an iCycler (Bio-Rad, Hercules, CA), with the following PCR

protocol: 50˚C for 2 min, 95˚C for 10 min, 95˚C for 15 sec, 60˚C for 1 min for a total of 40

cycles. Each sample was run in duplicates and the average of the duplicate crossing threshold

(Ct) values was used in this formula 100�2^(Adjusted input—Ct (IP)) to assess differences in

AcH3 association with TAF1 exons and introns in fibroblasts and NSCs derived from control

and XDP patients. The sequences of the primers used for real-time PCR were previously

described [6, 15] and are reported in Table 2. Specifically, intron 32-1b, intron 32-2a, intron

32-3c, and intron 32-4c refer to the primers used to amplify the region in intron 32 between

exon 32 and the SVA as depicted in Fig 3.

Statistics

Normal distribution of data was not assumed regardless of sample size or variance. For graphi-

cal representation display individual values with the central line representing the median, and

the edges representing the interquartile range, respectively. Comparison for unrelated samples

were performed using a non-parametric Mann Whitney U test and a one-way ANOVA fol-

lowed by Tukey’s test at a significance level (a) of 0.05. Exact P values are reported.

Results

Histone H3 acetylation is not altered in human post-mortem PFC and

fibroblasts derived from XDP patients

In order to verify whether there were alterations in histone acetylation in the central nervous

system (CNS) of XDP patients, total histone H3 acetylation (H3K9K14ac2; AcH3) levels were

assessed in human post-mortem PFC from XDP (n = 11) and non-neurological controls

(n = 3) by western blots (Fig 1A). Our results demonstrate that there were no significant

differences in AcH3 levels in XDP PFC compared to controls (Mann-Whitney U test = 10,

p = 0.1841) (Fig 1B).

Next, we assessed total AcH3 levels in fibroblasts derived from XDP patients (n = 6) and

unaffected family members (n = 10) by western blots (Fig 2A). As observed in XDP PFC, there

were no significant differences in AcH3 levels in XDP-derived fibroblasts compared to control

fibroblasts (Mann-Whitney U test = 12, p = 0.1898) (Fig 2B).

Acetylated histone H3 association with disease-specific variants along

TAF1 gene is not altered in XDP-derived fibroblasts

Given that global histone acetylation levels may not represent the status of AcH3 associated

with specific gene loci, we sought to determine whether there were alterations in AcH3 associ-

ation with TAF1. Therefore, we examined sites within exons, the regions of intron 32 sur-

rounding the SVA site at which abnormal splicing/IR occurs, and two additional disease
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specific variants (DSC10 and DSC12) within the XDP haplotype that are the closest to the SVA

insertion (Fig 3A) [5, 6, 11, 57]. First, AcH3 association with DSC10 and DSC12 was assessed

using chromatin immunoprecipitation (ChIP) with an anti-AcH3 antibody followed by qPCR

in fibroblasts derived from XDP and controls. The results demonstrate that there was no sig-

nificant change in AcH3 association with DSC10 or DSC12 in XDP-derived fibroblasts (n = 7)

compared to control cells (n = 14) (Mann Whitney U test = 60, p = 0.5749, and Mann Whitney

U test = 24, p = 0.2032, respectively) (Fig 3B and 3C).

Given that the specific SVA insertion may regulate TAF1 expression via partial intron

retention and aberrant splicing [11], we next assessed AcH3 association with intron 32 across

TAF1 in XDP- and control-derived fibroblasts using ChIP followed by qPCR with a panel of

intron 32 specific primers probing the region flanking the SVA (Table 2). The analysis revealed

that there was no significant change in AcH3 association with intron 32-1b, intron 32-2a,

intron 32-3c, and intron 32-4c in XDP-derived cells (n = 7) compared to control cells (n = 14)

(Mann-Whitney U test = 34, p = 0.2872; Mann-Whitney U test = 36, p = 0.3504; Mann-Whit-

ney U test = 38.50, p = 0.7930; and Mann-Whitney U test = 30.50, p = 0.1773, respectively)

(Fig 3D–3G).

Table 2. Primers for qPCR amplification.

Primers name Primers sequences

TAF1 exon 2 F: ATCTTCGACTCGTGCTGTCC

R: GACTTCACCTTCATCATTTACCAA

TAF1 exon 3 F: TTTTTCATAGGGTGGGTTAGGA

R: CCCATCGTCTGCTGGTATCT

TAF1 exon 16 F: GGTTTGTTGGGCAGGTTTTT

R: ACGACCTGTGCGTTTGAAGT

TAF1 exon 17 F: TGTCTTTTCCAGGGATGGACT

R: TGTTCACCTTCAGTCGTTGC

TAF1 exon 19 F: CACTGCCCCTTGGAACAC

R: CTCACCTTCTGCTGTGTTGG

TAF1 exon 27 F: GCATTCTGATTTCACATTTCTCC

R: TGATAGACTCCAAGATGGACGA

TAF1 exon 32 F: TCTGAGTGCCTGATTCTTTTCA

R: ACTGTTGGCCAGAATAAGGTTT

TAF1 exon 36 F: CCCAACTGGTCTCATTCAGG

R: TCACTCCCAGCATCTTCCTC

TAF1 exon 38 F: AGACACAAGCTTCAGCAGCA

R: AAGTCACTGTCCCCAGCAAT

DSC10 F: TGTTTGGAATTCAGTGCAAATTTTAT

R: TGTGCACATGTACCCTAGAAAAA

DSC12 F: GATAGGCATGAACCACTGTG

R: ACCTCAAGAGAGTAGTACAACG

Intron 32-1b F: AGGAAGCAGGGAACTCTCCTA

R: CTCCCCCACCATTTTCCACT

Intron 32-2a F: ACCAAAGGGAGAAATGGAGAATAGT

R: AGTCAATGGCACCACCTGTT

Intron 32-3c F: TGTTTGGCTGGAGCAAAGGT

R: GGCACAATCATTCTCTCGGC

Intron 32-4c F: CTCCCACTCCTGTCTCCCATA

R: GTGTGCTGAGAGCAGCGTA

https://doi.org/10.1371/journal.pone.0243655.t002
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Fig 1. Histone acetylation in XDP post-mortem PFC. The graphs demonstrate the individual integrated density values (IDV) of

AcH3 as % of H3 IDV from western blot experiments performed in PFC from XDP (n = 11) and non-neurological control (n = 3),

with the central line representing the median, and the edges representing the interquartile range, respectively. (A) Representative

western blot images of AcH3, and H3 levels. (B) AcH3 levels in control and XDP PFC (Mann-Whitney U test = 10, p = 0.1841).

https://doi.org/10.1371/journal.pone.0243655.g001

Fig 2. Histone acetylation in XDP-derived fibroblasts. The graphs demonstrate the individual integrated density values (IDV) of

AcH3 as % of H3 IDV from western blot experiments performed in fibroblasts from XDP (n = 6) and non-neurological control

(n = 10), with the central line representing the median, and the edges representing the interquartile range, respectively. (A)

Representative western blot images of AcH3, and H3 levels. (B) AcH3 levels in control- and XDP-derived fibroblasts (Mann-

Whitney U test = 12, p = 0.1898).

https://doi.org/10.1371/journal.pone.0243655.g002
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Acetylated histone H3 association along the TAF1 gene is altered in XDP-

derived fibroblasts

Given that alteration in the transcription of exons surrounding the SVA insertion has been

described in XDP [6, 11, 15], we measured AcH3 association across the TAF1 gene (Fig 4A),

interrogating both constitutive and alternative exons that we and others have previously anno-

tated [6, 11, 57], by ChIP with an anti-AcH3 antibody followed by qPCR in fibroblasts derived

from XDP patients (n = 7) and unaffected family members (n = 14). The analysis revealed that

there were no differences in AcH3 association with exon 2, exon 3, exon 16, exon 19, and exon

27 in XDP-derived fibroblasts compared to controls (Mann-Whitney U = 19, p = 0.8357; Mann-

Whitney U = 18.50, p = 0.1810; Mann-Whitney U = 25, p = 0.7782; Mann-Whitney U = 25.50,

p = 0.5220; and Mann-Whitney U = 25, p = 0.2441, respectively). Furthermore, there was a

trend towards a significant decrease in AcH3 association with exon 36 in XDP-derived fibro-

blasts compared to controls (Mann-Whitney U = 17, p = 0.0577). Importantly, the analysis

revealed a significant increase in AcH3 association with exon 17 as well as a significant decrease

at exon 32, and exon 38 in fibroblasts derived from XDP patients compared to fibroblasts

derived from unaffected family members (Mann-Whitney U = 0.5000, p = 0.0012; Mann-

Whitney U = 6, p = 0.0041; Mann-Whitney U = 10, p = 0.0087, respectively) (Fig 4B–4K).

Fig 3. Acetylated histone H3 association with disease-specific variants along TAF1 gene in XDP-derived

fibroblasts. Graphs demonstrate AcH3 association with disease-specific variants measured by ChIP-qPCR, displayed

as individual values from control- (n = 14) and XDP-derived fibroblasts (n = 7), with the central line representing the

median, and the edges representing the interquartile range, respectively. (A) Schematic representation of DSC10,

DSC12 and intron 32 along TAF1 gene. Top schematic: black boxes represent TAF1 exons, gray dots represent DSC10,

DSC12, and SVA. Bottom schematic: black boxes represent intron 32 and intron 33, red triangle represents the SVA,

and grey boxes indicate the regions of amplification by intron 32-1b, 2a, 3c, and 4c. (B) AcH3 association with DSC10

(Mann Whitney U test = 60, p = 0.5749). (C) AcH3 association with DSC12 (Mann Whitney U test = 24, p = 0.2032).

(D) AcH3 association with intron 32-1b (Mann-Whitney U test = 34, p = 0.2872). (E) AcH3 association with intron

32-2a (Mann-Whitney U test = 36, p = 0.3504). (F) AcH3 association with intron 32-3c (Mann-Whitney U

test = 38.50, p = 0.7930). (G) AcH3 association with intron 32-4c (Mann-Whitney U test = 30.50, p = 0.1773).

https://doi.org/10.1371/journal.pone.0243655.g003
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Excision of the SVA normalizes deficits in acetylated histone H3

association with TAF1 exon 32 in XDP-derived NSCs

Given that AcH3 association with exon 32, the region adjacent to the SVA-type insertion in

the TAF1 gene, is decreased in XDP-derived fibroblasts, we used NSCs derived from control,

XDP and XDP ΔSVA to determine if the presence of the SVA could cause alterations in AcH3

at exon 32 using ChIP followed by qPCR. Our results revealed a significant effect on AcH3

association with exon 32 between XDP-derived NSCs and controls (one-way ANOVA [F(2, 9)

= 6.867, p = 0.0155). Importantly, while there were no significant differences in AcH3 associa-

tion with exon 32 between XDP- and control-derived NSCs, there was a significant increase in

AcH3 association with exon 32 in XDP ΔSVA cells compared to XDP-derived NSCs (Tukey’s

test, p = 002178, and p = 0.0125, respectively) (Fig 5).

Next, we assessed whether excision of the SVA would alter histone H3 acetylation associated

with TAF1 intron 32 using the same primers as depicted in Fig 3. Our results demonstrated no

significant effect on AcH3 association with intron 32-1b as well as no significant difference in

AcH3 association with intron 32-1b between XDP- and control-derived NSCs and XDP ΔSVA

NSCs (one-way ANOVA [F(2, 9) = 0.2936, p = 0.7525; Tukey’s test, p = 0.9572 and p = 0.7366,

respectively) (S1A Fig). Similarly, there was no significant effect on AcH3 association with

intron 32-2a, and there was no significant difference in AcH3 association with intron 32-2a in

XDP-derived NSCs compared to both control-derived NSCs and XDP ΔSVA NSCs (one-way

Fig 4. Acetylated histone H3 association with TAF1 gene exons in XDP-derived fibroblasts. Graphs demonstrate AcH3

association with TAF1 exons measured by ChIP-qPCR, displayed as individual values from control- (n = 14) and XDP-derived

fibroblasts (n = 7), with the central line representing the median, and the edges representing the interquartile range, respectively. (A)

Schematic representation of TAF1 gene. Black boxes represent TAF1 exons; gray boxes represent exons assessed in this study; green

boxes represent increased AcH3 association; red boxes represent decreased AcH3 association; black dots represent the disease-

specific variants (DSCs) assessed in this study. (B) AcH3 association with exon 2 (Mann-Whitney U = 19, p = 0.8357). (C) AcH3

association with exon 3 (Mann-Whitney U = 18.50, p = 0.1810) (D) AcH3 association with exon 16 (Mann-Whitney U = 25,

p = 0.7782) (E) AcH3 association with exon 17 (Mann-Whitney U = 0.5000, p = 0.0012). (F) AcH3 association with exon 19 (Mann-

Whitney U = 25.50, p = 0.5220). (G) AcH3 association with exon 27 (Mann-Whitney U = 25, p = 0.2441). (H) AcH3 association with

exon 32 (Mann-Whitney U = 6, p = 0.0041). (I) AcH3 association with exon 36 (Mann-Whitney U = 17, p = 0.0577). (J) AcH3

association with exon 38 (Mann-Whitney U = 10, p = 0.0087). �� p< 0.01.

https://doi.org/10.1371/journal.pone.0243655.g004
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ANOVA [F(2, 9) = 1.847, p = 0.2128; Tukey’s test, p = 0.3866 and p = 0.8925, respectively) (S1B

Fig). Furthermore, the analysis revealed no significant effect of AcH3 association with intron

32-3c and no significant difference in AcH3 association with intron 32-3c in XDP-derived

NSCs compared to controls and XDP ΔSVA NSCs (One-way ANOVA [F(2, 9) = 0.7871,

p = 0.4842; Tukey’s test, p = 0.9403 and p = 0.4745, respectively) (S1C Fig). Lastly, there was no

significant effect of AcH3 association with intron 32-4c as well as no significant difference in

AcH3 association with intron 32-4c between XDP- and control-derived NSCs, as well as XDP

ΔSVA NSCs (one-way ANOVA [F(2, 9) = 1.238, p = 0.3349; Tukey’s test, p = 0.7509 and

p = 0.3055, respectively) (S1D Fig).

Fig 5. Acetylated histone H3 association with TAF1 exon 32 in XDP-derived NSCs. Bar graph demonstrates AcH3

association with exon 32 measured by ChIP-qPCR, displayed as individual values from control- (n = 4), XDP- (n = 4),

and ΔSVA-derived NSCs (n = 4), with the central line representing the median, and the edges representing the

interquartile range, respectively. AcH3 association with TAF1 exon 32 (one-way ANOVA [F(2, 9) = 6.867, p = 0.0155);

Tukey’s test XDP vs control-derived NSCs p = 0.3178; Tukey’s test XDP ΔSVA vs XDP-derived NSCs p = 0.0125). �

p< 0.05.

https://doi.org/10.1371/journal.pone.0243655.g005
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Discussion

In this study, we demonstrated for the first time that total histone H3 acetylation is not altered

in human post-mortem PFC or fibroblasts derived from XDP patients. Although previous

studies have shown evidence that TAF1 protein may exhibit HAT activity, our results indicate

that global AcH3 levels are not affected in XDP brain and cell lines in which TAF1 expression

is reportedly reduced. We did, however, detect local differences in AcH3 association with sites

within the TAF1 gene, albeit only within coding regions. AcH3 association was not altered in

XDP fibroblasts at sites within intron 32 flanking the SVA, nor at two disease-specific single

nucleotide changes, DSC10 and DSC12, within introns 32 and 18, respectively. Within coding

regions, in contrast, there was a significant increase in AcH3 association with exon 17 and a

significant decrease in exons 32 and 38 in XDP-derived fibroblasts compared to control-

derived cells. Lastly, the excision of the SVA by CRISPR/Cas9-mediated gene editing induced

an increase in AcH3 association with TAF1 exon 32 in XDP ΔSVA NSCs. Together, our find-

ings suggest that the SVA-type insertion alters AcH3 association with specific regions of the

TAF1 gene in XDP.

While decreases in TAF1 expression are well documented in XDP [6, 11, 12, 14–16], the

molecular mechanisms involved in this process remain unknown. Alterations in the epigen-

ome may provide a mechanism where alterations in the chromatin landscape may decrease

TAF1 transcription in XDP. Interestingly, it has been suggested that retroelements, includ-

ing SVAs, may regulate gene expression [44–51]. Similarly, histone modifications, including

methylation, can regulate SVA-type retrotransposon insertions to prevent further retrotran-

sposition or the expression of toxic RNA [26–28]. Furthermore, previous studies have

demonstrated that retrotransposons may indirectly alter permissive histone marks such as

acetylation by promoting repressive marks such as methylation [29]. Therefore, the expres-

sion of retrotransposons, including SVAs, is finely regulated in the genome, a process that

is dysregulated during ageing and age-related diseases [58, 59]. However, the exact involve-

ment of histone acetylation in these regulatory mechanisms remain to be clarified. Our

findings here demonstrating a decrease in AcH3 association with TAF1 exon 32 in both

fibroblasts and NSCs derived from XDP patients suggest that alterations in histone acetyla-

tion in the region flanking the SVA site may be involved in regulating TAF1 expression in

XDP. However, further investigation is required to clarify the role of histone acetylation in

regulating SVAs across the genome.

TAF1 activity has also been linked to histone acetylation, specifically, the C-terminal

domain was shown to possess HAT activity [30–35], suggesting that a loss of TAF1 activity

could lead to a decrease in histone acetylation. Furthermore, the two C-terminal bromodo-

mains on TAF1 have been shown to selectively bind to and propagate acetylation of histones

[30]. Here, we did not detect a significant change in total acetylation of histone H3 in post-

mortem PFC or fibroblasts derived from XDP patients. However, we did not assess alterations

in histone acetylation in the striatum, the brain region most affected in XDP and characterized

by the loss of medium spiny neurons and a decrease in TAF1 expression [4]. Future studies

will assess whether significant alterations in histone acetylation occur in this brain region.

Alterations in global histone acetylation are not always representative of altered acetylation

at individual gene promoters. For instance, we previously reported that, while global histone

acetylation is not altered in both animal and cellular models of Huntington’s disease (HD), the

decrease in AcH3 levels occurs at specific genomic loci and there is a decrease in AcH3 associa-

tion with specific genes downregulated in HD [54]. Similarly, we previously reported that

TAF1 transcription of exons decreased distal to intron 32 as measured by RNA CApSeq in

both fibroblasts and NSCs derived from XDP patients [11]. Specifically, we previously reported
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a decrease in the expression of TAF1 transcripts containing exons 32–36 and 38 [6, 15]. In this

study, we report that AcH3 association with the TAF1 gene is altered across this locus in XDP-

derived fibroblasts. Specifically, while there was a significant increase in AcH3 association with

exon 17, there was a significant decrease in AcH3 association with exon 32, the region flanking

the SVA, as well as with exon 38, and a trend towards a significant decrease with exon 36. Col-

lectively, our findings suggest that decreases in AcH3 association with exons 32, 36, and 38

may provide a mechanism whereby these specific TAF1 transcripts are altered and may con-

tribute to the overall decrease in TAF1 expression in XDP.

Recently, it has been demonstrated that the excision of the SVA normalized TAF1 expres-

sion in both XDP-derived iPSCs and NSCs [11, 16], and this excision also restored normal

splicing in XDP-derived NSCs [11]. Although the exact molecular mechanisms involved in

this process are yet unclear, our findings suggest that alterations in histone acetylation may

play a role in this process, whereby the presence of the SVA may alter AcH3 levels at this locus

in XDP. In addition, although AcH3 association is not altered in XDP-derived NSCs compared

to control cells, the excision of the SVA in XDP-derived NSCs was able to increase AcH3 asso-

ciation with exon 32 compared to unedited cells, further suggesting that the SVA is directly

linked to altered histone H3 acetylation in XDP. However, genome wide studies, assessing

AcH3 association across TAF1 as well as the entire genome are required to better characterize

and determine the role of histone acetylation in XDP pathogenesis.

Lastly, alterations in HAT and HDAC levels and activity have been described in several

neurodegenerative diseases, such as HD [43, 60, 61], Alzheimer’s disease (AD) [62, 63], Par-

kinson’s disease (PD) [64, 65], amyotrophic lateral sclerosis (ALS) [66, 67], and spinal muscle

atrophy (SMA) [68]. Therefore, targeting HDACs and HATs has been suggested as potential

therapeutic approach for the treatment of neurodegenerative diseases [69–71]. For instance,

targeting HDAC2 with the specific inhibitor mithramycin improved neuronal plasticity in cel-

lular model of AD [63], while HDAC6 inhibition improved cognitive decline associated with

HD [72], AD [73], tauopathy [74], and Charcot-Marie-Tooth disease [75]. Furthermore, three

different HDAC inhibitor clinical trials were approved by the Food and Drug Administration

(FDA) for treating neurodegenerative disorders, including sodium phenylbutyrate for the

treatment of HD (Clinical Trial NCT00212316) [76] and ALS (Clinical Trial NCT00107770)

[66], and valproic acid for the treatment of SMA (Clinical Trial NCT00227266) [68]. Our data

suggests that altering AcH3 levels may regulate TAF1 transcription at least at specific loci,

therefore, future studies will assess not only the role of specific HATs and HDACs in order to

provide greater mechanistic insight into the pathogenesis of XDP but will also assess the poten-

tial therapeutic efficacy of epigenetic inhibitors in XDP-derived cell lines.

Supporting information

S1 Fig. Acetylated histone H3 association with TAF1 intron 32 in XDP-derived NSCs.

Graphs demonstrate AcH3 association with intron 32 measured by ChIP-qPCR, displayed as

individual values from control- (n = 4), XDP- (n = 4), and ΔSVA-derived NSCs (n = 4), with

the central line representing the median, and the edges representing the interquartile range,

respectively. (A) AcH3 association with intron 32-1b (one-way ANOVA [F(2, 9) = 0.2936,

p = 0.7525; Tukey’s test control vs XDP NSCs p = 0.9572; Tukey’s test XDP vs XDP ΔSVA-

derived NSCs p = 0.7366). (B) AcH3 association with intron 32-2a (one-way ANOVA [F(2, 9)

= 1.847, p = 0.2128); Tukey’s test control vs XDP NSCs p = 0.3866; Tukey’s test XDP vs XDP

ΔSVA NSCs p = 0.8925). (C) AcH3 association with intron 32-3c (one-way ANOVA [F(2, 9) =

0.7871, p = 0.4842); Tukey’s test control vs XDP NSCs p = 0.9403; Tukey’s test XDP vs XDP

ΔSVA NSCs p = 0.4745). (D) AcH3 association with intron 32-4c (one-way ANOVA [F(2, 9) =
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1.238, p = 0.3349); Tukey’s test control vs XDP NSCs p = 0.7509; Tukey’s test XDP vs XDP

ΔSVA NSCs p = 0.3055).

(TIF)

S2 Fig.

(TIF)

S3 Fig.

(TIF)

S4 Fig.

(TIF)

S5 Fig.

(TIF)

S6 Fig.

(TIF)
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